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Abstract

Expectile regression (Newey & Powell 1987) is a nice tool for estimating the condi-

tional expectiles of a response variable given a set of covariates. Expectile regression

at 50% level is the classical conditional mean regression. In many real applications

having multiple expectiles at different levels provides a more complete picture of the

conditional distribution of the response variable. Multiple linear expectile regression

model has been well studied (Newey & Powell 1987, Efron 1991), but it can be too

restrictive for many real applications. In this paper, we derive a regression tree based

gradient boosting estimator for nonparametric multiple expectile regression. The new

estimator, referred to as ER-Boost, is implemented in an R package erboost publicly

available at http://cran.r-project.org/web/packages/erboost/index.html. We

use two homoscedastic/heteroscedastic random-function-generator models in simula-

tion to show the high predictive accuracy of ER-Boost. As an application, we apply

ER-Boost to analyze North Carolina County crime data. From the nonparametric ex-

pectile regression analysis of this dataset, we draw several interesting conclusions that

are consistent with the previous study using the economic model of crime. This real

data example also provides a good demonstration of some nice features of ER-Boost,

such as its ability to handle different types of covariates and its model interpretation

tools.
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1 Introduction

The goal of regression analysis is to gain knowledge about a response variable Y

through a model (parametric or nonparametric) of explanatory variables X. There

are several approaches to regression analysis and modeling. The most commonly used

one is the conditional mean regression, which aims to estimate the optimal predic-

tion function E(Y |X) under the L2 loss. However, in many applications one wants

to know more about the relation between the response and the explanatory vari-

ables besides the conditional mean. Quantile regression (Koenker 2005) is a nice tool

for such a purpose, providing estimates of the conditional quantiles of Y given X.

Koenker & Bassett (1978) showed that one could estimate the conditional α-quantile

by minimizing the empirical check loss. Note that the check loss function is defined as

ψα(t) = |I(t ≤ 0) − α||t|. Following the spirit of quantile regression, Newey & Powell

(1987) considered estimating the conditional expectiles of Y given X. Similar to condi-

tional quantiles, a series of conditional expectiles can summarize the relation between

Y and X. Newey & Powell (1987) showed that one can estimate the conditional ω-

expectile by minimizing the empirical asymmetric least squares (ALS), which has the

expression φ(t | ω) = |I(t ≤ 0) − ω|t2. Many authors studied the connection be-

tween quantile regression and expectile regression (Koenker 1992, 1993, Jones 1994,

Yao & Tong 1996, Efron 1991). It is interesting to observe that quantile regression

includes the conditional median regression as a special case (α = 0.5) and expectile

regression includes the conditional mean regression as a special case (ω = 0.5). Quan-

tile regression and expectile regression have their advantages over each other. Quantile

regression can be more robust to outliers than expectile regression; Newey & Powell

(1987) argued that expectile regression has at least two major advantages over quantile

regression:

(1). it is computationally friendlier. Note that the ALS loss is differentiable every-

where while the check loss is singular at zero.

(2). the calculation of the asymptotic covariance matrix of the multiple linear expectile

regression estimator does not involve calculating the values of the density function

of the errors.
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Because neither approach is uniformly superior, both methods have received a lot of

attention in the literature.

Parametric expectile regression models can be too rigid for real applications. Yao & Tong

(1996) considered the nonparametric expectile regression when the explanatory vari-

able is one-dimensional and proposed local linear regression estimator, for which the

asymptotic normality and the uniform consistency were established. However, the local

fitting approach is not well suited for estimating a nonparametric multiple expectile re-

gression function when the dimension of explanatory variables is more than five. In the

current literature nonparametric multiple expectile regression is understudied, which

motivates us to fulfill this need.

In this paper, we adopt the gradient tree boosting algorithm to derive a fully non-

parametric multiple expectile regression method. Our proposal is motivated by the

proven success of gradient tree boosting for classification and conditional mean regres-

sion problems (Friedman et al. 2000, Friedman 2001). Our proposal has several nice

features. The method can easily handle many types of explanatory variables (numeric,

binary, categorical) and is invariant under monotone transformations of explanatory

variables. The method can easily incorporate complex interactions in the final estima-

tor, reducing the potential modeling bias when interaction terms have non-ignorable

effects. The gradient tree boosting estimator also provides useful model interpretation

tools such as relative variable importance scores and partial dependence plots.

The rest of the paper is organized as follows. In Section 2 we briefly review quantiles

and expectiles. The main methodological development of ER-Boost is presented in

Section 3 where we also discuss some important implementation aspects of ER-Boost.

We use simulation to show the high predictive accuracy of ER-Boost in Section 4. As

an application, we apply ER-Boost to analyze North Carolina crime data in Section 5.

2 Expectiles and Quantiles

Due to the historical reason we first discuss quantile functions. Recall that the α-

quantile of Y given X = x, denoted by qα(x), is defined as

α = P{Y ≤ qα(x) | X = x}. (2.1)

4



Quantile regression is based on the following key observation (Koenker & Bassett 1978)

qα(x) = argmin
f

E{ψ(Y, f | α) | X = x}, (2.2)

where ψ(y, f | α) is the so-called check loss and

ψ(y, f | α) =





(1− α)|y − f | y ≤ f,

α|y − f | y > f.

(2.3)

Consider a random sample of size N , (yi,Xi)1≤i≤N . Then we can derive an estimator

of qα(x) by

q̂α(x) = argmin
f∈F

1

N

N∑

i=1

ψ(yi, f(xi) | α), (2.4)

where F denotes a “parameter space”. For example, in multiple linear quantile regres-

sion, F is the collection of all linear functions of X.

Obviously when α = 0.5, qα(x) is the conditional median and the check loss becomes

the standard least absolute deviation (LAD) loss. We see that, by putting different

weights on the positive and negative residuals, quantile regression can estimate more

than just the median. Following the same spirit of asymmetric weights for positive

and negative residuals, expectile regression uses a different loss function for regression

analysis. Define the asymmetric least squares (ALS) loss as

φ(y, f | ω) =





(1− ω)(y − f)2 y ≤ f,

ω(y − f)2 y > f.

(2.5)

The conditional ω-expectile fω, ω ∈ (0, 1), of Y given X = x can be defined as the

minimizer of the expected loss (Newey & Powell 1987)

fω(x) = argmin
f

E{φ(Y, f | ω) | X = x}. (2.6)

When ω = 0.5, ALS loss reduces to the usual least squares loss and f0.5(x) = E(Y |X =

x). Consider a random sample of size N , (yi, xi)1≤i≤N , expectile regression derives an

estimator of fω(x) by minimizing the empirical ALS loss within a “parameter space”

F :

f̂ω(x) = argmin
f∈F

1

N

N∑

i=1

φ(yi, f(xi) | ω). (2.7)

5



Quantiles and expectiles are different but closely related. Newey & Powell (1987)

pointed out that expectiles are determined by tail expectations while quantiles are de-

termined the distribution function. More specifically, to make (2.6) hold, the expectile

fω(x) must satisfy

ω =
E{|Y − fω(x)|I{Y ≤fω(x)} | X = x}

E{|Y − fω(x)| | X = x}
. (2.8)

For comparison, we can rewrite the quantile function (2.1) as

α =
E{I{Y≤qα(x)} | X = x}

E{1 | X = x}
. (2.9)

There exists a one-one mapping α 7→ ω = ω(α, x) such that fω(α,x)(x) = qα(x), i.e., the

conditional ω(α, x)-expectile equals the conditional α-quantile. Specifically, we have

ω(α, x) =
αqα(x)−

´ qα(x)
−∞ ydGx(y)

2[αqα(x)−
´ qα(x)
−∞ ydGx(y)] + [E(Y | x)− qα(x)]

, (2.10)

where Gx(y) is the conditional CDF of Y given X = x.

To make the connection more interesting, let us consider the canonical nonpara-

metric regression model

Y = m(X) + σ(X) · ǫ, (2.11)

where ǫ is the random error, which is assumed to be independent of X. Now, under

model (2.11) it is easy to see that

qα(x) = m(x) + σ(x)q∗α, fω(x) = m(x) + σ(x)f∗ω, (2.12)

where q∗α and f∗ω are the α-quantile and ω-expectile of ǫ. To match qα(x) and fω(x),

it is necessary and sufficient to choose ω = ω(α) such that f∗ω(α) = q∗α. It is important

to note that under model (2.11) the one-one mapping between expectile and quantile

is independent of X. By (2.10) we have

ω(α) =
αqα −

´ qα
−∞ ǫdG(ǫ)

2[αqα −
´ qα
−∞ ǫdG(ǫ)] + [µ− qα]

, (2.13)

where µ = E(ǫ). For example, if the error distribution is N(0, 1) then

ω(α) =
(2π)−1/2 exp(−q2α/2) + αqα

(2/π)1/2 exp(−q2α/2) + (2α− 1)qα
.

Yao & Tong (1996) discussed the above connection between expectiles and quantiles

under model (2.11). They further developed a local linear estimator of fω(x) when X
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is one-dimensional and established its asymptotic normality. In theory their method

can be extended to higher dimension settings, but in practice it is not easy to do so,

because local regression suffers severely from the so-called “curse-of-dimensionality”.

Alternatively, in this work we introduce a tree-based boosting estimator for multiple

expectile regression.

3 ER-Boost

In this section we develop the gradient tree boosting method for fitting a nonparametric

multiple expectile regression function. We consider minimizing the empirical ALS loss

in (2.7) by doing functional gradient descent in the “parameter space” of regression

trees.

3.1 Algorithm

Boosting (Freund & Schapire 1997, 1996) is one of the most successful machine learn-

ing algorithms applied to both regression and classification problems. Its basic idea

is to combine many prediction models called base learners in a smart way such that

the combined model has a superior prediction performance. The first popular boost-

ing algorithm was AdaBoost (Freund & Schapire 1997, 1996) designed to solve binary

classification problems. Later, Breiman (1998, 1999) revealed that AdaBoost could

be viewed as a functional gradient descent algorithm. Friedman et al. (2000) and

Friedman (2001) further developed gradient boosting algorithms, which naturally ex-

tend AdaBoost to regression problems. In the literature there are many papers on

the numerical and theoretical study of boosting. Due to space limitation we could

not possibly list all the references here. For a nice comprehensive review of boosting

algorithms, we refer interested readers to Bühlmann & Hothorn (2007). In this paper

we adopt the gradient boosting algorithm introduced by Friedman (2001) to estimate

the conditional expectile functions fω(x) defined in (2.6).

Let us start with the observed data {yi, xi}
N
1 . Gradient boosting uses an iterative

procedure to sequentially update the estimator and then stops after a sufficient number
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of iterations. The initial estimate is given by

f̂ [0](x) = argmin
β

1

N

N∑

i=1

φ(yi, β | ω). (3.1)

Write f̂ [m−1](x) as the current fit at the m step of the gradient boosting procedure.

Compute the negative gradient of φ(· | ω) evaluated at f = f̂ [m−1](xi):

u
[m]
i = −

∂φ(yi, f | ω)

∂f

∣∣∣∣∣
f=f̂ [m−1](xi)

(3.2)

=





2(1− ω)(yi − f̂ [m−1](xi)) yi ≤ f̂ [m−1](xi),

2ω(yi − f̂ [m−1](xi)) yi > f̂ [m−1](xi).

(3.3)

Then we find a base learner b(x; â[m]) to approximate the negative gradient vector

(u
[m]
1 , . . . , u

[m]
N ) under a least-squares criterion

α̂
[m] = argmin

a

N∑

i=1

[u
[m]
i − b(xi;a)]

2. (3.4)

Our base learner is an L-terminal regression tree that partitions the explanatory vari-

able space into L disjoint regions Rl, j = 1, 2, . . . , L and predicts a constant hl to each

region. In other words, each base learner has the expression

b(x; α̂[m]) =

L∑

l=1

ū
[m]
l I(x ∈ R

[m]
l ), (3.5)

with parameters α̂[m] = {R
[m]
l , ū

[m]
l }Ll=1. Note that within each region R

[m]
l ,

ū
[m]
l = mean

xi∈R
[m]
l

(u
[m]
i ).

Friedman et al. (2000) proposed a fast top-down “best-fit” algorithm to find the fitted

terminal regions {R
[m]
l }Ll=1. We use the same algorithm in our work to build the tree.

However, in principle any good regression tree building algorithm can be used at this

step.

The next step is to update the current estimate based on the base learner. We

choose a best constant γ
[m]
l to improve the current estimate in region R

[m]
l in the sense

that

γ̂
[m]
l = argmin

γ

1

N

∑

xi∈R
[m]
l

φ(yi, f̂
[m−1](xi) + γ | ω), l = 1, . . . , L. (3.6)
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Algorithm 1 Solving the optimization problem minβ S
−1

∑
i φ(zs, β | ω)

1. Sort {zs}
S
1 increasingly as {z(s)}

S
1 , and let z(0) = −∞, and z(S+1) = ∞.

2. Compute β̂k =
∑

S

s=1(1−ω)z(s)I(s≤k)+ωz(s)I(s≥k+1)
∑

S

s=1(1−ω)I(s≤k)+ωI(s≥k+1)
for k = 0, 1, · · · , S.

3. For k = 0, 1, · · · , S, find the only k∗ that satisfies

z(k∗) ≤ β̂k∗ ≤ z(k∗+1).

4. The minimizer of the problem is β̂k∗ .

Having found the parameters γ
[m]
l , 1 ≤ l ≤ L, we then update the current estimate

f̂ [m−1](x) by

f̂ [m](x) = f̂ [m−1](x) + νγ
[m]
l I(x ∈ R

[m]
l ), for x ∈ R

[m]
l , (3.7)

where 0 < ν ≤ 1 is the shrinkage parameter (Friedman 2001) that controls the learning

rate. Friedman (2001) has found that the shrinkage factor improves estimation.

Finally, we discuss how to carry out the computations in (3.1) and (3.6). Mathe-

matically they are the same optimization problem:

min
β

∑

s

φ(zs, β | ω).

In (3.1) z is the response variable y, while in (3.6) z is the current residual y− f̂ [m−1](x)

evaluated inside region R
[m]
l . The following lemma shows how to calculate the unique

minimizer exactly.

Lemma 1. Given {zs}
S
1 , the unique minimizer of

∑S
s=1 φ(zs, β | ω), denoted by β̂, can

be rigorously calculated using Algorithm 1.

With Lemma 1 and Algorithm 1 we can do all the needed computations for com-

pleting the update in (3.7), a boosting step. The boosting step is repeated M times

and then we report f̂ [M ](x) as the final estimate. In summary, the complete ER-Boost

algorithm for expectile regression is shown in Algorithm 2.

3.2 Implementation

We now discuss some important implementation details of ER-Boost. In principle,

one could use other types of base learners in functional gradient descent to derive a
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boosting algorithm for expectile regression. We prefer regression trees for several good

reasons. First, gradient tree boosting has proven to be very successful for conditional

mean regression. Second, regression trees are invariant under monotone transforma-

tion of explanatory variables and naturally handles all types of explanatory variables.

ER-Boost inherits those nice features. Third, but not last, using L-terminal trees al-

low us to include L − 1 way interactions in the final estimate. This flexibility is very

convenient and important in real applications.

Tuning There are three meta parameters in Algorithm 2: L (the size of the

trees), ν (the shrinkage constant) and M (the number of boosting steps). For mean

regression and logistic regression Friedman (2001) has found that smaller values of

ν result in better predictive accuracy at a cost of large M values and hence more

computing time. Following Friedman (2001) we fix ν as ν = 0.005 throughout. Then

only L and M are to be determined by the data. Selection of L is very important. If

we want to fit an additive model, then we can fix L = 2. Likewise, if we only want to

fit a model with main effects and two-way interactions, we can fix L = 3. However,

in many applications we do not have such prior knowledge or preference about the

underlying model, then we should use data to determine which L value is the best. If

N is reasonably large, we can split the observed data into two parts – training and

validation. For a given L, we run ER-Boost and report the validation ALS loss at each

boosting step

V ALS(L,M) =
∑

validation

φ(yi, f̂
[M ](xi) | ω).

Then we stop ER-Boost when the minimum validation ALS loss is reached, i.e. M∗
L =

argminM V ALS(L,M). If we need to choose L too, then we repeat the process for sev-

eral L (say, L = 2, 3, 4, 5, 6) and report the one with the smallest minimum validation

ALS loss, i.e. L∗ = argminL V ALS(L,M
∗
L).

Measure of relative importance Following Friedman (2001) and Ridgeway

(2007), we define a measure of importance of any explanatory variable Xj for the

ER-Boost model with a combination of M regression trees. Specifically, the relative
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importance Ij of variable Xj is defined as the averaged importance over regression

trees {T1, . . . , TM},

Ij =
1

M

M∑

m=1

Ij(Tm), (3.8)

where Ij(T ) is the importance of variable Xj in tree T . In ER-Boost, each regres-

sion tree is used to fit the gradient under the squared error loss. Thus we follow

Breiman et al. (1984) to define Ij(T ) as

Ij(T ) =

√∑

t

ξ̂2t I(Xj is the splitting variable for node t). (3.9)

Inside the square root is the sum of ξ̂2t over all internal nodes when Xj is chosen as

the splitting variable, and ξ̂2t is the maximal squared error reduction induced by the

partition of the region associated with node t into two sub-regions.

The value Ij alone as a measure of variable importance is not enough. Because even

if there is no correlation between Y andXj , Xj can still be possibly selected as splitting

variable, hence the relative importance of Xj is non-zero by (3.9). Following Breiman

(2001) and Kriegler & Berk (2010), we compute the “relative importance baseline”

for each explanatory variable by re-sampling explanatory variables one at time and

calculating the corresponding relative importance. The following is the procedure for

computing each explanatory variable’s baseline relative importance:

For j = 1, . . . , p, repeat steps 1–4.

1. Randomly re-shuffle the values ofXj while keeping all other explanatory variables’

values unchanged.

2. Fit the ER-Boost model using the modified dataset in step 1 and compute the

relative importance for Xj. The same tuning method is used.

3. Repeat step 1 and 2 for 100 times, each time a relative importance of Xj is

computed from a re-shuffled dataset.

4. Report the averaged relative importance of Xj of 100 repetitions.

Partial dependence plots Using relative importance measure we can rank

explanatory variables. The next natural step is to look at the main effect of each im-

portant variable and their possible significant interactions. For that, Friedman (2001)
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suggested using partial dependence plots. Let XS be the sub-vector of p-dimensional

explanatory variables X, where S ⊂ {1, 2, . . . , p} and S ∪ Sc = {1, 2, . . . , p}. For ex-

ample, for the main effect of variable j S = {j} and for the two-way interaction of

variables i and j S = {i, j}. The partial dependence of f̂(XS) on XS can be estimated

by (Friedman 2001),

f̄(XS) =
1

N

N∑

i=1

f̂(XS , xiSc),

where {xiSc}Ni are values corresponding to XSc in the training data. We plot f̄(XS)

against XS to make the partial dependence plots.

Software We provide an implementation of the ER-Boost algorithm, along with

discussed model interpretation tools, in the R package erboost which is publicly avail-

able at http://cran.r-project.org/web/packages/erboost/index.html.

4 Simulation

In this section we evaluate the performance of ER-Boost by simulation. All numerical

experiments were carried out on an Intel Xeon X5560 (Quad-core 2.8 GHz) processor.

Setting I: Homoscedastic model In the first set of simulations we adopt

the “random function generator” model by Friedman (2001). The idea is to see the

performance of the estimator on a variety of randomly generated targets. We generated

data {yi, xi}
N
1 according to

yi = f(xi) + ǫi,

where ǫis are independent generated from some error distribution. Each of f functions

is randomly generated as a linear combination of functions {gl}
20
1 :

f(x) =

20∑

l=1

algl(zl), (4.1)

where coefficients {al}
20
1 are randomly generated from a uniform distribution al ∼

U[−1, 1]. Each gl(zl) is a function of a randomly selected pl-size subset of the p-

dimensional variable x, where the size of each subset pl is randomly chosen by pl =

12
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Algorithm 2 ER-Boost

1. Initialize f̂ [0](x).

f̂ [0](x) = argmin
β

1

N

N∑

i=1

φ(yi, β | ω).

(Call Algorithm 1 with zi = yi for i = 1, . . . , N .)

2. For m = 1, . . . ,M repeatedly do steps 2.(a)–2.(d)

2.(a) Compute the negative gradient

u
[m]
i =




2(1− ω)(yi − f̂ [m−1](xi)) yi − f̂ [m−1](xi) ≤ 0,

2ω(yi − f̂ [m−1](xi)) yi − f̂ [m−1](xi) > 0.

i = 1, . . . , N.

2.(b) Fit the negative gradient vector u
[m]
1 , . . . , u

[m]
N to x1, . . . , xN by an L-terminal node

regression tree, giving us the partitions {R
[m]
l }Ll=1.

2.(c) Compute the optimal terminal node predictions γ̂
[m]
l for each region R

[m]
l , l =

1, 2, . . . , L.

γ̂
[m]
l = argmin

γ

1

N

∑

xi∈R
[m]
l

φ(yi, f̂
[m−1](xi) + γ | ω).

(Call Algorithm 1 with zi = yi − f̂ [m−1](xi) for {i : xi ∈ R
[m]
l }.)

2.(d) Update f̂ [m](x) for each region R
[m]
l , l = 1, 2, . . . , L.

f̂ [m](x) = f̂ [m−1](x) + νγ
[m]
l I(x ∈ R

[m]
l ), if x ∈ R

[m]
l .

3. Report f̂ [M ](x) as the final estimate.
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min(⌊1.5 + r⌋ , p), and r is generated from an exponential distribution r ∼ Exp(0.5)

with mean 2. Each zl is defined as

zl = {xWl(j)}
pl
j=1, (4.2)

where each Wl is an independent permutation of the integers {1, . . . , p}. Each function

gl(zl) is an pl-dimensional Gaussian function:

gl(zl) = exp

[
−
1

2
(zl − µl)

TVl(zl − µl)

]
, (4.3)

where each of the mean vectors {µl}
20
1 is randomly generated from the same distribution

as that of the input variables x. The pl × pl covariance matrix Vl is also randomly

generated by

Vl = UlDlU
T
l , (4.4)

where Ul is a random orthonormal matrix and Dl = diag{d1l ...dpll}. The variables

djl are randomly generated from a uniform distribution
√
djl ∼ U[0.1, 2.0]. In this

section we generated X from joint normal distribution x ∼ N(0, Ip) with p = 10. We

considered three types of error distribution:

1. Normal distribution ǫ ∼ N(0, 1).

2. Student’s t-distribution with 4 degrees of freedom ǫ ∼ t4.

3. Mixed normal distribution ǫ ∼ 0.9N(0, 1) + 0.1N(1, 5).

Setting II: Heteroscedastic model In the second set of simulations we

modified the “random function generator” model to include heteroscedastic error. Ev-

erything stayed the same except that we generated data {yi}
N
1 according to

yi = f(xi) + |σ(xi)|ǫi,

where both f and σ were independently generated by the random function generator.

We used ER-Boost to estimate the expectile functions at seven levels:

ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.

The shrinkage constant ν is 0.005. For each model we generated three independent

datasets: a training set with N observations for model estimation, a validation set
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with N ′ observations for selecting the optimal (M,L) pair, and a test set with N ′′

observations for evaluating the performance of the final estimate. Following Friedman

(2001) the test error is measured by the mean absolution deviation

MAD =
1

N ′′

N ′′∑

i=1

|fω(xi)− f̂ω(xi)|.

Note that the target function fω(x) is equal to f(x)+bω(ǫ) in the homoscedastic model

and f(x)+|σ(x)|bω(ǫ) in the heteroscedastic model, where bω(ǫ) is the ω-expectile of the

error distribution. See also (2.12). In our study N = 500, N ′ = 200 and N ′′ = 2, 000.

We show box-plots of MADs in Figure 1 and 2 and report the average MADs and

standard errors in Table 1. We can see that the prediction accuracy is very good in all

examples, although the estimation appears to be more difficult in the heteroscedastic

model as expected. Normal and t4 are symmetric distributions. Their prediction MADs

also appear to be symmetric around ω = 0.5 (the conditional mean). However, the

prediction MAD is asymmetric in the skewed mixed-normal distribution case.

We also study the effect of sample size on predictive performance. For this analysis,

we fit the ER-Boost model using various sizes of training sets with N ∈ {400, 800,

1600, 4800} and validation sets with N ′ ∈ {100, 200, 400, 1200}, and evaluate the

performance of the final estimate using an independent test set of size N ′′ = 6, 000.

The models are fitted over a range of values for L ∈ {1, 2, 3, 5, 7, 10} while the

shrinkage constant ν is fixed at 0.005. We then report the minimum predicted ALS

loss achieved by the chosen L and the corresponding optimal choice of M . Since the

results are mostly similar for different simulation settings, here we only show the result

from the heteroscedastic model with mixed-normal distribution defined in Setting II.

As shown in Figure 3, sample size strongly influences predictive performance: large

samples produce models with lower predictive error. Gains in prediction accuracy

from the increased tree size are greater with larger data sets, presumably because

more data contain more detailed information, and larger sized trees can better model

the complexity in that information. Decision stumps (L = 1) always produce higher

predictive error but for small samples there was no advantage and even little sacrifice

in prediction accuracy for using very large trees (higher L).
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Homoscedastic model

ω Normal t4 Mixed-normal

MAD Time MAD Time MAD Time

0.05 0.355 (0.003) 2.86 0.474 (0.006) 2.85 0.361 (0.003) 2.86

0.1 0.334 (0.003) 2.89 0.422 (0.005) 2.89 0.339 (0.003) 2.90

0.25 0.314 (0.002) 2.92 0.369 (0.003) 2.88 0.318 (0.002) 2.91

0.5 0.307 (0.002) 2.89 0.350 (0.003) 2.92 0.312 (0.002) 2.89

0.75 0.315 (0.003) 2.88 0.373 (0.003) 2.88 0.319 (0.002) 2.89

0.9 0.333 (0.003) 2.87 0.427 (0.005) 2.87 0.339 (0.002) 2.87

0.95 0.353 (0.003) 2.89 0.473 (0.006) 2.85 0.360 (0.003) 2.86

Table 1: Setting I, homoscedastic models. The averaged MADs and the corresponding stan-

dard errors based on 200 independent replications. ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.

The corresponding averaged computation times (in seconds) are also reported.

Heteroscedastic model

ω Normal t4 Mixed-normal

MAD Time MAD Time MAD Time

0.05 0.549 (0.007) 2.88 0.774 (0.013) 2.87 0.521 (0.007) 2.86

0.1 0.455 (0.005) 2.96 0.600 (0.010) 2.93 0.431 (0.005) 2.93

0.25 0.359 (0.004) 2.89 0.424 (0.007) 2.90 0.346 (0.005) 2.91

0.5 0.321 (0.004) 2.89 0.363 (0.006) 2.90 0.321 (0.004) 2.89

0.75 0.355 (0.004) 2.88 0.426 (0.007) 2.88 0.373 (0.005) 2.89

0.9 0.450 (0.005) 2.87 0.601 (0.009) 2.90 0.477 (0.006) 2.87

0.95 0.543 (0.007) 2.86 0.773 (0.012) 2.87 0.579 (0.008) 2.87

Table 2: Setting II, heteroscedastic models. The averaged MADs and the corresponding stan-

dard errors based on 200 independent replications. ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.

The corresponding averaged computation times (in seconds) are also reported.
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Figure 1: Setting I, homoscedastic models. Box-plots of MADs for expectiles ω ∈

{0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} based on 200 independent replications. The error dis-

tribution: (a) normal, (b) t4 distribution, (c) mixed normal.
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Figure 2: Setting II, heteroscedastic models. Box-plots of MADs for expectiles ω ∈

{0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} based on 200 independent replications. The error dis-

tribution: (a) normal, (b) t4 distribution, (c) mixed normal.
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Figure 3: Predicted ALS loss as a function of sample size and tree complexity. Models are

fitted on the training sets of 400-4800 observations, and minimum predicted ALS loss is

estimated on an independent test data set of 6000. (a) ω = 0.1, (b) ω = 0.5, (c) ω = 0.9.

5 North Carolina Crime Data

In this section we apply ER-Boost to analyze the North Carolina crime data. In previ-

ous study by Cornwell & Trumbull (1994) and Baltagi (2006) the crime rates (the ratio

of FBI index crimes to county population) of North Carolina counties were related to

a set of explanatory variables, including deterrent variables and variables measuring

returns of legal opportunities, as well as other county characteristics. The dataset

contains 630 records measured over the period 1981-1987 for 90 countries in North

Carolina. Table 3 summarizes 19 explanatory variables for each sample. The economic

model of crime is based on the assumption that individual’s participation in the criminal

sector depends on the relative monetary benefits against the costs the illegal activities

(cf. Becker 1968, Ehrlich 1973, Block & Heineke 1975). Cornwell & Trumbull (1994)

showed both labor market and criminal justice strategies are important in deterring

crimes. The skewed distribution of the crime rate and the presence of county hetero-

geneity in the data shown by previous study (Cornwell & Trumbull 1994) suggest that

by estimating several expectiles—including the conditional mean as one of them—we

could gain more information about the crime rate.
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ID Variables Type Details

1 PA 1 the ratio of arrests to offenses

2 PC 1 the ratio of of convictions to offenses

3 PP 1 the ratio of of prison sentences to offenses

4 S 1 average prison sentence in days

5 POLICE 1 police per capita

6 WCON 2 weekly wage in construction

7 WTUC 2 weekly wage in transportation, utilities, communications

8 WTRD 2 weekly wage in wholesales and retail trade

9 WFIR 2 weekly wage in finance, insurance and real estate

10 WSER 2 weekly wage in service industry

11 WMFG 2 weekly wage in manufacturing

12 WFED 2 weekly wage of federal employees

13 WSTA 2 weekly wage of state employees

14 WLOC 2 weekly wage of local governments employees

15 DENSITY 3 population per square mile

16 PCTMIN 3 percentage minority or non-white

17 PCTYMLE 3 percentage of young males between the ages of 15-24

18 REGION 3 one of ’other’, ’west’ or ’central’

19 URBAN 3 ’yes’ or ’no’ if the county is in the SMSAa

awhether the county is a U.S. metropolitan statistical area and populations

are over 50,000.

Table 3: Explanatory variables in the North Carolina crime data. Type 1, deterrent variables;

Type 2, variables measuring returns of legal opportunities; Type 3, county characteristics.
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Timings: North Carolina Crime Data

ω 0.1 0.25 0.5 0.75 0.9

Time (sec.) 107.48 105.87 108.34 106.93 105.76

Table 4: Timings (in seconds) for conducting five-fold cross-validation and fitting the final

model with conditional expectiles ω ∈ {0.1, 0.25, 0.5, 0.75, 0.9} for the North Carolina crime

data.

We use five-fold cross-validation for choosing the optimal tuning parameters (L,M).

During each fold the data is randomly split into a training set and a validation set with

ratio 4:1. Model building is conducted on the training sets, and the optimal (L,M)

pair is chosen from the model with a minimal cross-validation error. We then fit the

final model with the chosen (L,M) using all of the data. The total computation times

for conducting cross-validation and fitting the final model with conditional expectiles

ω ∈ {0.1, 0.25, 0.5, 0.75, 0.9} are also reported in Table 4.

See section 3.2. Figure 4 shows the five estimated expectiles for 20 randomly chosen

explanatory variables. The varying width of the expectile band across observations

suggests a moderate amount of heteroscedasticity. This figure also suggests that the

conditional distribution of the crime rate tends to be skewed, which is consistent with

the previous study (Cornwell & Trumbull 1994).

Figure 5 shows the relative importance and baseline value of each explanatory

variable for ω ∈ {0.1, 0.5, 0.9}. If the relative importance (the dot) is larger than the

baseline (the line-length), it indicates that the importance of that explanatory variable

is real. We found that for all expectiles, DENSITY, PCTMIN, POLICE, PA and

REGION are the most important explanatory variables and their relative importance

scores are significantly above the corresponding baselines. Interestingly, we find that

the deterrent effect of S is small and insignificant. This result confirms the conclusion

in Cornwell & Trumbull (1994) that the severity of punishment is not effective means

of deterring crime, as opposed to previous studies (cf. Hirsch 1988). It is also notable

that the relative importance of PC and PCTMIN varies across different expectiles: the
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Figure 5: The relative importance and baselines of 19 explanatory variables for the models

with conditional expectiles ω ∈ {0.1, 0.5, 0.9}.

importance of PC is more significant in low-crime-rate counties (ω = 0.1), while the

importance of PCTMIN is more significant in both low-crime-rate (ω = 0.1) and high-

crime-rate (ω = 0.9) counties, but relatively less significant in the moderate-crime-rate

(ω = 0.5) counties.

To visualize the marginal effects of those significant explanatory variables on the

crime rate, in Figure 6 we plot the partial dependence (Friedman 2001) of six ex-

planatory variables, which have the highest relative importance values. In general, the

dependence is more noticeable for the high crime rate case (ω = 0.9) than for the low

crime rate case (ω = 0.1). We see that both PA and PC have deterrent effects on the

crime rate. But when PA passes a threshold 0.54 or when PC passes 1.56, the crime

rate curves become flat, which suggests higher ratio of punishment has little effect on

crime rate once the former reaches a certain level. On the other hand, the partial de-

pendence plots suggest that POLICE, DENSITY and PCTMIN have strong positive

effects on the crime rate. The crime rate is positively associated with POLICE. This

could be explained by the fact that a higher crime rate leads to hiring more policemen

(cf. Cornwell & Trumbull 1994). We see that “central” region has higher crime rate
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Figure 6: Partial dependence plots of crime rate versus 6 most significant explanatory vari-

ables for the models using conditional expectiles ω ∈ {0.1, 0.5, 0.9}.

than “other” region. The partial dependence plots also indicate heteroscedasticity, as

the marginal effects vary across different expectiles.

In our analysis it turned out that the data-driven choice for L is 3, which means

that our ER-boost model has two-way interactions. We found that an important two-

way interaction for ω = 0.1 is PCTMIN×PA. A high PCTMIN and high PA are

accompanied by high crime rate, and low PCTMIN and low PA are related to low

crime rate. There are also strong REGION×POLICE interactions for ω = 0.5 and

0.9. To visualize the marginal effect of two-way interactions we made the joint partial

dependence plots as shown in Figure 7.
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Appendix

Proof of Lemma 1. It is easy to see that φ(· | ω) is strictly convex and continuously

differentiable as a function of β, and it goes to +∞ as β goes to −∞ or ∞. This
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suggests that
∑

s φ(zs, β | ω) has a unique minimizer (either local or global).

With sorted {z(s)}
S
1 and let z(0) = −∞ and z(S+1) = ∞. β̂ must be in [z(k), z(k+1)]

for some k. Then the following equation holds,

∂

∂β

S∑

s=1

φ(z(s), β | ω)

∣∣∣∣
β=βk

=
∂

∂β

{
S∑

s=1

[(1− ω)I(s ≤ k) + ωI(s ≥ k + 1)](z(s) − β)2

}∣∣∣∣∣
β=βk

= 0.

Subsequently β̂ should equal to a certain βk, which is determined by

βk =

∑S
s=1(1− ω)z(s)I(s ≤ k) + ωz(s)I(s ≥ k + 1)
∑S

s=1(1− ω)I(s ≤ k) + ωI(s ≥ k + 1)
.

We use the above formula to compute βk for k = 0, 1, . . . , S and only one of them is β̂.

On the other hand, we note that βk is a local minimizer in [z(k), z(k+1)] and hence the

global minimizer β̂, if and only if βk is located in [z(k), z(k+1)]. This suggests a way for

finding β̂: for k = 0, . . . , S, we check whether βk is located in [z(k), z(k+1)].

Another method for finding β̂ is by directly comparing the objective function eval-

uated at βk for k = 0, 1, . . . , S, and β̂ is the one yielding the smallest value. However,

this method is computationally more expensive than Algorithm 1.
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