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NONPARAMETRIC METHODS FOR INFERENCE IN THE
PRESENCE OF INSTRUMENTAL VARIABLES

BY PETER HALL AND JOEL L. HOROWITZ1

Australian National University and Northwestern University

We suggest two nonparametric approaches, based on kernel methods and
orthogonal series to estimating regression functions in the presence of instru-
mental variables. For the first time in this class of problems, we derive optimal
convergence rates, and show that they are attained by particular estimators.
In the presence of instrumental variables the relation that identifies the re-
gression function also defines an ill-posed inverse problem, the “difficulty”
of which depends on eigenvalues of a certain integral operator which is de-
termined by the joint density of endogenous and instrumental variables. We
delineate the role played by problem difficulty in determining both the opti-
mal convergence rate and the appropriate choice of smoothing parameter.

1. Introduction. Data (Xi, Yi) are observed, the pairs being generated by the
model

Yi = g(Xi) + Ui,(1.1)

where g is a function which we wish to estimate and the Ui ’s denote distur-
bances. The Ui’s are correlated with the explanatory variables Xi and, in particular,
E(Ui |Xi) does not vanish. For example, this may occur if a third variable causes
both Xi and Yi , but is not included in the model.

This circumstance arises frequently in economics. To illustrate, suppose that
Yi denotes the hourly wage of individual i, and that Xi includes the individual’s
level of education, among other variables. The “error” Ui would generally include
personal characteristics, such as “ability,” which influence the individual’s wage
but are not observed by the analyst. If high-ability individuals tend to choose high
levels of education, then education is correlated with ability, thereby causing Ui to
be correlated with at least some components of Xi .

Suppose, however, that for each i we have available another observed data value,
Wi , say (an instrumental variable), for which

E(Ui |Wi) = 0(1.2)
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and there is a “sufficiently strong” relationship between Xi and Wi . Then there is
an opportunity for estimating g from the data (Xi,Wi, Yi).

The formal definition of “sufficiently strong” will depend on the nature of the
problem. In a parametric setting, for example, where g(Xi) = Xiβ , Xi is an m× k

matrix and β is a k × 1 vector, “sufficiently strong” means simply that the matrix
of correlations between X and W is of full rank; this is sometimes expressed as
“X and W are fully correlated.” In a nonparametric setting the definition of “suffi-
ciently strong” is given by, for example, condition (2.1) below.

Estimation of g is difficult because, as explained in Section 2, the relation that
identifies g is a Fredholm equation of the first kind,

T g = φ,(1.3)

say, which leads to an ill-posed inverse problem [9, 14]. We use a ridge-type regu-
larization method to achieve boundedness of the relevant inverse integral operator,
and develop both kernel and series estimators of g. The resulting estimators have
optimal L2 rates of convergence.

Closely related inverse problems, where the context is rendered relatively
abstract in order to facilitate solution, include those studied by Donoho [4],
Johnstone [8] and Cavalier, Golubev, Picard and Tsybakov [2]. That work ad-
dresses the white-noise model, rather than the more explicitly realistic discrete-
data setting of (1.1). In such treatments the operator T is generally assumed known,
whereas in the case of instrumental-variables problems it usually must be estimated
from data. Nevertheless, the optimal convergence rates obtained in the above ear-
lier work are identical to our own. Indeed, the mean integrated squared error rates
we obtain are the same as those in an “ordinary” inverse problem, where T is
known and equal to T ′

1T1, and T1 is the nonstochastic transformation of the actual
inverse model. Efromovich and Koltchinskii [5] treated a white-noise model in a
setting where T , at (1.3), must be estimated, and also obtained optimal rates.

Research on this type of problem in econometrics is mostly very recent.
Blundell and Powell [1] and Florens [6] discussed the relationship between (1.1)
and other “structural” models in econometrics. Newey, Powell and Vella [13] in-
vestigated estimation and inference with a triangular-array version of (1.1). In that
setup, equations relate Xi and Wi , and the disturbances of these equations are con-
nected to Ui . Newey and Powell [12] proposed a series estimator for g in (1.1) and
gave sufficient conditions for its consistency, but did not obtain a rate of conver-
gence. Darolles, Florens and Renault [3] developed a kernel estimator for a special
case of (1.1) and obtained its rate of convergence. This rate is slower than that
obtained here. However, Darolles, Florens and Renault [3] make assumptions that
conflict with ours, and it is not known whether their rate is optimal under their
assumptions.

Further related work on inverse problems includes that of Wahba [17], Tikhonov
and Arsenin [15], Groetsch [7], Nashed and Wahba [11] and Van Rooij and Ruym-
gaart [16].
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We shall give a relatively detailed treatment, together with proofs, of results in
the case where the instrumental variable is univariate. This setting is arguably of
greatest interest to statisticians. Extensions to multivariate cases will be outlined.

2. Model and estimators in bivariate case.

2.1. Model. Let (Ui,Wi,Xi, Yi), for i ≥ 1, be independent and identically
distributed 4-vectors, and assume they follow a model satisfying (1.1) and (1.2).
We shall suppose that (Wi,Xi, Yi), for 1 ≤ i ≤ n, are observed, and that the distri-
bution of (Xi,Wi) is confined to the unit square.

Denote by fX , fW and fXW the marginal densities of X and W , and the joint
density of X and W , respectively, and define the linear operator T on the space of
square-integrable functions on [0,1]2 by

(T ψ)(z) =
∫

t (x, z)ψ(x) dx,

where

t (x, z) =
∫

fXW(x,w)fXW(z,w)dw.

The following assumption characterizes the strength of association we require be-
tween X and W :

T is nonsingular.(2.1)

To appreciate the nature of (2.1), observe that if X and W are independent, then
T maps each function ψ to a constant multiple of fX , and so (2.1) fails. However,
if (2.1) holds, then since it may be proved from (1.1) and (1.2) that

EW {E(Y |W)fXW(z,W)} = (T g)(z),(2.2)

g may be recovered by inversion of T ,

g(z) = EW {E(Y |W)(T −1fXW)(z,W)}.(2.3)

This property suggests an estimator, which we shall develop in Section 2.2.
Observe that (2.2) is a Fredholm equation of the first kind, and generates an

ill-posed inverse problem if, as is usually the case, zero is a limit point of the
eigenvalues of T . In that case, T −1 is not a bounded, continuous operator. For the
purpose of estimation, we shall deal with this problem in Section 2.2 by replacing
T −1 by (T + an)

−1, where an is a positive ridge parameter converging to zero as
n → ∞.
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2.2. Generalized kernel estimator. Let fXW have r continuous derivatives
with respect to any combination of its arguments. Let Kh(·, ·) denote a general-
ized kernel function, with the properties Kh(u, t) = 0 if u > t or u < t − 1,

for all t ∈ [0,1]
(2.4)

h−(j+1)
∫ t

t−1
ujKh(u, t) du =

{
1, if j = 0,
0, if 1 ≤ j ≤ r − 1.

Here, h > 0 denotes a bandwidth, and the kernel is considered in generalized form
only to overcome edge effects. In particular, if h is small and t is not close to either
0 or 1, then we may take Kh(u, t) = K(u/h), where K is an r th order kernel. If t is
close to 1, then we may take Kh(u, t) = L(u/h), where L is a bounded, compactly
supported function satisfying∫ ∞

0
ujL(u)du =

{
1, if j = 0,
0, if 1 ≤ j ≤ r − 1.

And if t is close to 0, then we may take Kh(u, t) = L(−u/h). There are, of course,
other ways of overcoming the edge-effect problem, but the “boundary kernel” ap-
proach above is also appropriate.

We require two estimators of fXW , the second a leave-one-out estimator,

f̂XW (x,w) = 1

nh2

n∑
i=1

Kh(x − Xi, x)Kh(w − Wi,w),

f̂
(−i)
XW (x,w) = 1

(n − 1)h2

∑
1≤j≤n : j �=i

Kh(x − Xj,x)Kh(w − Wj,w).

We use f̂XW to construct the following estimators of t (x, z) and the transforma-
tion T :

t̂ (x, z) =
∫

f̂XW (x,w)f̂XW(z,w)dw, (T̂ ψ)(z) =
∫

t̂ (x, z)ψ(x) dx.

Let an > 0; we shall use it as a ridge parameter when inverting T̂ , defining
T̂ + = (T̂ +anI)−1, where I is the identity operator. Reflecting (2.3), our estimator
of g is

ĝ(x) = 1

n

n∑
i=1

(
T̂ +f̂

(−i)
XW

)
(z,Wi)Yi.

An alternative approach would be to develop a spectral expansion of T̂ , truncate it
to a finite series, and invert this series. The smoothing parameter now becomes the
number of terms in the series, rather than the ridge, an. Theory may be developed
for this “spectral cut-off” approach, too. However, it appears to require regularity
conditions on spacings between adjacent eigenvalues of T , as well as a condition
on their rate of decrease (see A.3 in Section 4.1), and for this reason we do not
pursue it here.
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2.3. Orthogonal series estimator. This technique is based on empirically
transforming the marginal distributions of W and X to uniform, and exploiting
the relatively simple character of the problem in that case. To appreciate this point,
assume for the time being that both marginals are in fact uniform on [0,1], and let
χ1, χ2, . . . denote an orthonormal basis for L2[0,1]. In practice, one would usually
take {χj } to be the cosine sequence, although there are many other options.

Let fXW(x,w) = ∑
j

∑
k qjkχj (x)χk(w) denote the generalized Fourier ex-

pansion of fXW , and put Q = (qjk), pj = E{Yχj (W)}, γj = E{g(X)χj (X)},
p = (pj ) and γ = (γj ), the latter two quantities being column vectors. By
(1.1) and (1.2), QQ′γ = Qp and, therefore, γ = (QQ′)−1Qp. [This is really an-
other way of writing (2.3); observe that the operator T takes g to a function of
which the j th Fourier coefficient is (QQ′γ )j .] Hence, the problem of estimating
the Fourier coefficients γj of g reduces to one of estimating pj and qjk .

Next we describe how to solve the latter problem in general cases, where mar-
ginal distributions are not uniform. First transform the marginals, by comput-
ing Ŵi = F̂W (Wi) and X̂i = F̂W (Xi), where F̂W and F̂X denote the empirical
distribution functions of the data W1, . . . ,Wn and X1, . . . ,Xn, respectively. Put
q̂jk = n−1 ∑

i χj (Ŵi)χk(X̂i) and p̂j = n−1 ∑
i χj (Ŵi)Yi . Let Q̂ be the m × m

matrix that has q̂jk in position (j, k), and set

γ̂ = (γ̂j ) = (Q̂Q̂′ + anIm)−1Q̂p̂,

where an denotes a ridge parameter and Im is the m × m identity. Our estimator
of g is

ḡ(x) =
m∑

j=1

γ̂jχj (x).

In this estimator the number of terms, m, in the approximating Fourier series
is the main smoothing parameter. It is relatively awkward to derive theory for the
orthogonal series method, owing to the fact that the transformed data Ŵi and X̂i

are not independent, and to the difficulty of dealing theoretically with the large
random matrix Q̂. Nevertheless, we shall show in Section 4 that, under restrictions,
the orthogonal series technique has optimal performance.

3. Model and estimators in the multivariate case. In the model at (1.1) the
explanatory variable X is endogenous, that is, determined within the model. When
the model is multivariate, there is an opportunity for dividing the explanatory vari-
able, which is now a vector, into two parts, one endogenous and the other deter-
mined outside the model, or exogenous.

We take (Y,X,Z,W,U) to be a vector, where Y and U are scalars, X and W are
supported on [0,1]p , and Z is supported on [0,1]q . Generalizing (1.1) and (1.2),
the model is

Yi = g(Xi,Zi) + Ui, E(Ui |Zi,Wi) = 0,
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where (Yi,Xi,Zi,Wi,Ui), for i ≥ 1, are independent and identically distributed
as (Y,X,Z,W,U). Thus, X and Z are endogenous and exogenous explanatory
variables, respectively. Data (Yi,Xi,Zi,Wi), for 1 ≤ i ≤ n, are observed.

Let fXZW denote the density of (X,Z,W), write fZ for the density of Z, and
for each x1, x2 ∈ [0,1]p put

tz(x1, x2) =
∫

fXZW(x1, z,w)fXZW(x2, z,w)dw,

the analogue of t (x1, x2) in Section 2. Define the operator Tz on L2[0,1]p by

(Tzψ)(x) =
∫

tz(ξ, x)ψ(ξ) dξ.

Analogously to (2.3), it may be proved that, for each z for which T −1
z exists,

g(x, z) = fZ(z)EW |Z{E(Y |Z = z,W)(T −1
z fXZW)(x, z,W)|Z = z},

where EW |Z denotes the expectation operator with respect to the distribution of W

conditional on Z. In this formulation, (T −1
z fXZW)(x, z,W) denotes the result of

applying T −1
z to the function fXZW(·, z,W) and evaluating the resulting function

at x.
To construct an estimator of g(x, z), given h > 0 and p-vectors x = (x(1), . . . ,

x(p)) and ξ = (ξ (1), . . . , ξ (p)), let Kp,h(x, ξ) = ∏
1≤j≤p Kh(x

(j), ξ (j)),
put Kq,h(z, ζ ) analogously for q-vectors z and ζ , let hx,hz > 0, and define

f̂XZW(x, z,w) = 1

nh
2p
x h

q
z

n∑
i=1

Kp,hx (x − Xi, x)

× Kq,hz(z − Zi, z)Kp,hx (w − Wi,w),

f̂
(−i)
XZW(x, z,w) = 1

(n − 1)h
2p
x h

q
z

∑
1≤j≤n : j �=i

Kp,hx (x − Xj,x)

× Kq,hz(z − Zj , z)Kp,hx (w − Wj,w),

t̂z(x1, x2) =
∫

f̂XZW(x1, z,w)f̂XZW(x2, z,w)dw

and

(T̂zψ)(x, z,w) =
∫

t̂z(ξ, x)ψ(ξ, z,w)dξ,

where ψ is a function from R
2p+q to the real line. Then the estimator of g(x, z) is

ĝ(x, z) = 1

n

n∑
i=1

(
T̂ +

z f̂
(−i)
XZW

)
(x, z,Wi)YiKq,hz(z − Zi, z).
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4. Theoretical properties.

4.1. Kernel method for bivariate case. The invertibility of T is central to our
ability to successfully resolve g from data, and so it comes as no surprise to find
that rates of convergence of estimators of g hinge on the rate at which the eigen-
values of T , say λ1 ≥ λ2 ≥ · · · > 0, converge to 0. Therefore, our regularity con-
ditions will be framed in terms of an eigen-expansion representation of T . To this
end, let φj denote an eigenfunction of T with eigenvalue λj , normalized so that
φ1, φ2, . . . is an orthonormal basis for the space of square-integrable functions on
the interval [0,1]. Then we may write

t (x, z) =
∞∑

j=1

λjφj (x)φj (z),

fXW(x, z) =
∞∑

j=1

∞∑
k=1

djkφj (x)φk(z),(4.1)

g(x) =
∞∑

j=1

bjφj (x),

where djk and bj denote generalized Fourier coefficients of fXW and g, respec-
tively.

Next we state regularity conditions. Assumption A.1 is equivalent to the inter-
section of (1.1) and (1.2); A.3 gives smoothness conditions, expressed through the
eigen-expansion of T ; A.2 and A.3 together imply that T is a bounded Hilbert–
Schmidt operator and, hence, compact; and A.4 describes the sizes of tuning pa-
rameters. The invertibility condition (2.1) is equivalent to asking that each λj > 0,
which in turn implies part of A.3.

Below, in condition A.3, we shall introduce constants α,β > 0, for which

A1 ≡ max
(

2α + 2β − 1

2β − α
,

5

2

2α + 2β − 1

4β − α + 1
,2

)
> 0,

0 < A2 ≡ 1

2r

2α + 2β − 1

2β + α
≤ A3 ≡ min

{
1

2

2β − α

2β + α
,

4β − α + 1

5(2β + α)

}
.

Therefore, it is possible to choose an integer r ≥ A1 and a constant γ ∈ [A2,A3];
such values will be used below. Let C > 0 be an arbitrarily large but fixed con-
stant, let α,β > 0, and denote by G = G(C,α,β) the class of distributions G of
(X,W,Y ) that satisfy A.1–A.3 below.

Regarding the smoothness assumed of fXW in A.2, we mention that our mini-
max rates do not alter if fXW is smoother than specified. The rates are optimized
for smoothness of g, given enough smoothness of fXW . In condition A.3, the lower
bound on α seems difficult to relax and, in fact, it has close analogues in related
contexts, for example, in work on convergence rates in functional data problems.
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The upper bound on α, however, seems more likely to be tied to our method
of proof. One approach to relaxing the bound might be to draw inspiration from
a modified approach to Tikhonov regularization (see [10]) and use, as the ridged
inverse, (T + anD

2β−1)−1 rather than (T + anI)−1. Here, if 2β − 1 were an in-
teger, D2β−1 would denote the (β − 1)st power of the differential operator; if
2β − 1 were strictly greater than its integer part, 
 say, then D2β−1 would involve
taking the convolution of g(
)(t) − g(
)(0) against the kernel |t |
−2β . However,
this approach requires a direct relationship between the smoothness of g, as ex-
pressed through the size of β in the formula |bj | ≤ Cj−β , and its smoothness in
the more conventional sense of differentiation. We have avoided making assump-
tions about this relationship. In particular, as our results are presently formulated,
g does not need to be continuous, let alone differentiable, no matter how large or
small β might be.

A.1. The data (Xi,Wi, Yi) are independent and identically distributed as
(X,W,Y ), where (X,W) is supported on [0,1]2 and E{Y − g(X)|W = w} ≡ 0.

A.2. The distribution of (X,W) has a density, fXW , with r derivatives (when
viewed as a function restricted to [0,1]2) bounded uniformly in absolute value
by C; and the functions E(Y 2|W = w) and E(Y 2|X = x,W = w) are bounded
uniformly by C.

A.3. The constants α and β satisfy α > 1, β > 1
2 and β − 1

2 ≤ α < 2β . More-
over, |bj | ≤ Cj−β , j−α ≤ Cλj and

∑
k≥1 |djk| ≤ Cj−α/2 for all j ≥ 1.

A.4. The parameters an and h satisfy an 	 n−α/(2β+α) and h 	 n−γ as n → ∞,
where cn 	 dn for positive constants cn and dn means that cn/dn is bounded away
from zero and infinity.

A.5. The function Kh(·, ·) satisfies (2.4); for each t ∈ [0,1], Kh(h·, t) is sup-
ported on [(t −1)/h, t/h]∩K , where K is a compact interval not depending on t ;
and

sup
h>0,t∈[0,1],u∈K

|Kh(hu, t)| < ∞.

THEOREM 4.1. As n → ∞,

sup
G∈G

∫ 1

0
EG{ĝ(t) − g(t)}2 dt = O

(
n−(2β−1)/(2β+α)).

More generally, it may be proved that if a particular distribution of (X,W,Y )

satisfies A.1, and if E(Y 2) < ∞ and the density fXW is continuous on [0,1], then
an and h can be chosen so that

∫
EG(ĝ − g)2 → 0 as n → ∞. Similar results,

guaranteeing consistent estimation but without a convergence rate, may be derived
in the settings of Sections 4.2 and 4.3.
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4.2. Orthogonal series method for bivariate case. We shall simplify theory
by assuming the Fourier coefficients qjk satisfy a strong diagonality condition.
Under this assumption it is sufficient to work with a strongly diagonal form of Q̂,
where we redefine q̂jk = 0 if |j − k| ≥ N (where N is permitted to increase slowly
with n), and leave q̂jk unchanged otherwise. With this alteration to q̂jk , let Q̂ =
(q̂jk) be the indicated m × m matrix.

Recall from Section 2.3 that χ1, χ2, . . . is an orthonormal basis for L2[0,1].
Let FW and FX denote the marginal distribution functions of W and X, put W̃ =
FW(W) and X̃ = FX(X), and let fW̃X̃ denote the joint density of (W̃ , X̃). Write
fW̃X̃(w,x) = ∑

j

∑
k qjkχj (x)χk(w) and g(x) = ∑

j γjχj (x) for the generalized
Fourier transforms of these functions. Recall that we require the transformation
represented by QQ′ to be invertible, so we may define Q−1 = (q

(−1)
jk ) to be a

generalized inverse of Q.
Given constants α ≥ 2, β ≥ 1

2 and C1,C2 > 0, let H = H(C1,C2, α,β) denote

the class of distributions G of (W̃ , X̃, Y ) for which

E{Y − g(X̃)|W̃ = w} ≡ 0, |qjk| ≤ C1{max(j, k)}−α/2 exp(−C2|j − k|),∣∣q(−1)
jk

∣∣ ≤ C1{max(j, k)}α/2 exp(−C2|j − k|),
|pj | ≤ C1j

−β, E(Y 4) < C1,

where the bounds are assumed to hold uniformly in 1 ≤ j, k < ∞.

THEOREM 4.2. Let {χj } denote the orthonormalized version of the cosine
series on [0,1]. Take α ≥ 2 and β ≥ 1

2 , and assume an 	 m−α , m 	 n1/(2β+α),
N/ logn → ∞ and N = O(nε) for all ε > 0. Then, as n → ∞,

sup
G∈H

∫ 1

0
EG(ḡ − g)2 = O

(
n−(2β−1)/(2β+α)).

4.3. Kernel method for multivariate case. For each z ∈ [0,1]q , let {φz1,

φz2, . . .} denote the orthonormalized sequence of eigenvectors, and λz1 ≥ λz2 ≥
· · · > 0 the respective eigenvalues of the operator Tz. Assume that {φzj } forms an
orthonormal basis of L2[0,1]p . Analogously to (4.1),

tz(x1, x2) =
∞∑

j=1

λzjφzj (x1)φzj (x2),

fXZW(x, z,w) =
∞∑

j=1

∞∑
k=1

dzjkφzj (x)φzk(z),

g(x, z) =
∞∑

j=1

bzjφzj (x),
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where the dzjk’s and bzj ’s are generalized Fourier coefficients.
Put τ = 2r/(2r + q). If α,β > 0 denote constants satisfying MV.3 below, then

B1 ≡ max
{
p

2α + 2β − 1

2β − α
,

(
2

5p

2α + 10β + 1

2β + α
− 6

5p

)−1(
2α + 2β − 1

2β + α
+ 3q

5p

)
,2

}
> 0,

0 < B2 ≡ τ

2r

2α + 2β − 1

2β + α
≤ B3 ≡ min

{
τ

2p

2β − α

2β + α
,

1

5p

(
τ

10β + 2α

2β + α
− 3

)}
.

Choose r ≥ B1 and γ ∈ [B2,B3]. We make the following assumptions, of which
the first five are respectively analogous to A.1–A.5 in Section 4.1. Let C > 0.

MV.1. The data (Xi,Wi,Zi, Yi) are independent and identically distributed as
(X,W,Z,Y ), where X, W and Z are supported on [0,1]p , [0,1]p and [0,1]q ,
respectively, and E{Y − g(X,Z)|Z = z,W = w} ≡ 0.

MV.2. The distribution of (X,Z,W) has a density, fXZW , with r derivatives
of all types (when viewed as a function restricted to [0,1]2p+q ), each derivative
bounded in absolute value by C; g(x, z) and bzj have r partial derivatives with re-
spect to z, bounded in absolute value by C, uniformly in x and z; and the functions
E(Y 2|Z = z,W = w) and E(Y 2|X = x,Z = z,W = w) are bounded uniformly
by C.

MV.3. The constants α,β satisfy α > 1, β > 1
2 and β − 1

2 ≤ α < 2β . Moreover,
|bzj | ≤ Cj−β , j−α ≤ Cλzj and

∑
k≥1 |dzjk| ≤ Cj−α/2, uniformly in z ∈ [0,1]q , for

all j ≥ 1.
MV.4. The parameters an, hx and hz satisfy an 	 n−ατ/(2β+α), h 	 n−γ , hz 	

n−1/(2r+q) as n → ∞.
MV.5. The function Kh(·, ·) satisfies A.5.
MV.6. For each z ∈ [0,1]q , the functions φzj form an orthonormal basis for

L2[0,1]p , and supx supz maxj |φzj (x)| < ∞.

Let M = M(C,α,β) denote the class of distributions of (X,W,Z,Y ) that sat-
isfy MV.1–MV.3 and MV.6.

THEOREM 4.3. As n → ∞,

sup
G∈M

sup
z∈[0,1]q

∫
[0,1]p

EG{ĝ(x, z) − g(x, z)}2 dx = O
(
n−τ(2β−1)/(2β+α)).

4.4. Optimality. The convergence rates expressed by Theorems 4.1–4.3 are
optimal in those contexts, in a minimax sense. Indeed, let g̃ denote any measurable
functional of that data which is itself a measurable function on [0,1] (in the cases
of Theorems 4.1 and 4.2) or on [0,1]p (in the setting of Theorem 4.3); let C denote
G, H or M in the cases of Theorems 4.1–4.3, respectively; and put τ = 1 in the
contexts of Theorems 4.1 and 4.2, and τ = 2r/(2r + q) for Theorem 4.3.
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THEOREM 4.4.

lim inf
n→∞ nτ(2β−1)/(2β+α) inf

g̃
sup
G∈C

∫
EG(g̃ − g)2 > 0.(4.2)

In the multivariate setting of Section 4.3 we interpret the integral at (4.2) as∫
[0,1]p

EG{g̃(x, z) − g(x, z)}2 dx,

and interpret Theorem 4.4 as stating that, for this representation, (4.2) holds for
each z ∈ [0,1]q .

5. Monte Carlo experiments. This section reports the results of a Monte
Carlo investigation of the finite-sample performance of the kernel estimator for
the bivariate model. The estimator is the one described in Section 2.3, although
our method is not optimized for theoretical performance. In particular, we took K

to be a second-order kernel.
Samples of size n = 200 were generated from the model determined by

fXW(x,w) = 2Cf

∞∑
j=1

(−1)j+1j−1 sin(jπx) sin(jπw), 0 ≤ x,w ≤ 1;

g(x) = 21/2
∞∑

j=1

(−1)j+1j−2 sin(jπx), Y = E{g(X)|W = w} + V,

where Cf is a normalization constant and V is distributed as Normal N(0,0.01).
For computational purposes, the infinite series were truncated at j = 100. Figure 1
shows a graph of the marginal distributions of X and W , which are identical. The
solid line in Figure 2 depicts g(x). The kernel function is the Epanechnikov kernel,
K(x) = 0.75(1 − x2) for |x| ≤ 1.

Each experiment consisted of estimating g at the 19 points, x = 0.05,0.10, . . . ,

0.95. The experiments were carried out in GAUSS using GAUSS pseudo-random
number generators. There were 1000 Monte Carlo replications in each experiment.

Table 1 shows the performance of the estimator, ĝ, as a function of the band-
width, h, and the ridge parameter, an. The quantities Bias2, Var and MSE in the
table were calculated as the averages, over the 19 values of x, of Monte Carlo
approximations to pointwise squared bias, variance and mean squared error, re-
spectively, at those points; the pointwise values were computed by averaging over
the 1000 Monte Carlo simulations.

Results are illustrated graphically in Figure 2 for the case h = 0.2 and an = 0.1.
The figure shows g(x) (solid line), the Monte Carlo approximation to E{ĝ(x)}
(dashed line) and a 95% pointwise “estimation band.” The band connects the points
g(xj )± δj , for j = 1, . . . ,19, where each δj is chosen so that the interval [g(xj )−
δj , g(xj ) + δj ] contains 95% of the 1000 simulated values of ĝ(xj ). The figure
shows, not surprisingly, that ĝ is somewhat biased, but that the shape of Eĝ is
similar to that of g.
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FIG. 1. Density of X and W used in Monte Carlo experiments.

FIG. 2. Graph of 95% estimation band. The solid, dashed and dotted lines show g, E(ĝ) and the
95% estimation band, respectively.
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TABLE 1
Results of Monte Carlo experiments

an h Bias2 Var MSE

0.05 0.10 0.0039 0.0321 0.0361
0.20 0.0065 0.0162 0.0227
0.30 0.0262 0.0119 0.0381
0.40 0.0525 0.0087 0.0612

0.10 0.10 0.0118 0.0221 0.0339
0.20 0.0105 0.0115 0.0215
0.30 0.0141 0.0078 0.0219
0.40 0.0263 0.0062 0.0325

0.15 0.10 0.0224 0.0190 0.0414
0.20 0.0165 0.0098 0.0263
0.30 0.0149 0.0063 0.0212
0.40 0.0220 0.0049 0.0269

0.20 0.10 0.0335 0.0174 0.0508
0.20 0.0268 0.0081 0.0349
0.30 0.0214 0.0058 0.0272
0.40 0.0252 0.0044 0.0295

6. Technical arguments.

6.1. Proof of Theorem 4.1. (The “big oh” bounds that we shall derive below
apply uniformly in G ∈ G, although for the sake of simplicity we shall not make
this qualification.) Put T + = (T + anI)−1, let ‖ · ‖ denote the usual L2 norm for
functions from the interval [0,1] to the real line, and given a functional χ from
L2[0,1] to itself, set

‖χ‖ = sup
ψ∈L2[0,1] : ‖ψ‖=1

‖χ(ψ)‖.

For future reference, we note that A.3 and A.4 imply that

n{1/(2β+α)}−1a−1
n + h2ra−2

n = O
(
n−(2β−1)/(2β+α)).(6.1)

Define

Dn(z) =
∫

g(x)fXW(x,w)T +(f̂XW − fXW)(z,w)dx dw,

An1(z) = 1

n

n∑
i=1

(T +fXW)(z,Wi)Yi,

An2(z) = 1

n

n∑
i=1

{
T +(

f̂
(−i)
XW − fXW

)}
(z,Wi)Yi − Dn(z),
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An3(z) = 1

n

n∑
i=1

{(T̂ + − T +)fXW }(z,Wi)Yi + Dn(z),

An4(z) = 1

n

n∑
i=1

{
(T̂ + − T +)

(
f̂

(−i)
XW − fXW

)}
(z,Wi)Yi.

Then ĝ = An1 + · · · + An4, and so the theorem will follow if we prove that

E‖An1 − g‖2 = O
(
n−(2β−1)/(2β+α)),(6.2)

E‖Anj‖2 = O
(
n−(2β−1)/(2β+α)) for j = 2,3,4.(6.3)

To derive (6.2), note that EAn1 − g = −an

∑
j≥1 bj (λj + an)

−1φj . Therefore,

‖EAn1 − g‖2 = a2
n

∞∑
j=1

b2
j

(λj + an)2 .

Divide the last-written series up into the sum over j ≤ J ≡ a
−1/α
n , and the com-

plementary part, thereby bounding the right-hand side by a2
n

∑
j≤J (bj /λj )

2 +∑
j>J b2

j ; and use A.3 and A.4 to bound each of these terms, hence, proving that

‖EAn1 − g‖2 = O
(
n−(2β−1)/(2β+α)).(6.4)

Using A.2, we deduce that

nvar{An1(z)} ≤ E[{(T +fXW)(z,W)Y }2]
= E[{(T +fXW)(z,W)}2E(Y 2|W)]
≤ const.Bn,

where Bn = E[{(T +fXW)(z,W)}2] and, here and below, “const.” will denote a
positive constant, different at different appearances. It can be proved, from an ex-
pansion of T +fXW(z,w) in its generalized Fourier series, that

Bn =
∞∑

j=1

∞∑
k=1

∞∑

=1

djkdj


(λj + an)2 E{φk(W)φ
(W)}

≤ const.
∞∑

j=1

∞∑
k=1

∞∑

=1

|djkdj
|
(λj + an)2

≤ const.
∞∑

j=1

λj

(λj + an)2 .

Therefore, ∫
var{An1(z)}dz ≤ const.

1

n

∞∑
j=1

λj

(λj + an)2 .
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From this point, using the argument leading to (6.4), we may prove that

E‖An1 − EAn1‖2 =
∫

var{An1(z)}dz

= O
(
n−1a−(α+1)/α

n

)
= O

(
n−(2β−1)/(2β+α)).

Result (6.2) is implied by this bound and (6.4).
Next we derive (6.3) in the case j = 2. Here and below, given a bivariate func-

tion φ(z,w), put φw(z) = φ(z,w) and define T +φ(z,w) = (T +φw)(z). Let

Dni(z) =
∫

g(x)fXW(x,w)T +(
f̂

(−i)
XW − fXW

)
(z,w)dx dw,

An21(z) = 1

n

n∑
i=1

{
T +(

f̂
(−i)
XW − fXW

)
(z,Wi)Yi − Dni(z)

}
,

An22(z) = 1

n

n∑
i=1

{Dni(z) − Dn(z)},

in which notation An2 = An21 + An22. Write
∫

An21(z)
2 dz as a double series, and

take the expected values of the terms one by one. It may be shown by tedious cal-
culation that the total contribution of the terms equals O{h2r (na2

n)
−1 + (nhan)

−2}.
Therefore,

E‖An21‖2 = O{h2r (na2
n)

−1 + (nhan)
−2} = O

(
n−(2β−1)/(2β+α)),(6.5)

where we used (6.1) to obtain the second identity. Furthermore,

An22(z) = −n−1
∫

g(x)fXW(x,w)T +f̂XW (z,w)dx dw,

from which, noting (6.1), it may be deduced that

E‖An22‖2 ≤ const.(nan)
−2E

(∫
|gfXW f̂ |

)2

= O{(nan)
−2} = O

(
n−(2β−1)/(2β+α)).

Property (6.3), in the case j = 2, follows from this result and (6.5).
Next we derive (6.3) for j = 3. Define � = T̂ − T , an operator, and put

An31 = −(I +T +�)−1T +�g +Dn, An32 = −(I +T +�)−1T +�(An1 −g).

Noting that T̂ + −T + = −(I +T +�)−1T +�T +, it can be seen that An3 = An31 +
An32.

Let δ = h2r + (nh)−1. Using standard, but tedious, moment calculations, it may
be proved that E(t̂ − t)2k = O(δk) for each integer k ≥ 1, uniformly in the ar-
gument of t̂ − t . [The quantity δ involves (nh)−1, rather than (nh2)−1, since the
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integral in the definition of t̂ effectively removes one of the factors h−1.] There-
fore, since ‖�‖2 = ∫

(t̂ − t)2, then for each integer k ≥ 1,

E‖�‖2k = O(δk).(6.6)

At the end of this proof we shall show that, for each k ≥ 1,

E{‖(I + T +�)−1‖k} = O(1)(6.7)

as n → ∞. Hence, using the Cauchy–Schwarz inequality,

{E‖(I + T +�)−1T +�‖4}2 ≤ E‖(I + T +�)−1‖8‖T +‖8E‖�‖8

(6.8)
= O(δ4/a8

n).

From this result, and the Cauchy–Schwarz inequality again, we obtain

E‖An32‖2 ≤ {E‖(I + T +�)−1T +�‖4E‖An1 − g‖4}1/2

= O{(δ/a2
n)

2(E‖An1 − g‖4)1/2}(6.9)

= O
(
n−(2β−1)/(2β+α)),

the final identity following using an argument similar to that leading to (6.2).
Put

Bn1(z) =
∫

{f̂XW (x,w) − fXW(x,w)}fXW(z,w)g(x) dx dw,

Bn2(z) =
∫

{f̂XW (z,w) − fXW(z,w)}fXW(x,w)g(x) dx dw,

Bn3(z) =
∫

{f̂XW (x,w) − fXW(x,w)}{f̂XW (z,w) − fXW(x,w)}g(x) dx dw,

Bn11(z) =
∫

{Ef̂XW(x,w) − fXW(x,w)}fXW(z,w)g(x) dx dw,

Bn12(z) =
∫

{f̂XW (x,w) − Ef̂XW(x,w)}fXW(z,w)g(x) dx dw,

Bn21(z) =
∫

{Ef̂XW(z,w) − fXW(z,w)}fXW(x,w)g(x) dx dw,

Bn22(z) =
∫

{f̂XW (z,w) − Ef̂XW(z,w)}fXW(x,w)g(x) dx dw.

In this notation, �g = Bn1 + Bn2 + Bn3, Bn1 = Bn11 + Bn12, Bn2 = Bn21 + Bn22
and T +Bn2 = Dn, whence

An31 = −(I + T +�)−1T +(Bn11 + Bn12 + Bn3)

+ (I + T +�)−1T +�T +(Bn21 + Bn22).

Define

Ãn31 = −(I + T +�)−1T +(Bn11 + Bn12 + Bn3) + (I + T +�)−1T +�T +Bn21.
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Then

E‖An31‖2 ≤ const.{E‖Ãn31‖2 + E‖(I + T +�)−1T +�T +Bn22‖2}.
By (6.7) and the Cauchy–Schwarz inequality,

E‖Ãn31‖2 ≤ const.(‖T +Bn11‖4 + E‖T +Bn12‖4

(6.10)
+ E‖T +�T +Bn21‖4 + E‖T +Bn3‖4)1/2.

Since ‖Bn11‖ + ‖Bn21‖ = O(hr) and ‖T +‖ = O(a−1
n ), then, by (6.1),

‖T +Bn11‖ + ‖T +Bn21‖ ≤ ‖T +‖(‖Bn11‖ + ‖Bn21‖)
(6.11)

= O(hra−1
n ) = O

(
n−(2β−1)/{2(2β+α)}).

Furthermore, with

�jk =
∫

{f̂XW (x,w) − Ef̂XW(x,w)}φj (x)φk(x) dx dw,

we have

T +Bn12(z) =
∞∑

j=1

∞∑
k=1

∞∑

=1

djkb
�
k

λj + an

φj (z).

Now E(�j1k1�
1m1�j2k2�
2m2) = O(n−2), uniformly in the indicated indices;∑

 |b
| < ∞, since A.3 implies that β > 1; and

∑
k≥1 |djk| = O(j−α/2), again

by A.3. Therefore,

(E‖T +Bn12‖4)1/2 =
[
E

{ ∞∑
j=1

1

(λj + an)2

( ∞∑
k=1

∞∑

=1

djkb
�
k

)2}2]1/2

= O

{
1

n

∞∑
j=1

1

(λj + an)2

( ∞∑
k=1

∞∑

=1

|djk||b
|
)2}

(6.12)

= O

{
1

n

∞∑
j=1

j−α

(λj + an)2

}
= O

(
n−(2β−1)/(2β+α)).

In view of (6.1) and (6.6),

E‖T +�‖8 ≤ ‖T +‖8E‖�‖8 = O(a−8
n E‖�‖8) = O(δ4/a8

n) = O(1).(6.13)

By (6.11), (6.13) and the Cauchy–Schwarz inequality,(
E‖T +�T +Bn21‖4)1/2 ≤ (

E‖T +�‖8E‖T +Bn21‖8)1/4

(6.14)
= O

(
n−(2β−1)/(2β+α)).
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Define

In(w) =
∫

{f̂XW (x,w) − fXW(x,w)}g(x) dx,

Jn =
∫ ∫

{T +(f̂XW − fXW)(z,w)}2 dw dz.

Moment calculations show that E‖In‖8 = O(δ4) and E(J 4
n ) = O(δ4/a8

n), and so
by the Cauchy–Schwarz inequality,

(E‖T +Bn3‖4)1/2 ≤ {E(‖In‖4J 2
n )}1/2 ≤ (E‖In‖8EJ 4

n )1/4

(6.15)
= O(δ2/a2

n) = O
(
n−(2β−1)/(2β+α)).

It follows from (6.10)–(6.12), (6.14) and (6.15) that

E‖Ãn31‖2 = O
(
n−(2β−1)/(2β+α)).(6.16)

Now consider

(I + T +�)−1T +�T +Bn22

= I
(‖T +�‖ ≤ 1

2

)
(I + T +�)−1T +�T +Bn22

(6.17)
+ I

(‖T +�‖ > 1
2

)
(I + T +�)−1T +�T +Bn22

= Hn1 + Hn2,

say. We first investigate Hn1.
If ‖T +�‖ ≤ 1

2 , then for some constant D not depending on ψ , ‖(I +
T +�)−1ψ‖2 ≤ D‖ψ‖2. Therefore, ‖Hn1‖2 ≤ D‖T +�T +Bn22‖2. Some algebra
shows that

T +�T +Bn22(z) = Rn1(z) + Rn2(z) + Rn3(z),

where

Rn1(z) =
∫

t+(z, u){f̂XW (x,w1) − fXW(x,w1)}fXW(u,w1)

× t+(x, v){f̂XW (v,w2) − Ef̂XW(v,w2)}H(w2) dudv dx dw1 dw2,

Rn2(z) =
∫

t+(z, u){f̂XW (u,w1) − fXW(u,w1)}fXW(x,w1)

× t+(x, v){f̂XW (v,w2) − Ef̂XW(v,w2)}H(w2) dudv dx dw1 dw2,

Rn3(z) =
∫

t+(z, u){f̂XW (u,w1) − fXW(u,w1)}{f̂XW (x,w1) − fXW(x,w1)}

× t+(x, v){f̂XW (v,w2) − Ef̂XW(v,w2)}H(w2) dudv dx dw1 dw2.
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First we treat Rn1. Write Rn1 = Rn11 + Rn12, where

Rn11(z) =
∫

t+(z, u){f̂XW (x,w1) − Ef̂XW(x,w1)}fXW(u,w1)

× t+(x, v){f̂XW (v,w2) − Ef̂XW(v,w2)}H(w2) dudv dx dw1 dw2,

Rn12(z) =
∫

t+(z, u){Ef̂XW(x,w1) − fXW(x,w1)}fXW(u,w1)

× t+(x, v){f̂XW (v,w2) − Ef̂XW(v,w2)}H(w2) dudv dx dw1 dw2.

By the Cauchy–Schwarz inequality,

‖Rn11‖2 ≤
∫ [∫

t+(z, u){f̂XW (x,w1) − Ef̂XW(x,w1)}

× fXW(u,w1) dudw1

]2

dx dz

×
∫

[t+(x, v){f̂XW (v,w2) − Ef̂XW(v,w2)}H(w2) dv dw2]2 dx

≡ An1An2,

say. Further application of the Cauchy–Schwarz inequality gives

E‖Rn11‖2 ≤ {(EA2
n1)(EA2

n2)}1/2.(6.18)

Also,

(EA2
n2)

1/2 = O{(nha2
n)

−1}.(6.19)

Now define δk(x) = ∫ {f̂XW (x,w) − Ef̂XW(x,w)}φk(w)dw. Then

An1 =
∞∑

j=1

∞∑
k=1

∞∑

=1

djkdj


(λj + an)2

∫
δkδ
,

from which it follows that

E(A2
n1) = O

{
1

nh

∞∑
j=1

∞∑
k=1

∞∑

=1

|djk||dj
|
(λj + an)2

}
= O

{
1

nh

∞∑
j=1

j−α

(λj + an)2

}

= O
(
h−1n−(2β−1)/(2β+α)).

Combining this result with (6.18) and (6.19), we obtain

E‖Rn11‖2 = O

(
1

nh2a2
n

n−(2β−1)/(2β+α)

)
= O

(
n−(2β−1)/(2β+α)).(6.20)

Calculations in the case of Rn12 are similar, as follows. We re-define

δk(x) =
∫

{Ef̂XW(x,w) − fXW(x,w)}φk(w)dw = O(hr).
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Therefore,

E‖Rn12‖2 = O

(
h2r−1

a2
n

n−(2β−1)/(2β+α)

)
= O

(
n−(2β−1)/(2β+α)).

Combining this result with (6.20), we deduce that

E‖Rn1‖2 = O
(
n−(2β−1)/(2β+α)).(6.21)

Next we treat Rn2. Re-define An1 and An2 by

Rn2(z)
2 ≤

∫ [∫
t+(z, u){f̂XW (u,w1) − fXW(u,w1)}du

]2

dw1

×
∫ [∫

fXW(x,w1)t
+(x, v)

× {f̂XW (v,w2) − Ef̂XW(v,w2)}H(w2) dv dx dw2

]2

dw1

= An1(z)An2(z).

Furthermore,

(E‖An1‖2)1/2 = O

(
h2r

a2
n

+ 1

nha2
n

)
.(6.22)

Defining δjk = ∫ {f̂XW (x,w) − Ef̂ (XW(x,w)}φj (x)φk(w)dx dw and hj =∫
Hφj , we have∫

An2 =
∞∑

k=1

( ∞∑
j=1

∞∑

=1

djkδj
h


λj + an

)2

=
∞∑

j=1

∞∑

=1

∞∑
s=1

λjδj
δjsh
hs

(λr + an)2 .

Therefore,

(E‖An2‖2)1/2 = O

{
n−1

∞∑
j=1

λj

(λj + an)2

}
= O

(
n−(2β−1)/(2β+α)).

This result and (6.22) give

E‖Rn2‖2 = O
(
n−(2β−1)/(2β+α)).(6.23)

Next we treat Rn3. Note that Rn3(z)
2 ≤ An1(z)An2(z), where we re-define

An1(z) =
∫ [∫

t+(z, u){f̂XW (u,w1) − fXW(u,w1)}

× {f̂XW (x,w1) − fXW(x,w1)}dudw1

]2

dx,

An2(z) =
∫ [∫

t+(x, v){f̂XW (v,w2) − Ef̂XW(v,w2)}H(w2) dv dw2

]2

dx.
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Therefore,

E‖Rn3‖2 = O

(
1

n3h5a4
n

+ h4r

nha2
n

)
= O

(
n−(2β−1)/(2β+α)).

Combining this result with (6.21) and (6.23), and recalling the definition of Hn1
at (6.17), we deduce that

E‖Hn1‖2 = O
(
n−(2β−1)/(2β+α)).(6.24)

Now we consider Hn2. We have

‖(I + T +�)−1ψ‖ = ‖T̂ +(T + anI)ψ‖
≤ ‖T̂ +‖‖T + anI‖‖ψ‖
≤ const. anI

−1‖ψ‖.
Therefore,

‖Hn2‖2 ≤ const. a−2
n I

(‖T +�‖ > 1
2

)‖T +�T +Bn22‖2,

and so by the Cauchy–Schwarz inequality,

E‖Hn2‖2 ≤ const. a−2
n P

(‖T +�‖ > 1
2

)1/2
(E‖T +�T +Bn22‖4)1/2.

We shall prove shortly that, for all 
 > 0,

P
(‖T +�‖ > 1

2

) = O{(δ/a2
n)


}.(6.25)

Moreover,

E‖T +Bn22‖8 ≤ ‖T +‖8E‖Bn22‖8 = O(a−8
n E‖Bn22‖8)

(6.26)

= O

{
a−8
n

(∫
B2

n22

)4}
= O{(nha2

n)
−4},

the last identity following by moment calculations similar to those leading to (6.6).
Combining (6.13) and (6.26), and applying the Cauchy–Schwarz inequality, we
deduce that

(E‖T +�T +Bn22‖4)1/2 ≤ (E‖T +�‖8E‖T +Bn22‖8)1/4 = O{(δ/a2
n)(nha2

n)
−1}.

Using this result together with (6.25), and choosing 
 sufficiently large, we obtain

E‖Hn2‖2 = O
{
(δ/a2

n)
1+(
/2)(nha2

n)
−1} = O

(
n−(2β−1)/(2β+α)).

Combining this result with (6.17) and (6.24), we obtain

E‖(I + T +�)−1T +�T +Bn22‖2 = O(E‖Hn1‖2 + E‖Hn2‖2)

= O
(
n−(2β−1)/(2β+α)).

Result (6.3) for j = 3 follows from this formula and (6.16).
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Next we derive (6.3) for j = 4. Since T̂ + − T + = −(I + T +�)−1T +�T + and
I − T̂ +T = −(I + T +�)−1T +�, then

An4 = −(I + T +�)−1T +�(An2 − T +Bn2).

The arguments leading to (6.3) with j = 2, and (6.15), may be used to prove that

η ≡ {(δ2/an)
4E‖An2‖4 + E‖T +�T +Bn2‖4}1/2 = O

(
n−(2β−1)/(2β+α)).

Therefore, by (6.7), (6.8) and the Cauchy–Schwarz inequality,

E‖An4‖2 ≤ 2 {E‖(I + T +�)−1T +�‖4E‖An2‖4}1/2

+ 2{E‖(I + T +�)−1‖4E‖T +�T +Bn2‖4}1/2

= O(η) = O
(
n−(2β−1)/(2β+α)).

This proves (6.3) for j = 4.
It remains to derive (6.7). Let ψ ∈ L2[0,1]. Then, for constants not depending

on ψ , if ‖T +�‖ ≤ 1
2 ,

‖(I + T +�)−1ψ‖ ≤ const.‖ψ‖
and, without any constraint on ‖T +�‖,

‖(I + T +�)−1ψ‖ = ‖T̂ +(T + anI)ψ‖
≤ ‖T̂ +‖‖T + anI‖‖ψ‖
≤ const. a−1

n ‖ψ‖.
Therefore,

‖(I + T +�)−1‖ ≤ const.
{
1 + a−1

n I
(‖T +�‖ > 1

2

)}
.

Hence, noting (6.6), and employing Markov’s inequality to bound P(‖T +�‖ > 1
2),

we deduce that, for each fixed k, 
 > 0,

E{‖(I + T +�)−1‖k} ≤ const.
{
1 + a−k

n P
(‖T +�‖ > 1

2

)}
≤ const.{1 + a−k

n E(‖T +�‖2
)}
≤ const.{1 + a−k−2


n E(‖�‖2
)}(6.27)

≤ const.(1 + a−k−2

n δ
)

= const.{1 + a−k
n (δ/a2

n)

},

where the constants depend on k and 
 but not on n. If k is given, then we may
choose 
 = 
(k) so large that a−k

n (δ/a2
n)


 → 0 as n → ∞, and so (6.7) follows
from (6.27). This argument also gives (6.25).
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6.2. Proof of Theorem 4.2. Put p̄ = (p1, . . . , pm)′, where pj = EG{g(X̃) ×
χj (W̃ )} = EG{Yχj (W̃ )}. Let γ = (γj ) and p = (pj ) denote infinite column vec-
tors, and let Q̄ be the m × m upper left-hand sub-matrix of Q. Since p = Qγ ,
then pj = pj (G) = O(j−(2β+α)/2), uniformly in G ∈ H , as j → ∞. Therefore,
(Q̄′p)i = O(i−(α+β)), uniformly in 1 ≤ i ≤ m, n ≥ 1 and G ∈ H . This result will
be used below without further reference.

Put M̄ = Q̄Q̄′ + anIm and M̂ = Q̂Q̂′ + anIm. It may be deduced from the
definition of H that the bounds on |qjk| and |q(−1)

jk | in that definition apply too to

the (j, k)th elements of M̄ and M̄−1, respectively, provided we replace α by 2α

and alter the constants C1 and C2 (retaining their positivity, of course). The bounds
are valid uniformly in 1 ≤ j, k ≤ m and n ≥ 1, and permit it to be proved that

(M̄−1Q̄′p̄)j = {(Q′Q)−1Q′p}j + O(m−β) = γj + O(m−β),

uniformly in 1 ≤ i ≤ m, n ≥ 1 and distributions of G ∈ H . Note too that

M̂−1 = {I + M̄−1(M̂ − M̄)}−1M̄−1,

M̂−1Q̂′p̂ − M̄−1Q̄′p̄ = {M̄−1 + (M̂−1 − M̄−1)}(Q̂′p̂ − Q̄′p̄)

+ (M̂−1 − M̄−1)Q̄′p̄.

From these properties it may be shown that

EG

{
m∑

j=1

(γ̃j − γj )
2

}

= O

{
EG

(
m∑

i=1

[{M̄−1(Q̂′p̂ − Q̄′p̄)}j ]2

)
(6.28)

+ EG

(
m∑

i=1

[{M̄−1(M̂ − M̄)M̄−1(Q̂′p̂ − Q̄′p̄)}j ]2

)

+ EG

(
m∑

i=1

[{M̄−1(M̂ − M̄)M̄−1Q̄′p̄}j ]2

)
+ m1−2β

}
,

uniformly in G ∈ H .
It may be proved by Taylor expansion arguments, involving approximating

Ŵi = F̂W (Wi) by W̃i = FW(Wi), and analogously for X̂i and X̃i , that, for each
r, ε > 0,

max
1≤j,k≤n(1/2)−ε

sup
G∈H

EG|q̂jk − qjk|r = O(n−r/2),(6.29)

max
1≤j≤n(1/2)−ε

sup
G∈H

EG(p̂j − pj )
2 = O(n−1).(6.30)
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Rather standard, but tedious, moment calculations, using (6.29) and (6.30), may be
employed to show that each of the expected values on the right-hand side of (6.28)
equals O(n−1mα+1), uniformly in G ∈ H . Therefore,

sup
G∈H

m∑
j=1

EG{(γ̃j − γj )
2} = O(n−1mα+1 + m1−2β)

(6.31)
= O

(
n−(2β−1)/(2β+α))).

It follows from the definition of H that
∑

j>m γ 2
j = O(m1−2β), uniformly in

G ∈ H . This result and (6.31) imply that∫
EG(ḡ − g)2 =

m∑
j=1

EG(γ̃j − γj )
2 +

∞∑
j=m+1

γ 2
j = O

(
n−(2β−1)/(2β+α))

uniformly in G ∈ H , completing the proof of the theorem.

6.3. Proof of Theorem 4.4. For simplicity, we deal only with the orthogonal
series setting, discussed in Section 4.2. We may assume the following: φj ≡ χj ,
φ1 ≡ 1 and φj+1(x) = 2−1/2 cos(jπx), for j ≥ 1; the marginal distributions of X

and W are uniform on the unit interval; and

fXW(x,w) =
∞∑

j=1

j−α/2φj (x)φj (w),

(6.32)

Y =
2m∑

j=m+1

θj j
−(2β+α)/2φj (W) + V,

where m equals the integer part of n1/(2β+α), the θj ’s are all either 0 or 1, and V

is Normal N(0,1), independent of (X,W).
The function g implied by (6.32) is g(x) = ∑

m+1≤j≤2m θj j
−βφj (x). Note too

that if g̃ is an estimator of g, then

θ̃j = jβ
∫

g̃φj(6.33)

may be viewed as an estimator of θj .
A standard argument based on the Neyman–Pearson lemma shows that

lim inf
n→∞ inf

m+1≤j≤2m
inf
θ̌j

sup∗E(θ̌j − θj )
2 > 0,(6.34)

where sup∗ denotes the supremum over all 2m different distributions of (X,W,Y )

obtained by taking different choices of θm+1, . . . , θ2m in (6.32), and inf
θ̌j

repre-

sents the infimum over all measurable functions θ̌j of the data. To derive (6.34), it
suffices to take θ̌j to be the likelihood-ratio rule for distinguishing between θj = 0
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and θj = 1, and work through a little asymptotic theory to obtain the version
of (6.34) when “inf

θ̌j
” is omitted from the left-hand side.

Therefore, if g̃ is given, and θ̃m+1, . . . , θ̃2m are the estimators of θm+1, . . . , θ2m,
respectively, derived from g̃ as suggested at (6.33), then

sup∗
∫

(g̃ − g)2 = sup∗
2m∑

j=m+1

E(θ̃j − θj )
2j−2β

≥ const.
2m∑

j=m+1

j−2β

≥ const. j−(2β−1)/(2β+α),

where the constants do not depend on choice of g̃. This proves the theorem.

REFERENCES

[1] BLUNDELL, R. and POWELL, J. L. (2003). Endogeneity in nonparametric and semiparametric
regression models. In Advances in Economics and Econometrics: Theory and Applica-
tions (M. Dewatripont, L. P. Hansen and S. J. Turnovsky, eds.) 2 312–357. Cambridge
Univ. Press.

[2] CAVALIER, L., GOLUBEV, G. K., PICARD, D. and TSYBAKOV, A. B. (2002). Oracle inequal-
ities for inverse problems. Ann. Statist. 30 843–874. MR1922543

[3] DAROLLES, S., FLORENS, J.-P. and RENAULT, E. (2002). Nonparametric instrumental re-
gression. Working paper, GREMAQ, Univ. Social Science, Toulouse.

[4] DONOHO, D. L. (1995). Nonlinear solution of linear inverse problems by wavelet–vaguelette
decomposition. Appl. Comput. Harmon. Anal. 2 101–126. MR1325535

[5] EFROMOVICH, S. and KOLTCHINSKII, V. (2001). On inverse problems with unknown opera-
tors. IEEE Trans. Inform. Theory 47 2876–2894. MR1872847

[6] FLORENS, J.-P. (2003). Inverse problems and structural econometrics: The example of instru-
mental variables. In Advances in Economics and Econometrics: Theory and Applications
(M. Dewatripont, L. P. Hansen and S. J. Turnovsky, eds.) 2 284–311. Cambridge Univ.
Press.

[7] GROETSCH, C. (1984). The Theory of Tikhonov Regularization for Fredholm Equations of the
First Kind. Pitman, London. MR0742928

[8] JOHNSTONE, I. M. (1999). Wavelet shrinkage for correlated data and inverse problems: Adap-
tivity results. Statist. Sinica 9 51–83. MR1678881

[9] KRESS, R. (1999). Linear Integral Equations, 2nd ed. Springer, New York. MR1723850
[10] MATHÉ, P. and PEREVERZEV, S. V. (1999). Optimal discretization and degrees of ill-

posedness for inverse estimation in Hilbert scales in the presence of random noise.
Preprint No. 469, Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin.
MR1856240

[11] NASHED, M. Z. and WAHBA, G. (1974). Generalized inverses in reproducing kernel spaces:
An approach to regularization of linear operator equations. SIAM J. Math. Anal. 5
974–987. MR0358405

[12] NEWEY, W. K. and POWELL, J. L. (2003). Instrumental variable estimation of nonparametric
models. Econometrica 71 1565–1578. MR2000257

http://www.ams.org/mathscinet-getitem?mr=1922543
http://www.ams.org/mathscinet-getitem?mr=1325535
http://www.ams.org/mathscinet-getitem?mr=1872847
http://www.ams.org/mathscinet-getitem?mr=0742928
http://www.ams.org/mathscinet-getitem?mr=1678881
http://www.ams.org/mathscinet-getitem?mr=1723850
http://www.ams.org/mathscinet-getitem?mr=1856240
http://www.ams.org/mathscinet-getitem?mr=0358405
http://www.ams.org/mathscinet-getitem?mr=2000257


INSTRUMENTAL VARIABLES 2929

[13] NEWEY, W. K., POWELL, J. L. and VELLA, F. (1999). Nonparametric estimation of triangular
simultaneous equations models. Econometrica 67 565–603. MR1685723

[14] O’SULLIVAN, F. (1986). A statistical perspective on ill-posed inverse problems (with discus-
sion). Statist. Sci. 1 502–527. MR0874480

[15] TIKHONOV, A. and ARSENIN, V. (1977). Solutions of Ill-Posed Problems. Winston, Washing-
ton. MR0455365

[16] VAN ROOIJ, A. and RUYMGAART, F. H. (1999). On inverse estimation. In Asymptotics, Non-
parametrics, and Time Series (S. Ghosh, ed.) 579–613. Dekker, New York. MR1724709

[17] WAHBA, G. (1973). Convergence rates of certain approximate solutions to Fredholm integral
equations of the first kind. J. Approximation Theory 7 167–185. MR0346453

CENTRE FOR MATHEMATICS

AND ITS APPLICATIONS

AUSTRALIAN NATIONAL UNIVERSITY

CANBERRA, ACT 0200
AUSTRALIA

E-MAIL: halpstat@maths.anu.edu.au

DEPARTMENT OF ECONOMICS

ANDERSON HALL

NORTHWESTERN UNIVERSITY

2001 SHERIDAN ROAD

EVANSTON, ILLINOIS 60208-2600
USA

http://www.ams.org/mathscinet-getitem?mr=1685723
http://www.ams.org/mathscinet-getitem?mr=0874480
http://www.ams.org/mathscinet-getitem?mr=0455365
http://www.ams.org/mathscinet-getitem?mr=1724709
http://www.ams.org/mathscinet-getitem?mr=0346453
mailto:halpstat@maths.anu.edu.au

	Introduction
	Model and estimators in bivariate case
	Model
	Generalized kernel estimator
	Orthogonal series estimator

	Model and estimators in the multivariate case
	Theoretical properties
	Kernel method for bivariate case
	Orthogonal series method for bivariate case
	Kernel method for multivariate case
	Optimality

	Monte Carlo experiments
	Technical arguments
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.4

	References

