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Abstract

The random character of blade mistuning is a motivation to construct probability models of random uncertainties. Recently,

a new approach known as a nonparametric model of random uncertainties, based on the entropy optimization principle, was

introduced for modeling random uncertainties in linear and non-linear elastodynamics. This paper presents an extension of

this nonparametric model for vibration analysis of structures with cyclic geometry. In particular this probability model allows

the blade eigenfrequencies uncertainties and the blade-modal-shape uncertainties to be modeled.

1 Introduction

Structural dynamics of mistuned bladed-disks remain a difficult problem in turbomachinery. Usually, vibration analysis of

cyclic structures is performed using their cyclic symmetry and is formulated for one sector from which the dynamics of the

structure is reconstructed (see for instance [1, 2]). Nevertheless, manufacturing tolerances and dispersion of materials create

uncertainties on geometry, boundary conditions and material properties of each blade. In the present paper, it is assumed

that the disk is not mistuned. It is known that the phenomenon related to mistuning can induce strong vibrations for the

forced response of the bladed-disk and can produce spatial localization in the dynamic response of the blades as proved in

the early works [3, 4]. A good understanding of the mistuning effects still remains a subject of interest. Mistuning has

been the object of various researches these last decades and many numerical studies have been developed on both free and

forced responses. The influence of several parameters as interblade coupling, strength mistuning or damping has also been

explored [5, 6, 7]. Moreover, the random nature of blade mistuning has been a motivation to construct probability models of

random uncertainties to solve the corresponding stochastic responses and to perform statistical analyses in order to predict

the effects of mistuning. Several researches have also been carried out to accurately estimate probability responses related to

mistuning by using perturbation techniques with a simple lumped parameter models [8, 9]. Reduced order models have been

extensively studied to reduce time costs for mistuned industrial turbomachinery bladed-disks [10, 11, 12]. In the context of the

blade mistuning, a probabilistic parametric approach requires a complete probabilistic parametric description of the uncertain

parameters, such as the use of stochastic fields for modeling uncertainties of constitutive equations, boundary conditions and
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geometry. Such a probabilistic parametric method is not really simple to develop because of the large number of parameters

which induce mistuning and which has to be identified. A good compromise widely used in most studies dealing with

this subject, is to consider the Young modulus of blades as uncertain variables. In this case, blade eigenfrequencies are

mistuned through the stiffness parameters but the corresponding eigenmodes remain unchanged with respect to the tuned

case. Recently, Mignolet et al. [13, 14] introduced a probability model which is experimentally identified using the maximum

likelihood principle in order to include blade-modal-shape mistuning or not. This model exhibits differences with respect to

the parametric probability model currently used. Since the random character of blade mistuning is a motivation to construct

probability models of random uncertainties, the present goal of this paper is to present an alternative nonparametric probability

model to the usual parametric one for modeling random uncertainties in mistuning analysis. This nonparametric probabilistic

approach allows both data uncertainties and model uncertainties to be taken into account while probabilistic parametric

approaches do not allow model uncertainties to be modeled. Such a nonparametric approach has been recently introduced in

linear elastodynamics, in time and frequency domain [15, 16]. This nonparametric probability model is directly constructed

using the mean reduced matrix model, and using a probability model for symmetric positive-definite real random matrices,

which is constructed using the entropy maximization principle with the available information. In section 2, the mean reduced

matrix model required by the nonparametric approach is presented. Section 3 is devoted to the nonparametric model of

random uncertainties. Section 4 describes the strategy for mistuning analysis. In section 5, a numerical example is given. In

particular, a numerical comparison is carried out in order to give an information when the dispersion levels of the random

matrices issued from the nonparametric and from the usual parametric approach are similar.

2 Construction of the mean reduced matrix model

Let Ω be a fixed structure with an N -order cyclic symmetry, submitted to external forces (the problem under consideration

is related to rotating structures; in order to simplify the presentation, a fixed structure is considered; the methodology and

the results presented can be extended without difficulty to the case of rotating structures). The geometrical domain, the

viscoelasticity tensor, the mass density and the Dirichlet conditions related to the generating sector are invariant under the

2π/N rotation around the rotational axis of symmetry. Consequently, we are then interested in the linearized vibrations

around a static equilibrium configuration considered as a natural state without prestresses whose model will be called the

mean model of the structure. The vibration analysis is performed in the frequency band
 

. Structure Ω is divided into one

disk Ωd and N identical blades Ωj , for j belonging to {0, . . . , N − 1}. Let Σj be the coupling interface between blade

Ωj and disk Ωd. It is assumed that the blades are only coupled by the disk. The disk is fixed on a part of its boundary.

The mistuning is assumed to be statistically independent from blade to blade. Consequently, the nonparametric probability

model of random uncertainties for a blade is described independently of the other blades. Furthermore, the probabilistic

nonparametric approach requires the construction of a mean reduced matrix model for each uncertain substructure. This

justifies the use of a dynamic substructuring method. The Craig & Bampton method [17] is used in this paper but any other

substructuring methods could be used. Then, the mean finite element model of the disk is assembled with the mean reduced

model of each blade. The resulting mean matrix model will be called the mean reduced matrix model for the bladed-disk.

It should be outlined that the purpose of this paper is not to construct the most efficient reduced order model adapted to the

mistuning problematic. This has been thoroughly studied in the literature. The focus of this paper deals with the model of

mistuning by using a nonparametric probabilistic approach. Thus, the construction of this mean reduced model for each blade

is only justified by the use of a nonparametric probability model for describing the blade random uncertainties. For ω fixed

in frequency band
 

, let [Ad(ω)] be the mean dynamic stiffness matrix of disk Ωd with free coupling interface. Let nd be the

number of DOFs of the disk. For the disk, the block decomposition with respect to the internal DOFs and with respect to the

2



coupling interface DOFs yields

[Ad(ω)] =





[Ad
ii(ω)] [Ad

iΣ(ω)]

[Ad
iΣ(ω)]T [Ad

ΣΣ(ω)]



 . (1)

Each blade j is reduced by the Craig & Bampton decomposition method [17] with Ng fixed coupling interface modes. For

ω fixed in frequency band
 

, let [Aj
red(ω)] be the mean reduced dynamic stiffness matrix of blade Ωj with free coupling

interface. Matrix [Aj
red(ω)] is defined by

[Aj
red(ω)] = −ω2[M j

red] + iω[Dj
red] + [Kj

red] , (2)

and its block decomposition with respect to the Ng generalized coordinates qj and to the nΣ coupling interface DOFs is

written as

[Aj
red(ω)] =





[Aj(ω)] [Aj
c(ω)]

[Aj
c(ω)]T [Aj

Σ(ω)]



 . (3)

Let Na = Ng + nΣ. The matrices [M j
red] ∈ ✁ +

Na
( ✂ ), [Dj

red] ∈ ✁ +0
Na

( ✂ ) and [Kj
red] ∈ ✁ +0

Na
( ✂ ) are the mean reduced mass,

damping and stiffness matrices respectively. The mean vector of the physical DOFs is then given by





u
j
i (ω)

u
j
Σ(ω)



 = [Hj ]





qj(ω)

u
j
Σ(ω)



 , (4)

in which, for blade j, [Hj] is the transformation matrix involved by the Craig & Bampton decomposition [17], u
j
i (ω) is the

mean vector of the internal DOFs and u
j
Σ(ω) is the mean vector of the coupling interface DOFs. The mean reduced matrix

model of the bladed-disk is then obtained by assemblage which yields











[A(ω)] [Ac(ω)] [ ✄ ]

[Ac(ω)]T [AΣ(ω)] + [Ad
ΣΣ(ω)] [Ad

iΣ(ω)]T

[ ✄ ] [Ad
iΣ(ω)] [Ad

ii(ω)]





















q(ω)

uΣ(ω)

vi(ω)











=











F(ω)
☎
Σ(ω)

g
i
(ω)











, (5)

where q(ω) is the mean vector in ✆ NNg defined by q(ω) = {q0(ω), . . . , qN−1(ω)}, where uΣ(ω) is the mean vector in ✆ NnΣ

defined by uΣ(ω) = {u0
Σ(ω), . . . , uN−1

Σ (ω)} and where vi(ω) is the mean vector of the ✆ nd−NnΣ describing the internal

DOFs of the disk. We have [A(ω)jk] = [Aj(ω)] δjk , [Ac(ω)jk] = [Aj
c(ω)] δjk and [AΣ(ω)jk] = [Aj

Σ(ω)] δjk, where the

upper subscript jk denotes the matrix block defining the connection between blade j and blade k. The right side of Eq.(5)

defines the terms related to the mean external forces.

3 Nonparametric model of random uncertainties for blade mistuning

In this Section, the nonparametric model of random uncertainties related to the blade mistuning is constructed. The main

results concerning the nonparametric probability model of random uncertainties in structural dynamics [15, 16] are used.

Such a probability model is implemented from the mean reduced matrix model of each blade.

3.1 Random reduced matrix model for the bladed-disk

Using the methodology derived from [15, 18], the nonparametric probabilistic approach consists in modeling the reduced

dynamic stiffness matrix for blade j as the random matrix

[Aj
red(ω)] = −ω2[Mj

red] + iω[Dj
red] + [Kj

red] , (6)
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in which [Mj
red], [Dj

red] and [Kj
red] are Na × Na independent random matrices corresponding to the random reduced mass,

damping and stiffness matrices of blade j. The results and notation of Section 2 are transposed for the random case. We then

deduce that

[Aj
red(ω)] =





[Aj(ω)] [Aj
c(ω)]

[Aj
c(ω)]T [Aj

Σ(ω)]



 , (7)

and the random stochastic system corresponding to Eq. (5) is written as











[A(ω)] [Ac(ω)] [ ✄ ]

[Ac(ω)]T [AΣ(ω)] + [Ad
ΣΣ(ω)] [Ad

iΣ(ω)]T

[ ✄ ] [Ad
iΣ(ω)] [Ad

ii(ω)]





















Q(ω)

UΣ(ω)

Vi(ω)











=











F(ω)
☎
Σ(ω)

g
i
(ω)











, (8)

in which Q(ω), UΣ(ω) and Vi(ω) are the ✆ NNg -valued random vector of the generalized coordinates, the ✆ NnΣ-valued

random vector of the DOFs of the coupling interface and the ✆ nd−NnΣ random vector of the internal DOFs of the disk

respectively.

3.2 Probability model of the random matrices for one blade

Since the random uncertainties are statistically independent from blade to blade, random matrices [A0
red(ω)], . . . , [AN−1

red (ω)]

are statistically independent. We can limit the construction of the probability model to one blade. Then, we have to construct

the probability model of the random matrices [Mj
red], [Dj

red] and [Kj
red]. Since each random matrix involves both generalized

coordinates and physical DOFs which are of different nature, it is necessary to construct the probability model on a matrix

related to normalized quantities. A normalization of the random reduced matrix has to be done before constructing the

probability model. In addition, the probability model has to be consistent with a mechanical problem and has to satisfy the

following constraints which constitute the only available information: C1 the mean reduced matrix is equal to the mean value

of the random reduced matrix; C2 the signature of the random reduced matrix is respected: it means that the random reduced

matrix has to be positive definite (or semi-positive definite) if its corresponding mean reduced matrix is positive definite (or

semi-positive definite) ; C3 the second-order moment of the physical random response of the bladed-disk has to exist. The

probability model is then derived from these three constraints by using the entropy maximization principle. It should be

outlined that constraints C2 and C3 do not allow the probability distribution to be independently constructed for each entry

of the random matrices under consideration. Only a global approach can be used to construct the probability distribution of

such random matrices. In particular constraint C2 need to construct the probability density distribution on the set of all the

symmetric positive-definite matrices.

3.2.1 Normalization of random matrices [Mj
red

], [Dj
red

] and [Kj
red

].

Constraint C1 yields

E
{

[Mj
red]

}

= [M j
red] , E

{

[Dj
red]

}

= [Dj
red] , E

{

[Kj
red]

}

= [Kj
red] , (9)

The normalization of random matrices [Mj
red], [Dj

red] and [Kj
red] is constructed for that the mean value of each normalized

random matrix is the unity matrix. Such a construction requires the factorization of the mean matrices. Since the blade with

free coupling interface is considered, mean reduced mass matrix [M j
red] belongs to ✁ +

Na
( ✂ ) while mean reduced stiffness and

mean damping matrices [Kj
red] and [Dj

red] belong to ✁ +0
Na

( ✂ ) due to rigid-body modes. The rank of matrices [Kj
red] and [Dj

red]

is noted N+
a . The Cholesky factorization of matrix [M j

red] is

[M j
red] = [Lj

M ]T [Lj
M ] , (10)
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in which [Lj
M ] is a real Na ×Na upper triangular matrix. Since matrix [Kj

red] is semi-positive definite and diagonal, we have

[Kj
red] = [Lj

K ]T [Lj
K ] , (11)

in which [LK ] is a N+
a × Na real diagonal matrix. Since matrix [Dj

red] is semi-positive definite, we have

[Dj
red] = [Lj

D]T [Lj
D] , (12)

in which [LD] is a N+
a × Na real matrix obtained by solving the spectral problem related to matrix [Dj

red]. Each random

matrix is then written as

[Mj
red] = [Lj

M ]T [Gj
M ] [Lj

M ] , [Dj
red] = [Lj

D]T [Gj
D] [Lj

D] , [Kj
red] = [Lj

K ]T [Gj
K ] [Lj

K ] , (13)

in which [Gj
M ], [Gj

D] and [Gj
K ] are normalized random matrices such that

E
{

[Gj
M ]

}

= [Gj
M ] = [INa

] , E
{

[Gj
D]

}

= [Gj
D] = [IN+

a
] , E

{

[Gj
K ]

}

= [Gj
K ] = [IN+

a
] . (14)

3.2.2 Construction of the probability model of normalized random matrices [Gj
M ], [Gj

D], [Gj
K ]

Constraints C2 and C3 which constitute the second part of the available information is written as

[Mj
red] ∈ ✁ +

Na
( ✂ ) , [Dj

red] ∈ ✁ +0
Na

( ✂ ) , [Kj
red] ∈ ✁ +0

Na
( ✂ ) , (15)

{

[

Q(ω) UΣ(ω) Vi(ω)
]T

, ω ∈ " }
is a second-order stochastic process. (16)

It can be shown [16] that the normalized random reduced matrices have to be such that Eq. (14) holds and such that

[Gj
M ] ∈ ✁ +

Na
( ✂ ) , [Gj

D] ∈ ✁ +

N+
a

( ✂ ) , [Gj
K ] ∈ ✁ +

N+
a

( ✂ ) , (17)

E
{

||[Gj
M ]−1||2F

}

< +∞ , E
{

||[Gj
D]−1||2F

}

< +∞ , E
{

||[Gj
K ]−1||2F

}

< +∞ . (18)

The dispersion level of these three normalized random matrices can be controlled by the positive real parameters δj
M , δj

D, δj
K

defined by

δj
E =







E
{

||[Gj
E ] − [Gj

E ]||2F
}

||[Gj
E ]||2F







1
2

with E = {M, D, K} . (19)

From Eq.(13), it can be deduced that these parameters allow the dispersion level of random matrices [Mj
red], [Dj

red] and [Kj
red]

to be controlled. Below, [G] denotes [Gj
M ], [Gj

D] and [Gj
K ], n denotes Na, N+

a and N+
a and δ denotes δj

M , δj
D and δj

K . Using

the entropy maximization principle with available information defined by Eqs. (14), (17) and (18), it can be proved [15, 16]

that the probability density function of random matrix [G] with respect to the volume element

d̃G = 2n(n−1)/4
∏

16i6j6n

d [G]ij , (20)

is written as

p[G]([G]) = ✝
M

+
n (R)([G]) × CG × (det([G]))(1−δ2)(2δ)−1(n+1) × e−(n+1)(2δ)−1tr([G]) , (21)

where CG is the positive constant such that

CG =
(2π)−n(n−1)/4

(

n+1
2δ2

)n(n+1)(2δ2)−1

∏n
j=1 Γ(n+1

2δ2 + 1−j
2 )

, (22)
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in which Γ(z) is the gamma function defined for all z > 0 by Γ(z) =
∫∞

0 tz−1e−tdt. Equation (21) shows that the entries

[G]jk of random matrix [G] are dependent random variables. The covariance tensor CG
jk,j′k′ = E {([G]jk − [G]jk)([G]j′k′ − [G]j′k′)}

is such that

CG
jk,j′k′ =

δ2

n + 1
{δj′kδjk′ + δjj′δkk′} . (23)

The variance of random variable [G]jk is then given by

V G
jk =

δ2

n + 1
(1 + δjk) . (24)

With the available information defined by Eqs. (14), (17) and (18), and using the entropy maximization principle, it can be

proved that random matrices
{

[Gj
M ], [Gj

D], [Gj
K ], j ∈ {0, . . . , N − 1}

}

are independent.

3.2.3 Algebraic representation of normalized matrices [Gj
M ], [Gj

D], [Gj
K ]

The following algebraic representation of random positive-definite symmetric real matrix [G] allows a procedure for the

Monte Carlo numerical simulation of random matrix [G] to be defined. Random matrix [G] is written as

[G] = [LG]T [LG] , (25)

in which [LG] is an n × n real upper triangular random matrix such that

(1) random variables {[LG]jj′ , j 6 j′} are independent;

(2) for j < j′, real-valued random variable [LG]jj′ can be written as [LG]jj′ = σnUjj′ in which σn = δ(n + 1)−1/2 and

where Ujj′ is a real-valued Gaussian random variable with zero mean and variance equal to 1;

(3) for j = j′, positive-valued random variable [LG]jj can be written as [LG]jj = σn

√

2Vj in which σn is defined above and

where Vj is a positive-valued gamma random variable whose probability density function pVj
(v) with respect to dv is written

as

pVj
(v) = ✝ R+(v)

1

Γ(n+1
2δ2 + 1−j

2 )
v

n+1

2δ2 − 1+j
2 e−v . (26)

4 Mistuning analysis

The first reduction described in Section 2 is only justified by the use of the nonparametric approach and keeps all the physical

DOFs of the disk. A second global reduction is thus necessary in order to accelerate the numerical computations.

4.1 Second modal reduction

We introduce a vector ✞ (ω) such that










Q(ω)

UΣ(ω)

Vi(ω)











= [Ψ] ✞ (ω) , (27)

where the columns of the matrix [Ψ] are the ñ eigenvectors related to the ñ first eigenvalues of the mean generalized eigenvalue

problem related to Eq.(5). It should be noted that these calculations are carried out by using the cyclic symmetry properties.

Premultiplying Eq.(8) by [Ψ]T and using Eq.(27) yields matrix equation

[ ✟ (ω)] ✞ (ω) = ✠ (ω) . (28)

The random vector of the physical DOFs for blade j is then given by




U
j
i (ω)

U
j
Σ(ω)



 = [Hj ]





Qj(ω)

U
j
Σ(ω)



 , (29)
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in which, for blade j, U
j
i (ω) is the ✆ ni-valued random vector of the internal DOFs, U

j
Σ(ω) is the ✆ nΣ-valued random vector

of the coupling interface DOFs and Qj(ω) is the ✆ Na-valued random vector of the generalized coordinates. The stochastic

equation related to Eq. (28) is solved frequency-by-frequency using the Monte Carlo numerical simulation. The two bases

are related to deterministic quantities concerning the mean model. It should be noted that these bases are consistent from

a mathematical point of view for the stochastic system. Concerning the dimension of numerical applications, a stochastic

convergence analysis with respect to the model reduction has to be performed in order to validate the numerical results.

4.2 Random magnification factor

The observation is the random dynamic magnification factor {B(ω), ω ∈ ! } which is the positive real-valued stochastic

process indexed by
!

such that

B(ω) = sup
j∈{0,...,N−1}

Bj(ω) , Bj(ω) =
||Uj(ω)||
||uj ||

∞

, ||uj ||
∞

= sup
ω∈B

||uj(ω)|| , (30)

in which, for blade j, Uj(ω) is the random vector of the physical DOFs and uj(ω) is the mean vector of the physical DOFs.

The random dynamic magnification factor over narrow-frequency band
!

is defined by

B∞ = sup
ω∈B

B(ω) . (31)

The realizations of random observation B∞ are deduced from the Monte Carlo numerical simulations and mathematical

statistics are used for estimating probability quantities related to random variable B∞.

5 Numerical example for a bladed-disk

A simple example is presented in order to illustrate the application of the proposed nonparametric probability model of

random uncertainties.

5.1 Definition of the mean finite element model

The bladed-disk considered (see Fig. 1) is constituted of a disk and 24 blades which are modeled by using linear thin plane

theory in bending mode. The membrane and the bending motions are fully decoupled. We are only interested in the outplane

displacements. The bladed-disk is located in the plane (Ox, Oy) of a cartesian coordinate system. It should be noted that,

in the case of such a rotating structure, the outplane vibration response would not be affected by gyroscopic terms. The disk

is made of a homogeneous and isotropic material with constant thickness 5 × 10−3 m, inner radius 3.5 × 10−2 m, outer

radius 0.1 m, mass density 7860 kg/m3, Poisson ratio 0.25 and Young modulus 1.89 × 1011 N/m2. A Dirichlet condition

is applied along the internal boundary defined by the inner radius. Each blade is made of a homogeneous and isotropic

material with length 7 × 10−2 m, width 8.5 × 10−3 m, linear decreasing thickness from 5 × 10−3 m to 1 × 10−3 m, mass

density 7860 kg/m3, Poisson ratio 0.25 and Young modulus 2× 1011 N/m2. A damping model is added for the bladed-disk,

corresponding to a hysteretic model with a mean loss factor η = 0.0004. The mean finite element model shown in Fig. 1

is constituted of 312 (with 4 nodes) bending plate elements and has 1296 DOFs such that the DOF number of one blade is

na = 36, the DOF number of the disk is nd = 576 and the DOF number of a blade-disk coupling interface is nΣ = 6. Figure 2

displays the eigenfrequencies of the generalized eigenproblem associated with the tuned mechanical system in function of

the circumferential wave number m. A frequency ”veering” can clearly be seen and leads us to choose the frequency band of

analysis
!

= [7040, 7200] Hz corresponding to a circumferential wave number m = 4. A 4 engine order excitation is then

applied to excite the modes of the veering zone. Each blade j is submitted to a unit transverse load vector fj (ω) such that
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fj(ω)k = ✝ B(ω)δk,(2d+1)e
(2iπmj)/N in which m = 4 and where d is the node number of the applied force. Concerning the

nonparametric probability model, it is assumed that δj
M = δj

D = 0 for all the blades (no uncertainty in mass and damping) The

mistuning is introduced by fixing the value δj
K = δK for the blades (uncertainty in stiffness). For the parametric approach,

standard deviation σj
K = σ is deduced from Eq. (41). Let ν = ω/(2π) be the circular frequency associated with angular

frequency ω. As an example, for the nonparametric model with δK = 0.01, Fig. 3 shows the graph of the tuned response

(dashed thick line), the graph of one realization of the random responses of the 24 blades (thin lines) and of its upper bound

(thick line) with respect to frequency band
!

. Figure 4 shows a realization of Bj(ω) for the frequency ν = 7108.9 Hz which

corresponds to the largest amplification that can occur in band
!

. The well known localization phenomenon is exhibited for

blades 11 and 12 for which the largest amplifications is obtained.

5.2 Convergence analysis

A convergence analysis has been carried out. Since the second-order mean convergence yields the convergence in law,

the convergence analysis can be limited to the second-order convergence of the sequence {B(ω0, Ng, ñ)}Ng,ñ of random

variables, that is to say to construct the function (Ng, ñ) 7→ |||B(ω0, Ng, ñ)||| in which ω0 = 2 π ν0 is a fixed frequency and

where

|||B(ω0, Ng, ñ)|||2 = E{B(ω0, Ng, ñ)2}. (32)

This norm is estimated by |||B(ω0, Ng, ñ)||| ≃ Conv(ns, Ng, ñ) in which

Conv(ns, Ng, ñ)2 =
1

ns

ns
∑

i=1

B(ω0, Ng, ñ, θi)
2 , (33)

where θi is realization number i and where ns is the number of realizations used in the Monte Carlo numerical simulation.

Figure 5 shows the graph ns 7→ Conv(ns, Ng, ñ) for several values of the couple (Ng, ñ) and for ν0 = 7108 Hz. A good

convergence is obtained for ns = 1500,Ng = 8 and ñ = 120. These numerical parameters are used for all the computations.

5.3 Comparison with the usual probability parametric approach

In order to give an information on the differences between the nonparametric probabilistic approach and a parametric proba-

bilistic one, a numerical comparison is carried out. We choose as the usual parametric probability model, the Young modulus

uncertainties of the blades which yield the blade eigenfrequencies mistuning. Such an approach leads the random stiffness

matrix to be written as

[Kj ] = (1 + Λj
K) [Kj ] , (34)

where 1 + Λj
K , which is proportional to the Young modulus, is a real-valued random variable whose probability distribution

is uniform with a mean value equal to 1. Its standard deviation σj
K is such that 1 + Λj

K remains positive almost surely. The

random reduced stiffness matrix [Kj,para

red ] related to the parametric probability model of blade j is given by

[Kj,para
red ] = [Lj

K ]T [Gj,para
K ] [Lj

K ] , [Gj,para
K ] = (1 + Λj

K) [IN+
a

] . (35)

From Eqs. (34) and (35), we deduce that

E{[Kj,para

red ]} = [Kj
red] . (36)

Parameter W
j,para

K is then introduced such that

W j,para
K = E{||[Kj,para

red ] − [Kj
red]||2F } ,

= E{||[Lj
K ]T

(

[Gj,para

K ] − [I]
)

[Lj
K ]||2F } . (37)
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This scalar parameter measures the dispersion of random reduced stiffness matrix [Kj,para
red ]. It can easily be seen that W j,para

K

is equal to the sum of the second-order moments of the eigenvalues of the matrix [Lj
K ]T

(

[Gj,para

K ]− [I]
)

[Lj
K ]. Since Λj

K is a

centered random variable and since ||[Kj
red]||2F = tr([Kj

red]
2), Eq. (37) yields

W j,para

K = (σj
K)2 tr([Kj

red]
2) . (38)

In order to establish the comparison between the two probability approaches, the similar parameter W j
K defined by W j

K =

E{||[Lj
K ]T

(

[Gj
K ] − [I]

)

[Lj
K ]||2F } is introduced. Using Eqs. (13), (23) and (24) yields

W j
K =

(δj
K)2

N+
a + 1

(tr([Kj
red])

2 + tr([Kj
red]

2)) , (39)

in which δj
K is the parameter controlling the dispersion of random matrix [Gj

K ]. From Eqs. (9) and (36), we deduce that both

random stiffness matrices [Kj
red] and [Kj,para

red ] have the same mean value,

E{[Kj
red]} = E{[Kj,para

red ]} = [Kj
red] . (40)

For given σj
K , the equation allowing the calculation of δj

K is obtained in writing that W j
K = W j,para

K and yields

(σj
K)2 =

(δj
K)2

N+
a + 1

(

1 +
tr([Kj

red])
2

tr([Kj
red]

2)

)

. (41)

5.4 Probability density function at a given frequency

The objective of this paper being to introduce a new nonparametric probabilistic approach of random uncertainties for blade

mistuning analysis, the presentation is limited to a simple case (it is clear that this method is particularly well adapted

to complex situations). In this condition, the probabilistic approaches are limited to homogeneous stiffness uncertainties

from one blade to another one such that δj
K = δK and σj

K = σK , for all j in {0, . . . , N − 1}. The sensitivity of B(ω0)

at frequency ν0 = 7108 Hz is analyzed with respect to parameter δK . Equation (41) allows δK to be calculated giving

standard deviation σK , such that δK = 0.01 for σK fixed and equal to 0.055. The mistuning analysis is then carried

out for the random magnification factor Bpara(ωpara
0 ) at frequency νpara

0 = 7108.2 Hz defined hereinafter. Frequencies ν0

and νpara
0 are the frequencies for which the extreme values statistics over frequency band

 
are maximum and have been

calculated using the Monte Carlo numerical simulation with 4000 realizations. We are then interested in comparing the density

probability functions pB(ω0)(b, ω0) and pBpara(ωpara

0
)(b, ω

para
0 ). Figure 6 shows the probability density functions pB(ω0)(b, ω0)

and pBpara(ωpara

0
)(b, ω

para
0 ) with ns = 8 500 000 realizations in order to observe the largest amplifications that can occur. The

support of the probability density function of the random magnification factor seems to be upper bounded by a finite value

which is close to 3. This value can be compared to the value (1 +
√

N)/2 ≃ 2.95 proposed by Whitehead [3]. But for other

values of δK , there are frequencies for which the upper bound is greater than 2.95. It is observed that the probability density

function of random magnification factor B(ω0) for the nonparametric probability model differs from the probability density

function of random magnification factor Bpara(ω0) for the parametric one.

5.5 Probability density function over frequency band
 

A mistuning analysis is then carried out for the real positive random variable B∞. Figures 7 to 9 show the probability

density functions b 7→ pB∞
(b) and b 7→ pBpara

∞
(b) of random variables B∞ and Bpara

∞ for ns = 1500 realizations and for

several mistuning rates of the nonparametric model: δK = 0.01, δK = 0.02 and δK = 0.04, corresponding to

σK = 0.0055, σK = 0.011 and σK = 0.022 for the parametric model. Below, P(A) denotes the probability of event A.

Figures 10 to 12 show the corresponding mappings b 7→ P(B∞ > b) and b 7→ P(Bpara
∞ > b) in a logarithmic scale where
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b is a the magnification factor level. The thick (or thin) lines are related to the nonparametric (or parametric) approach.

These probability density functions are different. The maxima of probability density functions pB∞
(b) and pBpara

∞
(b) do not

occur for the same value of b. In particular, for this simple example, it can be seen that the probability density function for

the nonparametric approach is shifted to the right and predicts larger magnification factors than the parametric approach.

Furthermore, although the random uncertainties have the same dispersion level for both probability models, probability

density function pB∞
(b) has a larger dispersion than probability density function pBpara

∞
(b). Consequently, the extreme values

of the random magnification factor are larger for the nonparametric approach. A comparative parametric study with respect to

the mistuning rate is done for both probability models. We are interested in studyingP(B∞ 6 bp) = p andP(Bpara
∞ 6 bp) = p

where bp denotes the maximum magnification level reached with a probability p. In Fig. 13, the thick (or thin) lines represent

δK 7→ bp(δK) for the nonparametric (or parametric) model. The lower, middle and upper curves are related to the probability

level p = 0.05, p = 0.50 and p = 0.95 respectively. For both probability models, the amplification of the forced response

presents a local maximum for a weak mistuning rate. Nevertheless, these local maxima are obtained for different mistuning

rates according to the probability model used. Secondly, the sensitivity of the random magnification factor is analyzed with

respect to the mean loss factor η. For a mistuning rate δK = 0.02, Fig. 14 shows the graph η 7→ E{B∞} (thick line) and

η 7→ E{Bpara
∞ } (thin line). Figure 15 shows the graph η 7→ σB∞

(thick line) and η 7→ σBpara

∞
(thin line).

6 Conclusion

In this paper, a nonparametric probability model of random uncertainties is proposed in order to analyze the mistuned bladed-

disks. By construction, the nonparametric probabilistic approach allows both data uncertainties and model uncertainties

to be taken into account. Since the objective of such a nonparametric approach of random uncertainties is to take into

account the model errors, it is natural that a parameter without direct physical meaning such as δ parameter, appears in the

probability model. In return, such a new parameter has to be identified for such a dynamic system or can be used as a global

parameter to analyze the sensitivity to random data and model uncertainties. With such a nonparametric probability model of

random uncertainties, the random eigenvalues and the associated random eigenvectors of each uncertain blade are statistically

dependent and result from a single random model. In order to validate the proposed probability model, a simple example

is presented, and this model is compared with a usual parametric probability model of random uncertainties. For a given

frequency and for a given narrow frequency band, the numerical comparison carried out for this simple example exhibits

some differences concerning the probability distributions of the random magnification factor.
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Nomenclature

na number of DOFs of a blade

nd number of DOFs of the disk

ni number of internal DOFs of a blade

nΣ number of coupling interface DOFs of a blade

ñ dimension of the second global reduction

q(ω) mean vector of the generalized coordinates for all the blades

qj(ω) mean vector of the generalized coordinates of blade j

u
j
i (ω) mean vector of the internal DOFs of blade j

uΣ(ω) mean vector of the coupling interface DOFs for all the blades

u
j
Σ(ω) mean vector of the coupling interface DOFs of blade j

vi(ω) mean vector of the internal DOFs of the disk

[Ad(ω)] mean dynamic stiffness matrix of the disk

[Aj
red(ω)] mean reduced dynamic stiffness matrix of blade j

[Aj
red(ω)] random reduced dynamic stiffness matrix of blade j

 
frequency band of analysis

Bj(ω) random dynamic magnification factor of blade j

B(ω) random dynamic magnification factor of the blades

B∞ random dynamic magnification factor of the blades and over frequency band
 

[Gj
M ], [Gj

D], [Gj
K ] random normalized mass, damping and stiffness matrices

[G] representing [Gj
M ], [Gj

D], [Gj
K ]

[Hj ] transformation matrix issued from the Craig & Bampton decomposition

[M j
red], [D

j
red], [K

j
red] mean reduced mass, damping and stiffness matrices of blade j

[Mj
red], [D

j
red], [K

j
red] random reduced mass, damping and stiffness matrices of blade j

N number of blades

Ng number of fixed coupling interface modes of the disk

Na rank of the reduced mass matrix of the blade

N+
a rank of the reduced damping and stiffness matrices of the blade

✞ (ω) random vector of the second global generalized coordinates

Q(ω) random vector of the generalized coordinates for all the blades

Qj(ω) random vector of the generalized coordinates of blade j

U
j
i (ω) random vector of the internal DOFs of blade j

UΣ(ω) random vector of the coupling interface DOFs for all the blades

U
j
Σ(ω) random vector of the coupling interface DOFs of blade j

Vi(ω) random vector of the internal DOFs of the disk

δj
M , δj

D, δj
K dispersion parameters related to the random mass, damping, stiffness matrices

δ representing δj
M , δj

D, δj
K

η mean loss factor

ν0 fixed frequency used in the probability nonparametric approach

ω0 representing 2 π ν0

Σj blade-disk coupling interface
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[Ψ] transformation matrix issued from the second global reduction

Ω bladed-disk

Ωd disk

Ωj blade j

[A]T transpose of matrix [A]

tr([A]) trace of matrix [A]

det([A]) determinant of square matrix [A]

||U(ω)|| Hermitian norm of vector U(ω) such that ||U(ω)|| = (U(ω)T U(ω))1/2

||U||∞ Infinity norm of vector U(ω) such that ||U||∞ = supω ||U(ω)||
||[A]||F Frobenius norm of matrix [A] such that ||[A]||F = tr([A][A]T )1/2

[In] n × n identity matrix

E mathematical expectation

✁ +
n ( ✂ ) set of all the positive-definite symmetric n × n real matrices

✁ +0
n ( ✂ ) set of all the positive (semi-positive definite) symmetric n × n real matrices

P(X < x) probability that {X < x }
δij Kronecker symbol such that δij = 1 if i = j and δij = 0 if i 6= j

✝ B(b) indicatrix function on any set B such that ✝ B(b) = 1 if b ∈ B and ✝ B(b) = 0 if b 6∈ B
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Figure 1

Fig. 1. Finite element mesh of the bladed-disk. Input force localization (symbol •)
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Figure 2

Fig. 2. Graph of the eigenfrequencies values (in Hz) of the tuned bladed-disk versus the circumferential wave number m.
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Fig. 3. (1) Displacement forced response (m) of the tuned system with respect to the excitation frequency (Hz): ν 7→ ||ua(ν)||
(thick dashed line). (2) Graph of one realization θ1 of the random displacement forced response (m) with respect to the

excitation frequency (Hz): ν 7→ maxj∈{0,...,N−1} ||Uj(ν, θ1)|| (thick line), ν 7→ ||Uj(ν, θ1)||, j ∈ {0, . . . , N − 1} (thin

lines).
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Fig. 4. Spatial localization: graph of one realization θ1 of magnification factor j 7→ Bj(ν, θ1) for all the blades.
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Fig. 5. Convergence analysis: graph of functions ns 7→ Conv(ns, Ng, ñ) for several values of the couple (Ng, ñ).
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Fig. 06. Comparison of the nonparametric and the parametric models: probability density functions of random magnification

factors B(ω0) and Bpara(ωpara
0 ) in a logarithmic scale: b 7→ pB(ω0)(b, ω0) (thick line), b 7→ pBpara(ωpara

0
)(b, ω

para
0 ) (thin line).
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Fig. 07. Comparison of the nonparametric and the parametric models: graphs of the probability density functions b 7→
pB∞

(b) (thick line) and b 7→ pBpara

∞
(b) (thin line) for δK = 0.01.

21



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

Figure 08

Fig. 08. Comparison of the nonparametric and the parametric models: graphs of the probability density functions b 7→
pB∞

(b) (thick line) and b 7→ pBpara

∞
(b) (thin line) for δK = 0.02.
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Fig. 09. Comparison of the nonparametric and the parametric models: graphs of the probability density functions b 7→
pB∞

(b) (thick line) and b 7→ pBpara

∞
(b) (thin line) for δK = 0.04.
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Fig. 10. Comparison of the nonparametric and the parametric models: graphs of b 7→ P(B∞ > b) (thick line), b 7→
P(Bpara

∞ > b) (thin line) in a logarithmic scale for δK = 0.01.
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Fig. 11. Comparison of the nonparametric and the parametric models: graphs of b 7→ P(B∞ > b) (thick line), b 7→
P(Bpara

∞ > b) (thin line) in a logarithmic scale for δK = 0.02.
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Fig. 12. Comparison of the nonparametric and the parametric models: graphs of b 7→ P(B∞ > b) (thick line), b 7→
P(Bpara

∞ > b) (thin line) in a logarithmic scale for δK = 0.04.
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Fig. 13. Influence of the mistuning rate: graph of δK 7→ bp(δK) such that P(B∞ 6 bp) = p. The thick (or thin) lines are

related to the nonparametric (or parametric) model (the lower, middle and upper curves correspond respectively to p = 0.05,

p = 0.5 and p = 0.95).
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Fig. 14. Influence of the mean loss factor for a mistuning rate δK = 0.02: graphs of η 7→ E{B∞} (thick line), η 7→ E{Bpara
∞ }

(thin line).
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Fig. 15. Influence of the mean loss factor for a mistuning rate δK = 0.02: graphs of η 7→ σB∞
(thick line), η 7→ σBpara

∞
(thin

line).
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