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NONPARAMETRIC MODAL REGRESSION
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Carnegie Mellon University

Modal regression estimates the local modes of the distribution of Y given
X = x, instead of the mean, as in the usual regression sense, and can hence
reveal important structure missed by usual regression methods. We study a
simple nonparametric method for modal regression, based on a kernel den-
sity estimate (KDE) of the joint distribution of Y and X. We derive asymp-
totic error bounds for this method, and propose techniques for constructing
confidence sets and prediction sets. The latter is used to select the smooth-
ing bandwidth of the underlying KDE. The idea behind modal regression is
connected to many others, such as mixture regression and density ridge esti-
mation, and we discuss these ties as well.

1. Introduction. Modal regression [Lee (1989), Sager and Thisted (1982),
Yao and Li (2014), Yao, Lindsay and Li (2012)] is an alternate approach to the
usual regression methods for exploring the relationship between a response vari-
able Y and a predictor variable X. Unlike conventional regression, which is based
on the conditional mean of Y given X = x, modal regression estimates conditional
modes of Y given X = x.

Why would we ever use modal regression in favor a conventional regression
method? The answer, at a high-level, is that conditional modes can reveal struc-
ture that is missed by the conditional mean. Figure 1 gives a definitive illustration
of this point: we can see that, for the data examples in question, the conditional
mean both fails to capture the major trends present in the response, and produces
unnecessarily wide prediction bands. Modal regression is an improvement in both
of these regards (better trend estimation and narrower prediction bands). In this
paper, we rigorously study and develop its properties.

Modal regression has been used in transportation [Einbeck and Tutz (2006)],
astronomy [Rojas (2005)], meteorology [Hyndman, Bashtannyk and Grunwald
(1996)] and economics [Huang, Li and Wang (2013), Huang and Yao (2012)].
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FIG. 1. Examples of modal regression versus a common nonparametric regression estimator, local

linear regression. In the top row, we show local regression estimate and its associated 95% prediction

bands alongside the modal regression and its 95% prediction bands. The bottom row does the same

for a different data example. The local regression method fails to capture the structure, and produces

prediction bands that are too wide.

Formally, the conditional (or local) mode set at x is defined as

M(x) =
{
y :

∂

∂y
p(y|x) = 0,

∂2

∂y2 p(y|x) < 0
}
,(1)

where p(y|x) = p(x, y)/p(x) is the conditional density of Y given X = x. As a
simplification, the set M(x) can be expressed in terms of the joint density alone:

M(x) =
{
y :

∂

∂y
p(x, y) = 0,

∂2

∂y2
p(x, y) < 0

}
.(2)
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At each x, the local mode set M(x) may consist of several points, and so M(x) is
in general a multivalued function. Under appropriate conditions, as we will show,
these modes change smoothly as x changes. Thus, local modes behave like a col-
lection of surfaces which we call modal manifolds.

We focus on a nonparametric estimate of the conditional mode set, derived from
a kernel density estimator (KDE):

M̂n(x) =
{
y :

∂

∂y
p̂n(x, y) = 0,

∂2

∂y2 p̂n(x, y) < 0
}
,(3)

where p̂n(x, y) is the joint KDE of X,Y . Scott (1992) proposed this plug-in es-
timator for modal regression, and Einbeck and Tutz (2006) proposed a fast algo-
rithm. We extend the work of these authors by giving a thorough treatment and
analysis of nonparametric modal regression. In particular, our contributions are as
follows.

1. We study the geometric properties of modal regression.
2. We prove consistency of the nonparametric modal regression estimator, and

furthermore derive explicit convergence rates, with respect to various error metrics.
3. We propose a method for constructing confidence sets, using the bootstrap,

and prove that it has proper asymptotic coverage.
4. We propose a method for constructing prediction sets, based on plug-in

methods, and prove that the population prediction sets from this method can be
smaller than those based on the regression function.

5. We propose a rule for selecting the smoothing bandwidth of the KDE based
on minimizing the size of prediction sets.

6. We draw enlightening comparisons to mixture regression (which suggests a
clustering method using modal regression) and to density ridge estimation.

We begin by reviewing basic properties of modal regression and recalling pre-
vious work, in Section 2. Sections 3 through 8 then follow roughly the topics de-
scribed in items 1–6 above. In Section 9, we end with some discussion. Simple R
code for the modal regression and some simulation data sets used in this paper can
be found at http://www.stat.cmu.edu/~yenchic/ModalRegression.zip.

2. Review of modal regression. Consider a response variable Y ∈ K ⊆ R

and covariate or predictor variable X ∈ D ⊆ Rd , where D is a compact set. A clas-
sic take on modal regression [Lee (1989), Sager and Thisted (1982), Yao and Li
(2014)] is to assume a linear model

Mode(Y |X = x) = β0 + βT x,

where β0 ∈ R, β ∈ Rd are unknown coefficients, and Mode(Y |X = x) denotes the
(global) mode of Y given X = x. Nonparametric modal regression is more flexi-
ble, because it allows M(x) to be multivalued, and also it models the components

http://www.stat.cmu.edu/~yenchic/ModalRegression.zip


492 CHEN, GENOVESE, TIBSHIRANI AND WASSERMAN

of M(x) as smooth functions of x (not necessarily linear). As another nonlinear
generalization of the above model, Yao, Lindsay and Li (2012) propose an in-
teresting local polynomial smoothing method for mode estimation; however, they
focus on the global mode Mode(Y |X = x) rather than M(x), the collection of all
conditional modes.

The estimated local mode set M̂n(x) in (3) from Scott (1992) relies on an es-
timated joint density function p̂n(x, y), most commonly computed using a KDE.
Let (X1, Y1), . . . , (Xn, Yn) be the observed data samples. Then the KDE of the
joint density p(x, y) is

p̂n(x, y) =
1

nhd+1

n∑

i=1

K

(‖x − Xi‖
h

)
K

(
y − Yi

h

)
.(4)

Here, K is a symmetric, smooth kernel function, such as the Gaussian kernel [i.e.,
K(u) = e−u2/2/

√
2π ], and h > 0 is the smoothing bandwidth. For simplicity, we

have used the same kernel function K and bandwidth h for the covariates and the
response, but this is not necessary. For brevity, we will write the estimated modal
set as

M̂n(x) =
{
y : p̂y,n(x, y) = 0, p̂yy,n(x, y) < 0

}
,(5)

where the subscript notation denotes partial derivatives, as in fy = ∂f (x, y)/∂y

and fyy = ∂2f (x, y)/∂y2.
In general, calculating M̂n(x) can be challenging, but for special kernels,

Einbeck and Tutz (2006) proposed a simple and efficient algorithm for com-
puting local mode estimates, based on the mean-shift algorithm [Cheng (1995),
Comaniciu and Meer (2002)]. A related approach can be found in Yao (2013),
where the authors consider a mode hunting algorithm based on the EM algorithm.
For a discussion of how the mean-shift and EM algorithms relate, see Carreira-
Perpiñán (2007). In general, mean-shift algorithms can be derived for any KDEs
with radially symmetric kernels [Comaniciu and Meer (2002)], but for simplicity
we assume here that K is Gaussian. The partial mean-shift algorithm of Einbeck
and Tutz (2006), to estimate conditional modes, is described in Algorithm 1.

A straightforward calculation shows that the mean-shift update (6) is indeed
a gradient ascent update on the function f (y) = p̂n(x, y) (for fixed x), with an
implicit choice of step size. Because this function f is generically nonconcave, we
are not guaranteed that gradient ascent will actually attain a (global) maximum,
but it will converge to critical points under small enough step sizes [Arias-Castro,
Mason and Pelletier (2013)].

3. Geometric properties. In this section, we study the geometric properties
of modal regression. Recall that M(x) is a set of points at each input x. We define
the modal manifold collection as the union of these sets over all inputs x,

S =
{
(x, y) : x ∈ D,y ∈ M(x)

}
.(7)
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Algorithm 1 Partial mean-shift
Input: Data samples D = {(X1, Y1), . . . , (Xn, Yn)}, bandwidth h. (The kernel
K is chosen to be Gaussian.)

1. Initialize mesh points M ⊆ Rd+1 (a common choice is M = D).
2. For each (x, y) ∈ M, fix x, and update y using the following iterations until

convergence:

y ←−
∑n

i=1 YiK(‖x − Xi‖/h)K((y − Yi)/h)
∑n

i=1 K(‖x − Xi‖/h)K((y − Yi)/h)
.(6)

Output: The set M∞, containing the points (x, y∞), where x is a predictor
value as fixed in M, and y∞ is the corresponding limit of the mean-shift itera-
tions (6).

By the implicit function theorem, the set S has dimension d; see Figure 2 for an
illustration with d = 1 (univariate x).

We will assume that the modal manifold collection S can be factorized as

S = S1 ∪ · · · ∪ SK ,(8)

where each Sj is a connected manifold that admits a parametrization

Sj =
{(

x,mj (x)
)
: x ∈ Aj

}
,(9)

for some function mj (x) and open set Aj . For instance, in Figure 2, each Sj is
a connected curve. Note that A1, . . . ,AK form an open cover for the support D

of X. We call Sj the j th modal manifold, and mj (x) the j th modal function. By

FIG. 2. Examples of modal manifolds.
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convention, we let mj (x) = ∅ if x /∈ Aj and, therefore, we may write

M(x) =
{
m1(x), . . . ,mK(x)

}
.(10)

That is, at any x, the values among m1(x), . . . ,mK(x) that are nonempty give local
modes.

Under weak assumptions, each mj (x) is differentiable, and so is the modal set
M(x), in a sense. We discuss this next.

LEMMA 1 (Derivative of modal functions). Assume that p is twice differen-

tiable, and let S = {(x, y) : x ∈ D,y ∈ M(x)} be the modal manifold collection.
Assume that S factorizes according to (7), (8). Then, when x ∈ Aj ,

∇mj (x) = −
pyx(x,mj (x))

pyy(x,mj (x))
,(11)

where pyx(x, y) = ∇x
∂
∂y

p(x, y) is the gradient over x of py(x, y).

PROOF. Since we assume that x ∈ Aj , we have py(x,mj (x)) = 0 by defini-
tion. Taking a gradient over x yields

0 = ∇xpy

(
x,mj (x)

)
= pyx

(
x,mj (x)

)
+ pyy

(
x,mj (x)

)
∇mj (x).

After rearrangement,

∇mj (x) = −
pyx(x,mj (x))

pyy(x,mj (x))
.

�

Lemma 1 links the geometry of the joint density function to the smoothness of
the modal functions (and modal manifolds). The formula (11) is well-defined as
long as pyy(x,mj (x)) is nonzero, which is guaranteed by the definition of local
modes. Thus, when p is smooth, each modal manifold is also smooth.

To characterize smoothness of M(x) itself, we require a notion for smoothness
over sets. For this, we recall the Hausdorff distance between two sets A,B , defined
as

Haus(A,B) = inf{r : A ⊆ B ⊕ r,B ⊆ A ⊕ r},

where A ⊕ r = {x : d(x,A) ≤ r} with d(x,A) = infy∈A ‖x − y‖.

THEOREM 2 (Smoothness of the modal manifold collection). Assume the con-

ditions of Lemma 1. Assume furthermore all partial derivatives of p are bounded

by C, and there exists λ2 > 0 such that pyy(x, y) < −λ2 for all y ∈ M(x) and

x ∈ D. Then

lim
|ε|→0

Haus(M(x),M(x + ε))

|ε|
≤ max

j=1,...,K

∥∥m′
j (x)

∥∥ ≤
C

λ2
< ∞.(12)
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The proof of this result follows directly from Lemma 1 and the definition of
Hausdorff distance, so we omit it. Since M(x) is a multivalued function, classic
notions of smoothness cannot be applied, and Theorem 2 describes its smoothness
in terms of Hausdorff distance. This distance can be thought of as a generalized ℓ∞
distance for sets, and Theorem 2 can be interpreted as a statement about Lipschitz
continuity with respect to Hausdorff distance.

Modal manifolds can merge or bifurcate as x varies. Interestingly, though, the
merges or bifurcations do not necessarily occur at points of contact between two
modal manifolds. See Figure 3 for an example with d = 1. Shown is a modal
curve (manifold with d = 1), starting at x = 0 and stopping at about x = 0.35,

(a) Modal regression (b) Joint density contour

(c) Zoomed-in density contour (d) Conditional density given X = xi

FIG. 3. A look at bifurcation. As X moves x1 to x4, we can see that a local mode disappears after

X = x2.
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which leaves a gap between itself and the neighboring modal curve. We take a
closer look at the joint density contours, in panel (c), and inspect the conditional
density along four slices X = x1, . . . , x4, in panel (d). We see that after X = x2,
the conditional density becomes unimodal and the first (left) mode disappears, as
it slides into a saddle point.

A remark about the uniqueness of the modal manifold collection S in (8): this
factorization is unique if the second derivative pyy(x, y) is uniformly bounded
away from zero. This will later become one of our assumptions [assumption (A3)]
in the theoretical analysis of Section 4. Note that in the left panel of Figure 2,
the collection S is uniquely defined, while this is not the case in the right panel
(at the points of intersection between curves, the density p has vanishing second
derivatives with respect to y).

Lastly, the population quantities defined above all have sample analogs. For the
estimate M̂n(x), we define

Ŝn =
{
(x, y) : y ∈ M̂n(x), x ∈ R

}
= Ŝ1 ∪ · · · ∪ ŜK̂ ,(13)

where each Ŝj is a connected manifold, and K̂ is the total number. We also define
m̂j (x) in a similar way for j = 1, . . . , K̂ . Thus, we can write

M̂n(x) =
{
m̂1(x), . . . , m̂K̂(x)

}
.(14)

In practice, determining the manifold memberships and the total number of man-
ifolds K̂ is not trivial. In principle, the sample manifolds Ŝ1, . . . , ŜK̂ are well-
defined in terms of the sample estimate M̂n(x); but even with a perfectly conver-
gent mean-shift algorithm, we would need to run mean-shift iterations at every
input x in the domain D to determine these manifold components. Clearly, this is
not an implementable strategy. Thus, from the output of the mean-shift algorithm
over a finite mesh, we usually employ some type of simple post-processing tech-
nique to determine connectivity of the outputs, and hence the sample manifolds.
This is discussed further in Section 7.

4. Asymptotic error analysis. In this section, we present asymptotic results
about the convergence of the estimated modal regression set M̂n(x) to the under-
lying modal set M(x). Let BCk(C) denote the collection of k times continuously
differentiable functions with all partial derivatives bounded in absolute value by C.
(The domain of these functions should be clear from the context.) Given a kernel
function K :R →R, denote the collection of functions

K =
{
v �→ K(α)

(
z − v

h

)
: z ∈ R, h > 0, α = 0,1,2

}
,

where K(α) denotes the αth order derivative of K .
Our assumptions are as follows.

(A1) The joint density p ∈ BC4(Cp) for some Cp > 0.
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(A2) The collection of modal manifolds S can be factorized into S = S1 ∪
· · · ∪ SK , where each Sj is a connected curve that admits a parametrization Sj =
{(x,mj (x)) : x ∈ Aj } for some mj (x), and A1, . . . ,AK form an open cover for the
support D of X.

(A3) There exists λ2 > 0 such that for any (x, y) ∈ D × K with py(x, y) = 0,
|pyy(x, y)| > λ2.

(K1) The kernel function K ∈ BC2(CK) and satisfies
∫

R

(
K(α))2

(z) dz < ∞,

∫

R

z2K(α)(z) dz < ∞,

for α = 0,1,2.
(K2) The collection K is a VC-type class, that is, there exists A,v > 0 such

that for 0 < ε < 1,

sup
Q

N
(
K,L2(Q),CKε

)
≤

(
A

ε

)v

,

where N(T ,d, ε) is the ε-covering number for a semimetric space (T , d) and Q is
any probability measure.

Assumption (A1) is an ordinary smoothness condition; we need fourth deriva-
tives since we need to bound the bias of second derivatives. The assumption (A2)
is to make sure the collection of all local modes can be represented as finite col-
lection of manifolds. (A3) is a sharpness requirement for all critical points (local
modes and minimums); and it excludes the case that the modal manifolds bifur-
cate or merge, that is, it excludes cases such as the right panel of Figure 2. Similar
conditions appear in Chen, Genovese and Wasserman (2014b), Romano (1988)
for estimating density modes. Assumption (K1) is assumed for the kernel density
estimator to have the usual rates for its bias and variance. (K2) is for the uni-
form bounds on the kernel density estimator; this condition can be found in Chen,
Genovese and Wasserman (2015), Einmahl and Mason (2005), Giné and Guillou
(2002). We study three types of error metrics for regression modes: pointwise, uni-
form and mean integrated squared errors. We defer all proofs to the supplementary
material [Chen et al. (2015)].

First, we study the pointwise case. Recall that p̂n is the KDE in (4) of the joint
density based on n samples, under the kernel K , and M̂n(x) is the estimated modal
regression set in (5) at a point x. Our pointwise analysis considers

	n(x) = Haus
(
M̂n(x),M(x)

)
,

the Hausdorff distance between M̂n(x) and M(x), at a point x. For our first result,
we define the quantities:

‖p̂n − p‖(0)
∞ = sup

x,y

∥∥p̂(x, y) − p(x, y)
∥∥,

‖p̂n − p‖(1)
∞ = sup

x,y

∥∥p̂y(x, y) − py(x, y)
∥∥,
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‖p̂n − p‖(2)
∞ = sup

x,y

∥∥p̂yy(x, y) − pyy(x, y)
∥∥,

‖p̂n − p‖∗
∞,2 = max

{
‖p̂n − p‖(0)

∞ ,‖p̂n − p‖(1)
∞ ,‖p̂n − p‖(2)

∞
}
.

THEOREM 3 (Pointwise error rate). Assume (A1)–(A3) and (K1)–(K2). De-

fine a stochastic process An(x) by

An(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1

	n(x)

∣∣∣	n(x) − max
z∈M(x)

{∣∣p−1
yy (x, z)

∣∣∣∣p̂y,n(x, z)
∣∣}

∣∣∣,

if 	n(x) > 0,

0, if 	n(x) = 0.

Then, when

‖p̂n − p‖∗
∞,2 = max

{
‖p̂n − p‖(0)

∞ ,‖p̂n − p‖(1)
∞ ,‖p̂n − p‖(2)

∞
}

is sufficiently small, we have

sup
x∈D

An(x) = OP

(
‖p̂n − p‖∗

∞,2
)
.

Moreover, at any fixed x ∈ D, when nhd+5

logn
→ ∞ and h → 0,

	n(x) = O
(
h2)

+ OP

(√
1

nhd+3

)
.

The proof is in the supplementary material [Chen et al. (2015)]. This shows that
if the curvature of the joint density function along y is bounded away from 0, then
the error can be approximated by the error of p̂y,n(x, z) after scaling. The rate of
convergence follows from the fact that p̂y,n(x, z) is converging to 0 at the same
rate. Note that as z is a conditional mode, the partial derivative of the true density
is 0. We defined An(x) as above since 	n(x) = 0 implies maxz∈M(x) |p̂y,n(x, z)| =
0, so that the ratio would be ill-defined if 	n(x) = 0. Also, the constraints on h in
the second assertion (nhd+5

logn
→ ∞ and h → 0) are to ensure ‖p̂n −p‖∗

∞,2 = oP(1).
For our next result, we define the uniform error

	n = sup
x∈D

	n(x) = sup
x∈D

Haus
(
M̂n(x),M(x)

)
.

This is an ℓ∞ type error for estimating regression modes (and is also closely linked
to confidence sets; see Section 5).

THEOREM 4 (Uniform error rate). Assume (A1)–(A3) and (K1)–(K2). Then

as nhd+5

logn
→ ∞ and h → 0,

	n = O
(
h2)

+ OP

(√
logn

nhd+3

)
.
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The proof is in the supplementary material [Chen et al. (2015)]. Compared to
the pointwise error rate in Theorem 3, we have an additional

√
logn factor in the

second term. One can view this as the price we need to pay for getting an uniform
bound over all points. See Einmahl and Mason (2005), Giné and Guillou (2002)
for similar findings in density estimation.

The last error metric we consider is the mean integrated squared error (MISE),
defined as

MISE(M̂n) = E

(∫

x∈D
	2

n(x) dx

)
.

Note that the MISE is a nonrandom quantity, unlike first two error metrics consid-
ered.

THEOREM 5 (MISE rate). Assume (A1)–(A3) and (K1)–(K2). Then as
nhd+5

logn
→ ∞ and h → 0,

MISE(M̂n) = O
(
h4)

+ O

(
1

nhd+3

)
.

The proof is in the supplementary material [Chen et al. (2015)]. If we instead
focus on estimating the regression modes of the smoothed joint density p̃(x, y) =
E(p̂n(x, y)), then we obtain much faster convergence rates. Let M̃(x) = E(M̂n(x))

be the smoothed regression modes at x ∈ D. Analogously, define

	̃n(x) = Haus
(
M̂n(x), M̃(x)

)
,

	̃n = sup
x∈D

	̃n(x),

M̃ISE(M̂n) = E

(∫

x∈D
	̃2

n(x) dx

)
.

COROLLARY 6 (Error rates for smoothed conditional modes). Assume (A1)–
(A3) and (K1)–(K2). Then as nhd+5

logn
→ ∞ and h → 0,

√
nhd+3 sup

x∈D

∣∣∣	̃n(x) − max
z∈M̃(x)

{
p̃−1

yy (x, z)p̂y,n(x, z)
}∣∣∣ = OP(εn,2),

	̃n(x) = OP

(√
1

nhd+3

)
,

	̃n = OP

(√
logn

nhd+3

)
,

M̃ISE(M̂n) = O

(
1

nhd+3

)
,



500 CHEN, GENOVESE, TIBSHIRANI AND WASSERMAN

where

εn,2 = sup
x,y

∣∣p̂yy,n(x, y) − p̃yy(x, y)
∣∣ = sup

x,y

∣∣p̂yy,n(x, y) −E
(
p̂yy,n(x, y)

)∣∣.

5. Confidence sets. In an idealized setting, we could define a confidence set
at x by

Ĉ0
n(x) = M̂n(x) ⊕ δn,1−α(x),

where

P
(
	n(x) > δn,1−α(x)

)
= α.

By construction, we have P(M(x) ∈ Ĉ0
n(x)) = 1 − α. Of course, the distribution

of 	n(x) is unknown, but we can use the bootstrap [Efron (1979)] to estimate
δn,1−α(x).

Given the observed data samples (X1, Y1), . . . , (Xn, Yn), we denote a bootstrap
sample as (X∗

1, Y ∗
1 ), . . . , (X∗

n, Y
∗
n ). Let M̂∗

n(x) be the estimated regression modes
based on this bootstrap sample, and

	̂∗
n(x) = Haus

(
M̂∗

n(x), M̂n(x)
)
.

We repeat the bootstrap sampling B times to get 	̂∗
1,n(x), . . . , 	̂∗

B,n(x). Define
δ̂n,1−α(x) by

1

B

B∑

j=1

I
(
	̂∗

j,n(x) > δ̂n,1−α(x)
)
= α.

Our confidence set for M(x) is then given by

Ĉn(x) = M̂n(x) ⊕ δ̂n,1−α(x).

Note that this is a pointwise confidence set, at x ∈ D.
Alternatively, we can use 	n = supx∈D 	n(x) to build a uniform confidence

set. Define δn,1−α by

P
(
M(x) ⊆ M̂n(x) ⊕ δn,1−α,∀x ∈ D

)
= 1 − α.

As above, we can use bootstrap sampling to form an estimate δ̂n,1−α , based on the
quantiles of the bootstrapped uniform error metric

	̂∗
n = sup

x∈D

Haus
(
M̂∗

n(x), M̂n(x)
)
.

Our uniform confidence set is then

Ĉn =
{
(x, y) : x ∈ D,y ∈ M̂n(x) ⊕ δ̂n,1−α

}
.

In practice, there are many possible flavors of the bootstrap that are applicable
here. This includes the ordinary (nonparametric) bootstrap, the smoothed bootstrap
and the residual bootstrap. See Figure 4 for an example with the ordinary bootstrap.
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FIG. 4. An example with pointwise (left) and uniform (right) confidence sets. The significance level

is 90%.

We focus on the asymptotic coverage of uniform confidence sets built with the
ordinary bootstrap. We consider coverage of the smoothed regression mode set
M̃(x) (to avoid issues of bias), and we employ tools developed in Chen, Genovese
and Wasserman (2015), Chernozhukov, Chetverikov and Kato (2014a, 2014b).

Consider a function space F defined as

F =
{
(u, v) �→ fx,y(u, v) : fx,y(u, v) = p̃−1

yy (x, y)

(15)

× K

(‖x − u‖
h

)
K(1)

(
y − v

h

)
, x ∈ D,y ∈ M̃(x)

}
,

and let B be a Gaussian process defined on F such that

Cov
(
B(f1),B(f2)

)

(16)
= E

(
f1(Xi, Yi)f2(Xi, Yi)

)
−E

(
f1(Xi, Yi)

)
E

(
f2(Xi, Yi)

)
,

for all f1, f2 ∈ F .

THEOREM 7. Assume (A1)–(A3) and (K1)–(K2). Define the random variable

B = 1√
hd+3

supf ∈F |B(f )|. Then as nhd+5

logn
→ ∞, h → 0,

sup
t≥0

∣∣P
(√

nhd+3	̃n < t
)
− P(B < t)

∣∣ = O

((
log7 n

nhd+3

)1/8)
.

The proof is in the supplementary material [Chen et al. (2015)]. This theorem
shows that the smoothed uniform discrepancy 	̃n is distributed asymptotically as
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the supremum of a Gaussian process. In fact, it can be shown that the two random
variables 	̃n and B are coupled by

∣∣
√

nhd+3	̃n − B
∣∣ = OP

((
log7 n

nhd+3

)1/8)
.

Now we turn to the limiting behavior for the bootstrap estimate. Let Dn =
{(X1, Y1), . . . , (Xn, Yn)} be the observed data and denote the bootstrap estimate
by

	̂∗
n = sup

x∈D

Haus
(
M̂∗

n(x), M̂n(x)
)
,

where M̂∗
n(x) is the bootstrap regression mode set at x.

THEOREM 8 (Bootstrap consistency). Assume conditions (A1)–(A3) and

(K1)–(K2). Also assume that nhd+5

logn
→ ∞, h → 0. Define

B =
1

√
hd+3

sup
f ∈F

∣∣B(f )
∣∣.

There exists Xn such that P(Xn) ≥ 1 − O( 1
n
) and, for all Dn ∈ Xn,

sup
t≥0

∣∣P
(√

nhd+3	̂∗
n < t |Dn

)
− P(B < t)

∣∣ = OP

((
log7 n

nhd+3

)1/8)
.

The proof is in the supplementary material [Chen et al. (2015)]. Theorem 8
shows that the limiting distribution for the bootstrap estimate 	̂∗

n is the same as
the limiting distribution of 	̃n (recall Theorem 7) with high probability. Using
Theorems 7 and 8, we conclude the following.

COROLLARY 9 (Uniform confidence sets). Assume conditions (A1)–(A3) and

(K1)–(K2). Then as nhd+5

logn
→ ∞ and h → 0,

P
(
M̃(x) ⊆ M̂n(x) ⊕ δ̂n,1−α,∀x ∈ D

)
= 1 − α + O

((
log7 n

nhd+3

)1/8)
.

6. Prediction sets. Modal regression can be also used to construct prediction
sets. Define

ε1−α(x) = inf
{
ε ≥ 0 : P

(
d
(
Y,M(X)

)
> ε|X = x

)
≤ α

}
,

ε1−α = inf
{
ε ≥ 0 : P

(
d
(
Y,M(X)

)
> ε

)
≤ α

}
.

Recall that d(x,A) = infy∈A |x − y| for a point x and a set A. Then

P1−α(x) = M(x) ⊕ ε1−α(x) ⊆ R,

P1−α =
{
(x, y) : x ∈ D,y ∈ M(x) ⊕ ε1−α

}
⊆ D ×R
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are pointwise and uniform prediction sets, respectively, at the population level,
because

P
(
Y ∈ P1−α(x)|X = x

)
≥ 1 − α,

P(Y ∈P1−α) ≥ 1 − α.

At the sample level, we use a KDE of the conditional density p̂n(y|x) =
p̂n(x, y)/p̂n(x), and estimate ε1−α(x) via

ε̂1−α(x) = inf
{
ε ≥ 0 :

∫

M̂n(x)⊕ε
p̂n(y|x)dy ≥ 1 − α

}
.

An estimated pointwise prediction set is then

P̂1−α(x) = M̂n(x) ⊕ ε̂1−α(x).

This has the proper pointwise coverage with respect to samples drawn according
to p̂n(y|x), so in an asymptotic regime in which p̂n(y|x) → pn(y|x), it will have
the correct coverage with respect to the population distribution, as well.

Similarly, we can define

ε̂1−α = Quantile
({

d
(
Yi, M̂n(Xi)

)
: i = 1, . . . , n

}
,1 − α

)
,(17)

the (1−α) quantile of d(Yi, M̂n(Xi)), i = 1, . . . , n, and then the estimated uniform
prediction set is

P̂1−α =
{
(x, y) : x ∈ D,y ∈ M̂n(x) ⊕ ε̂1−α

}
.(18)

The estimated uniform prediction set has proper coverage with respect to the em-
pirical distribution, and so certain conditions, it will have valid limiting population
coverage.

6.1. Bandwidth selection. Prediction sets can be used to select the smoothing
bandwidth of the underlying KDE, as we describe here. We focus on uniform pre-
diction sets, and we will use a subscript h throughout to denote the dependence on
the smoothing bandwidth. From its definition in (18), we can see that the volume
(Lebesgue measure) of the estimated uniform prediction set is

Vol(P̂1−α,h) = ε̂1−α,h

∫

x∈D
K̂h(x) dx,

where K̂h(x) is the number of estimated local modes at X = x, and ε̂1−α,h is as
defined in (17). Roughly speaking, when h is small, ε̂1−α,h is also small, but the
number of estimated manifolds is large; on the other hand, when h is large, ε̂1−α,h

is large, but the number of estimated manifolds is small. This is like the bias-
variance trade-off: small h corresponds to less bias (̂ε1−α,h) but higher variance
(number of estimated manifolds).

Our proposal is to select h by

h∗ = argmin
h≥0

Vol(P̂1−α,h).
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FIG. 5. An example of bandwidth selection based on the size of the prediction sets.

Figure 5 gives an example this rule when α = 0.05, that is, when minimizing the
size of the estimated 95% uniform prediction set. Here, we actually use cross-
validation to obtain the size of the prediction set; namely, we use the training set
to estimate the modal manifolds and then use the validation set to estimate the
width of prediction set. This helps us to avoid overfitting. As can be seen, there
is a clear trade-off in the size of the prediction set versus h in the left plot. The
optimal value h∗ = 0.07 is marked by a vertical line, and the right plot displays the
corresponding modal regression estimate and uniform prediction set on the data
samples.

In the same plot, we also display a local regression estimate and its correspond-
ing 95% uniform prediction set. We can see that the prediction set from the local
regression method is much larger than that from modal regression. (To even the
comparison, the bandwidth for the local linear smoother was also chosen to mini-
mize the size of the prediction set.) This illustrates a major strength of the modal
regression method: because it is not constrained to modeling conditional mean
structure, it can produce smaller prediction sets than the usual regression meth-
ods when the conditional mean fails to capture the main structure in the data. We
investigate this claim theoretically, next.

6.2. Theory on the size of prediction sets. We will show that, at the population
level, prediction sets from modal regression can be smaller than those based on the
underlying regression function μ(x) = E(Y |X = x). Defining

η1−α(x) = inf
{
η ≥ 0 : P

(
d
(
Y,μ(X)

)
> η|X = x

)
≤ α

}
,

η1−α = inf
{
η ≥ 0 : P

(
d
(
Y,μ(X)

)
> η

)
≤ α

}
,
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pointwise and uniform prediction sets based on the regression function are

R1−α(x) = μ(x) ⊕ η1−α(x) ⊆ R,

R1−α =
{(

x,μ(x) ⊕ η1−α

)
: x ∈ D

}
⊆ D ×R,

respectively.
For a pointwise prediction set A(x), we write length(A(x)) for its Lebesgue

measure on R; note that in the case of modal regression, this is somewhat of an
abuse of notation because the Lebesgue measure of A(x) can be a sum of interval
lengths. For a uniform prediction set A, we write Vol(A) for its Lebesgue measure
on D ×R.

We consider the following assumption.

(GM) The conditional density satisfies

p(y|x) =
K(x)∑

j=1

πj (x)φ
(
y;μj (x), σ 2

j (x)
)

with μ1(x) < μ2(x) < · · · < μK(x)(x) by convention, and φ(·;μ,σ 2) denoting the
Gaussian density function with mean μ and variance σ 2.

The assumption that the conditional density can be written as a mixture of Gaus-
sians is only used for the next result. It is important to note that this is an assump-
tion made about the population density, and does not reflect modeling choices
made in the sample. Indeed, recall, we are comparing prediction sets based on the
modal set M(x) and the regression function μ(x), both of which use true popula-
tion information.

Before stating the result, we must define several quantities. Define the minimal
separation between mixture centers

	min(x) = min
{∣∣μi(x) − μj (x)

∣∣ : i �= j
}

and

σ 2
max(x) = max

j=1,...,K(x)
σ 2

j (x),

πmax(x) = max
j=1,...,K(x)

πj (x), πmin(x) = min
j=1,...,K(x)

πj (x).

Also define

	min = inf
x∈D

	min(x), σ 2
max = sup

x∈D

σ 2
max(x),

and

πmax = sup
x∈D

πmax(x), πmin = inf
x∈D

πmin(x),

and

K =
∫
x∈D K(x)dx∫

x∈D dx
, Kmin = inf

x∈D
K(x), Kmax = inf

x∈D
K(x).



506 CHEN, GENOVESE, TIBSHIRANI AND WASSERMAN

THEOREM 10 (Size of prediction sets). Assume (GM). Let α < 0.1 and as-

sume that π1(x),πK(x)(x) > α. If

	min(x)

σmax(x)
> max

{
1.1 ·

K(x)

K(x) − 1
z1−α/2,

√
6.4 ∨ 2 log

(
4
(
K(x) ∨ 3 − 1

))
+ 2 log

(
πmax(x)

πmin(x)

)}
,

where zα is the upper α-quantile value of a standard normal distribution and A ∨
B = max{A,B}, then

length
(
P1−α(x)

)
< length

(
R1−α(x)

)
.

Moreover, if

	min

σmax
> max

{
1.1 ·

(
2K

Kmin − 1

)
z1−α/2,

√
6.4 ∨ 2 log

(
4(Kmax ∨ 3 − 1)

)
+ 2 log

(
πmax

πmin

)}
,

then

Vol(P1−α) < Vol(R1−α).

The proof is in the supplementary material [Chen et al. (2015)]. In words, the
theorem shows that when the signal-to-noise ratio is sufficiently large, the modal-
based prediction set is smaller than the usual regression-based prediction set.

7. Comparison to mixture regression. Mixture regression is similar to
modal regression. The literature on mixture regression, also known as mixture of
experts modeling, is vast; see, for example, Bishop (2006), Huang, Li and Wang
(2013), Huang and Yao (2012), Hunter and Young (2012), Jacobs et al. (1991),
Jiang and Tanner (1999), Khalili and Chen (2007), Viele and Tong (2002). In mix-
ture regression, we assume that the conditional density function takes the form

p(y|x) =
K(x)∑

j=1

πj (x)φj

(
y;μj (x), σ 2

j (x)
)
,

where each φj (y;μj (x), σ 2
j (x)) is a density function, parametrized by a mean

μj (x) and variance σ 2
j (x). The simplest and most common usage of mixture re-

gression makes the following assumptions:

(MR1) K(x) = K ,
(MR2) πj (x) = πj for each j ,
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(MR3) μj (x) = βT
j x for each j ,

(MR4) σ 2
j (x) = σ 2

j for each j , and
(MR5) φj (x) is Gaussian for each j .

This is called linear mixture regression [Chaganty and Liang (2013), Viele and
Tong (2002)]. Many authors have considered relaxing some subset of the above
assumptions, but as far we can tell, no work has been proposed to effectively relax
all of (MR1)–(MR5).

Modal regression is a fairly simple tool that achieves a similar goal to mixture
regression models, and uses fewer assumptions. Mixture regression is inherently a
model-based method, stemming from a model for the joint density p(y|x); modal
regression hunts directly for conditional modes, which can be estimated without
a model for p(y|x). Another important difference: the number of mixture com-
ponents K in the mixture regression model plays a key role, and estimating K is
quite difficult; in modal regression we do not need to estimate anything of this sort
(e.g., we do not specify a number of modal manifolds). Instead, the flexibility of
the estimated modal regression set is driven by the bandwidth parameter h of the
KDE, which can be tuned by inspecting the size of prediction sets, as described
in Section 6.1. Table 1 summarizes the comparison between mixture-based and
mode-based methods.

Figure 6 gives a comparison between linear mixture regression and modal re-
gression. We fit the linear mixture model using the R package mixtools, specifying
k = 3 components, over 10,000 runs of the EM algorithm (choosing eventually the
result the highest likelihood value). The modal regression estimate used a band-
width value that minimized the volume of the corresponding prediction set, as
characterized in Figure 5. The figure reveals yet another important difference be-
tween the two methods: the estimated modal regression trends do not persist across
the whole x domain, while the linear mixture model (in its default specification)
carries the estimated linear trends across the entirety of the x domain. This is due
to assumption (MR2), which models each component probability πj as a constant,
independent of x. As a result, the prediction set from the linear mixture model has

TABLE 1
Comparison for methods based on mixtures versus modes

Mixture-based Mode-based

Density estimation Gaussian mixture Kernel density estimate
Clustering K-means Mean-shift clustering
Regression Mixture regression Modal regression
Algorithm EM Mean-shift
Complexity parameter K (number of components) h (smoothing bandwidth)
Type Parametric model Nonparametric model
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FIG. 6. A comparison between mixture regression, on the left, and modal regression, on the right.

a much larger volume than that from modal regression, since it vacuously covers
the extensions of each linear fit across the whole domain. Relaxing assumption
(MR2) would address this issue, but it would also make the mixture estimation
more difficult.

7.1. Clustering with modal regression. We now describe how modal regres-
sion can be used to conduct clustering, conditional on x. This clustering leads us
to define modal proportions and modal dispersions, which are roughly analogous
to the component parameters πj (x) and σ 2

j (x) in mixture regression.
Mode-based clustering [Chen, Genovese and Wasserman (2014a), Cheng

(1995), Comaniciu and Meer (2002), Li, Ray and Lindsay (2007), Yao and Lind-
say (2009)] is a nonparametric clustering method which uses local density modes
to define clusters. A similar idea applies to modal regression. In words, at each
point x, we find the modes of p(y|x) and we cluster according to the basins of
attractions of these modes. Formally, at each (x, y), we define an ascending path
by

γ(x,y) :R+ →K× D, γ(x,y)(0) = (x, y), γ ′
(x,y)(t) =

(
0,py(x, y)

)
.

That is, γ(x,y) is the gradient ascent path in the y direction (with x fixed), starting
at the point y. Denote the destination of the path by dest(x, y) = limt→∞ γ(x,y)(t).
By Morse theory, dest(x, y) = mj (x) for one and only one regression mode
mj (x), j = 1, . . . ,K . Thus, we assign the cluster label j to the point (x, y). Simi-
lar ideas have been used by Li, Ray and Lindsay (2007), Yao and Lindsay (2009),
and the former authors also discuss how the modes and clustering results merge as
the bandwidth increases.
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The above was a population-level description of the clusters. In practice, we
use the mean-shift algorithm (Algorithm 1) to estimate clusters and assign points
according to the output of the algorithm. That is, by iterating the mean-shift up-
date (6) for each point (Xi, Yi), with Xi fixed, we arrive at an estimated mode
m̂j (Xi) for some j = 1, . . . , K̂ , and we hence assign (Xi, Yi) to cluster j . An is-
sue is that determination of the estimated modal functions m̂j , j = 1, . . . , K̂ , or
equivalently, of the modal manifolds Ŝ1, . . . , ŜK̂ , is not immediate from the data
samples. These are well-defined in principle, but require running the mean-shift al-
gorithm at each input point x. In data examples, therefore, we run mean-shift over
a fine mesh (e.g., the data samples themselves) and apply hierarchical clustering
to find the collection Ŝ1, . . . , ŜK̂ . It is important to note that the latter clustering
task, which seeks a clustering of the outputs of the mean-shift algorithm, is trivial
compared to the original task (clustering of the data samples). Some examples are
shown in Figure 7.

The clustering assignments give rise to the concepts of modal proportions and
modal dispersions. The modal proportion of cluster j is defined as

q̂j = Nj/n,

where Nj =
∑n

i=1 1(i ∈ Ĉj ) is the number of data points belonging to the j th
cluster Ĉj . The modal dispersion of cluster j is defined as

ρ̂2
j =

1

Nj

∑

i∈Ĉj

(
Yi − m̂(Yi)

)2
,

where m̂(Yi) denotes the sample destination at (Xi, Yi) [i.e., the output of the
mean-shift algorithm at (Xi, Yi)]. This is a measure of the spread of the data points
around the j th estimated modal manifold.

FIG. 7. Two examples of clustering based on modal regression.
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In a mixture regression model, where each φj is assumed to be Gaussian, the
local modes of p(y|x) behave like the mixture centers μ1(x), . . . ,μK(x). Thus,
estimating the local modes is like estimating the centers of the Gaussian mixtures.
The clustering based on modal regression is like the recovery process for the mix-
ing mechanism. Each cluster can be thought of a mixture component and hence
the quantities q̂j , ρ̂

2
j are analogous to the estimates π̂j , σ̂

2
j in mixture regression

[assuming (MR2) and (MR4), so that to the mixture proportions and variances do
not depend on x].

8. Comparison to density ridges. Another concept related to modal regres-
sion estimation is that of density ridge estimation. Relative to mixture regression,
the literature on density ridges is sparse; see Chen, Genovese and Wasserman
(2014b, 2015), Eberly (1996), Genovese et al. (2014).

For simplicity of comparison, assume that the predictor X is univariate
(d = 1). Let v1(x, y), v2(x, y) be the eigenvectors corresponding to the eigen-
values λ1(x, y) ≥ λ2(x, y) of H(x,y) = ∇2p(x, y), the Hessian matrix of density
function p at (x, y). Each point in the ridge set at x is the local mode of the local
mode of subspace spanned by v2(x, y) with λ2(x, y) < 0. We can express this as

R(x) =
{
y : v2(x, y)T ∇p(x, y) = 0, vT

2 (x, y)H(x, y)v2(x, y) < 0
}
.

Note that we can similarly express the modal set at x as

M(x) =
{
y : 1T

Y ∇p(x, y) = 0,1T
Y H(x,y)1Y < 0

}
,

where 1T
Y = (0,1) is the unit vector in the y direction. As can be seen easily, the

key difference lies in the two vectors 1Y and v2(x, y). Every point on the density
ridge is local mode with respect to a different subspace, while every point on the
modal regression is the local mode with respect to the same subspace, namely,
that aligned with the y-axis. The following simple lemma describes cases in which
these two sets coincide.

LEMMA 11 (Equivalence of modal and ridge sets). Assume that d = 1, fix any

point x, and let y ∈ M(x). Then provided that:

1. px(x, y) = 0, or

2. pxy(x, y) = 0,

it also holds that y ∈ R(x).

The proof is in the supplementary material [Chen et al. (2015)]. The lemma
asserts that a conditional mode where the density is locally stationary, that is,
px(x, y) = 0, or the density is locally isotropic, that is, pxy(x, y) = 0, is also a
density ridge. More explicitly, the first condition states that saddle points and local
maximums are both local modes and ridge points, and the second condition states
that when modal manifolds moving along the x-axis, they are also density ridges.
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FIG. 8. A comparison between modal regression, density ridges and density modes using the old

faithful data set. The background color represents the joint density (red: high density).

We compare modal regression, density ridges, and density modes in Figure 8.
Both the estimated density ridges and modal manifolds pass through the density
modes, as predicted by Lemma 11. Furthermore, at places in which the joint den-
sity is locally isotropic (i.e., spherical), the modal regression and density ridge
components roughly coincide.

From a general perspective, modal regression and density ridges are looking for
different types of structures; modal regression examines the conditional structure
of Y |X, and density ridges seek out the joint structure of X,Y . Typically, density
ridge estimation is less stable than modal regression estimation because in the for-
mer, both the modes and the subspace of interest [the second eigenvector v2(x, y)

of the local Hessian] must be estimated.

9. Discussion. We have investigated a nonparametric method for modal re-
gression estimation, based on a KDE of a joint sample of data points (X1, Y1), . . . ,

(Xn, Yn). We studied some of the geometry underlying the modal regression set,
and described techniques for confidence set estimation, prediction set estimation,
and bandwidth selection for the underlying KDE. Finally, we compared the pro-
posed method to the well-studied mixture of regression model, and the less well
known but also highly relevant problem of density ridge estimation. The main mes-
sage is that nonparametric modal regression offers a relatively simple and useable
tool to capture conditional structure missed by conventional regression methods.
The advances we have developed in this paper, such those for constructing confi-
dence sets and prediction sets, add to its usefulness as a practical tool.

Though the discussion in this paper treated the dimension d of the predictor
variable X as arbitrary, all examples used d = 1. We finish by giving two simple
examples for d = 2. In the first example, the data points are normally distributed
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FIG. 9. Two examples for d = 2. Modal regression estimates are shown in blue, and local regres-

sion in green.

around two parabolic surfaces; in the second example, the data points come from
five different components of two-dimensional structure. We apply both modal re-
gression (in blue) and local regression (in green) to the two examples, shown in
Figure 9. The estimated modal regression set identifies the appropriate structure,
while local regression does not (most of the local regression surface does not lie
near any of the data points at all).

Acknowledgement. We thank the reviewers for useful comments.

SUPPLEMENTARY MATERIAL

Supplementary Proofs: Nonparametric modal regression (DOI: 10.1214/15-
AOS1373SUPP; .pdf). This document contains all proofs to the theorems and lem-
mas in this paper.
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