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Abstract

New methods for statistical process control are presented, where the inferences have a nonpara­

metric predictive nature. We consider several problems in process control in terms of uncertainties

about future observable random quantities, and we develop inferences for these random quantities

hased on data available in the form of a reference set. We use Hill's assumption A(n), which enables

predietive inferenee while adding only few assumptions to the data observed.

Keywords: Control limits; Exchangeability; Extrema chart; Imprecise probabilities; Precedence

probability; Run length.

1 Introduction

Statistical process control is a topic of major importance, for a good introduction see, for example,

Montgomery [17J. Most research contributions and applications have been based on classical frequen­

tist statistical theory, using parametric models such as the normal distribution. However, there has

also been ample attention to this topic from nonparametric [4J and from Bayesian perspectives [16, 20J.

A wide variety of statistical methods have been suggested and used in this area, some justified

by the contextual relevance, others mostly by available statistical theory. The problem at the heart
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of statistical process control, namely whether or not to stop a process, has a predictive nature. One

would want to interrupt a process if confidence in the quality of the next item, or several next items, is

low. This lack of confidence might occur due to reasons in the process environment, such as observing

a problem with a machine, or it might be based on product measurements, so that measurements

on some recent products might cause you to worry about the quality of the next item. Statistical

process control methods address this second reason for possible doubt in the quality of products, so

the problem is to draw inferences about a future observation, or several future observations, on the

basis of past observations. A Bayesian predictive approach [1:1.] seems attractive, yet this requires

use of a parametric model and a prior distribution. If good reasons exist to use a specific parametric

model to describe the random nature of the measurements, then such an approach could be useful.

However, often such information is not available, and simple parametric models might not fit well with

the observations, suggesting the use of nonparametric methods.

Hill [12, 13] introduced a method for statistical inference that is predictive and nonparametric, and

therefore seems to provide a natural framework for statistical process control. In this approach, only

few assumptions are added to data observed to draw inferences on future observations. We briefly

introduce this method in section 2, calling it 'low structure inference'. The main aim of this paper is

to present some analyses of problems in process control using low structure inference, which we do in

section 3. Some results are identical to those derived by others, from different perspectives, in which

cases we feel that our derivations and interpretations might be attractive. In section 4 we briefly

comment on the important question of when and how to use our method.

It should be emphasized that any nonparametric method for statistical inference relies on the avail­

ability of data, and throughout the paper we assume that a reference set is present. One would expect

this to be a fair representation of observations taken when the process is functioning satisfactorily,

which is often called 'in-control'. Even statistical process control methods that assume parametric

probability distributions, or make use of normal approximations, require input of information to reflect

the in-control situation. For example, Montgomery [17] suggests to base control charts on estimates of

the mean and standard deviation for the characteristic of interest which are based on a sample taken

when the process is considered to be in-control. Montgomery mentions the possibility to update the

reference set regularly, yet it is difficult to provide useful guidelines for this.

Prior to having the observations of the reference set available, it is important to distinguish be­

tween conditional (on these observations) and unconditional inferences. The classical frequentist

approach provides inferences in the form of probabilities prior to getting a reference set, which change

to confidence statements after the reference set has become available. For those without detailed un­

derstanding of foundations of statistics, this might confuse the interpretation of the results, and this

is exactly where the A(n)-based approach makes life less complicated, while remaining a sound and
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valid approach to statistical inference, as Hill [12, 13, 14] showed that the inferences based on A(n)

are valid probability statements, also justified from a Bayesian perspective when treated as posterior

inferences after an actual reference set is available.

2 Low structure inference

Suppose that we have n real-valued observations forming a reference set, ordered as Xl < X2 < ... < Xn .

Throughout this paper, we call the quantities of interest 'observations', but they might for example

also be sample statistics computed from subgroups obtained from a process. For ease of notation,

define ;1:0 = -00 and X n+1 = 00, if the quantities of interest are known to be positive one can define

XQ = 0 instead. In this paper, we assume that with probability one ties do not occur. Our approach

can easily be generalized to the case that ties can occur [13], but notation would become less clear.

The n observations partition the real line into n + 1 intervals I j = (Xj-1, Xj) for j = 1, ... , n + 1. The

assumption A(n) is that a random quantity Xn+i, for i ~ 1, falls into any such interval Ij with equal

probability,

P(Xn+i E Ij) = n: 1 for i ~ 1.

This assumption implies that the rank of X n+i amongst the observed Xl < X2 < .. , < Xn has equal

probability to be any value in {I, ... ,n + I}.

The flituation becomes more complex when we consider m random quantities, say X n+1,· .. , X n +m ,

with m ~ 2, under the assumptions A(n),'" ,A(n+m-1)' because these random quantities are not

conditionally independent given the first n observations. For example, inferences on two future values,

X n+1 and X n+2, based on the first n observations and the assumptions A(n) and A(n+1)' use joint

probabilities (with .1, Ii; = 1, ... ,n + 1)

P(Xn+2 E h IX n+1 E Ij)P(Xn+1 E I j )

{

(11.+1)\11.+2) for k =f j

(11.+1)(11.+2) for k = j.

Now consider the general situation of m future observations, X(n+l) , ... , X(n+m)' Define the random

quantity (for .7 = 1, ... ,n + 1)

Sj = #{Xn+i E I j , i = 1, ... ,m}.

All inferences about the m future observations, based on the assumptions A(n),'" ,A(n+m-1)' use the

probabilities for events {8.j = Sj}, with Sj non-negative integers with 'Lj;;l;! Sj = m. These probabilities

are equal to [10, 12]
11.+1

P( n{Sj = Sj})

j=l
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Note that these probabilities do not depend on the values of Sj, and can be interpreted in terms of

equally likely orderings of all n + m variables, after the first n have been observed and ordered. One

particular case is the event that all m future observations will fall in the same specified interval I l ,

which has probability ( n ~ m ) -1.

Throughout this paper, one should keep in mind that A(nrbased results actually use probabilities

on future observations, for one particular given reference set, and that indeed these are valid probabil­

ity statements. The main difference with classical frequentist methods is that in such methods similar

results are confidence statements with the randomness of selecting one particular reference set taken

into account. Indeed, the work of Hill has shown that our results are valid and coherent probabilities

that can be used in case of complete absence of information of underlying probability distributions or

processes beyond the n available observations in the reference set. We therefore indeed have predic­

tive probabilities, and manipulating these is often more straightforward than dealing with confidence

statements when following the classical approach. We also belief that interpretation of probabilities

is easier than interpretation of confidence results. Nevertheless, as combinatorical computations for

our results often coincide with those for classical frequentist methods, as indicated for some resultR

in section 3, our results could also be interpreted from classical frequentist perspectives, in the same

way as A(n) itself can be interpreted purely frequentistically [11].

Based on only these assumptions A(n),"" A(n+m-l), and observations Xl < .7:2 < ... < X n ,

inferences for any X n+i (i = 1, ... , m) are the same, no matter which future observation is actually

considered. Although not strictly fully implied by these assumptions, this is close in nat.ure to finite

exchangeability of the X n+i (i = 1, ... ,m), which we will actually also assume throughout this paper.

Exchangeability [9] will explicitly be used to derive some results on run length in section 3.

Throughout this paper, whenever we are int.erested in inferences regarding m fut.ure observations,

based on a reference set of size n, we will make the assumptions A(n), ... , A(n+m-1)' as required for our

approach, and exchangeability of the m random quantities Xn+i (i = 1, ... ,m), without mentioning

this repeatedly.

The A(n)-based probabilities can be interpreted both in a frequentist and a Bayesian subjective

manner [14]. The strength of these inferences can best be indicated by citing the final paragraph of

Hill [13]: 'Let me conclude by observing that A(n) is supported by all of the serious approaches to

statistical inference. It is Bayesian, fiducial, and even a confidence/tolerance procedure. It is simple,

coherent and plausible. It can even be argued, I believe, that A(n) constitutes the fundamental solution

to the problem of induction'.
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3 Inference for statistical process control

In this section we suggest some possibilities for use of A(n)-based inference for statistical process

control. First, we focus on inference related to extremes of future observations, discussing possible

use in control charts. Secondly, we consider the run length corresponding to control limits, where a

nice feature is that our results for samples of size one are identical to those derived by Willemain and

Runger [22] via a more classical approach. We also present a generalisation of these results by using

control charts for extrema of samples of size more than one. Thereafter, we present possibilities for

inferences related to changes in a process, and consider the suggested extrema charts a bit further.

Finally, we briefly mention two more results that could be of use in process control situations, namely

the possibility of comparing two independent samples and the use of precedence probabilities.

3.1 Extremes of future observations

It is clear that under the assumption A(n) a single future observation will be smaller than all n

observations so far with probability 1/(n+ 1), with the same probability for it to exceed all n observed

values. Consider two future observations, let us make the appropriate A(n) assumptions as presented

in section 2. For ease of notation write Pj,k = P(Xn+1 E Ij, X n+2 E h). If interest is in the probability

of the event that the minimum of the two future observations will fall in an interval Jz, this is easily

calculated by summing all joint probabilities of the form above for combinations that lead to this

event, so (for l = 1, ... ,n + 1)

P(min(Xn+1 , X n+2 ) E 11) = LPl,k + LPj,1 + Pl,l
k>l j>t

2(n+l-l) 2

= (n + 1)(n + 2) + (n + l)(n + 2)

2 2l
=

n+l - (n+l)(n+2)"

Probabilities for maxima are derived similarly, leading to

2l
P(max(Xn+l' X n+2 ) E It) = (n + 1)(n + 2)"

For m 2: 2 future observations we have

From the ordering interpretation of all n + m variables, it is clear that (for j = 1, ... ,n)

. (m+;-j)
P( mm X n+i > Xj) = (m+n)

l<~<m
- - m

This follows from a direct counting argument: the m future observations should be to the right of Xj, in

irrelevant order with the n - j observed values to the right of Xj. If m is fixed, and j, n tend to infinity
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=

P( min X n+i Ell) =
l:5t:5m

with *--t e, then the limit of P(minl:5i:5m X n+i > Xj) equals (1 - e)m, which is intuitively logical,

and in agreement with results in other concepts of statistical inference. Indeed, one could consider

this eas a parameter related to a very large or infinite hypothetical population, but we do not need

such an assumption as this edoes not play any fundamental role in our inferences, and is unlikely to

be of much practical interest. Remark here, that if we were actually interested in a number of future

observations that becomes extremely large, so tends to infinity, then our necessary A(n) assumptions

and exchangeability become similar to the assumption of infinite exchangeability, which indeed allows

representation as conditionally independent and identically distributed (ciid) random quantities with

a probability distribution with parameter e [9].

The above result leads to (for I = 1, ... ,n + 1, with the convention ( m ~ l ) = 0)

(m+~l+1) _ (m+;:-l)

(m;::n)

n!(m + n -l)!m

(m + n)!(n -I + 1)1'

Similar results for the maximum value of m future observations are based on (for.i = 1, ... ,n)

This equality is again justified by a straightforward counting argument, and a similar limit result

as above is achieved if m is fixed, and j, n tend to infinity with *--t e, in which case the limit of

P(maxI:5i:5m X n+i < Xj) equals em. We now derive (for I = 1, ... ,n + 1)

=

P( max Xn+i < Xl) - P( m.ax Xn+i < :.cl-d
l:5t:5m l:5t:5m

(m~-l) _ (m~-2)

(m;::n)

n!(m + l- 2)!m

(m + n)!(l - I)!'

It is important to consider how these probability distributions for the extremes of m future ob­

servations, over the intervals created by the observations Xl, ... ,Xn in the reference set, can be used

in contexts relevant to statistical process control. A minimum (maximum) of m future observations

which is large (small) relative to the reference set indicates that there may have been a change in

the process. For example, a shift in the process or increased process variation may result in a larger

(smaller) minimum (maximum). The probabilities above can be used to define control limits based

on the reference set, to be used in relation to the minimum or maximum value of m observations. We

consider this, focussing on implications for run lengths, in the next section, after we have looked at

run lengths when considering control limits for single observations (the case m = 1).
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P(R = r) =

3.2 Run length

A topic of interest in statistical process control that clearly has a predictive nature is study of the

random run length of future observations related to a control chart. As before, we assume to have a

reference set of n observations, and use A(ntbased inferences. Willemain and RungeI' [22] study run

lengths from a similar perspective, calling the reference set an 'empirical reference distribution'. In

this section, we derive probabilistic results for the run length if the control limits are set at values

identical to two earlier observations within the reference set.

Let us assume that we set control limits at the values of two observations in the reference set

{Xl, ... , :I:n }, namely such that an interval is formed within the control limits as the union of b of the

n + 1 iutervals I j created by the data. Denote the area between these control limits as B, which is

therefore the union of b intervals I j . Remark that b = n - 1 would provide the widest possible finite

difference between the control limits, with B = (XI,Xn ), When considering one-sided control charts,

we could also consider the case b = n, leading to B being unbounded from either below or above.

Also, we could imagine control charts made up of b intervals Ij that are not all consecutive intervals,

in which case our results would also hold, but this is unlikely to be of practical interest.

We define the run length R as the number of consecutive observations until an observation falls

outside this area B, this includes the observation outside B. According to this definition, R can take

any pm,itive integer value. A run length r 2: 1 occurs if X n+i E B for all i = 1, ... , r - 1, and

X n+r t/: B. The assumptions A(n),'" , A(n+r-l) lead to (for r = 1,2, ... )

b b+1 b+r-2 n+1-b
--x--x ... x x----
n+l n+2 n+r-1 n+r

(b+r-2)! n!

(b
_ )1 x ( )1 x (n - b+ 1).

1 . n +r .

It is interesting to notice that Willemain and RungeI' [22] present a frequentist method which,

although fundamentally different to our method, leads to the same probability distribution for R.

We should remark that, although Willemain and RungeI' define the run length as the number of

observations between alarms, they actually use the same definition as ours, including the observation

outside B in the run length.

The frequentist argument by Willemain and RungeI' [22] which also leads to the above probability

distribution for R is as follows. For specified B, assume that future observations are independent

and identically distributed, conditional on the parameter p which is the probability for each of these

observations to fall in B. Clearly, the run length distribution, for given p, is geometric, so

P(R = 'rip) = p1'-I(1 - p), for r = 1,2,.... Due to the definition of p, if we consider p before

the reference set has actually become available, then a standard result from the theory of order

statistics [18] is that p is a random variable with a beta distribution, with probability density function

proportional to pb-l (1 - p)n-b. To derive the unconditional distribution for R one integrates p out, so
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effectively taking the expectation of P(R = rip) with regard to the beta distribution for p. It should

be remarked that, in nature, this is close to a Bayesian argument if the beta distribution for p were

the posterior distribution for p after observing the reference set, which would be feasible when using

an improper (non-informative) prior distribution for p.

Although our result here coincides with Willemain and Runger's result, there are a few important

differences. Effectively, the link to the Bayesian argument indicated above can be understood from

infinite exchangeability, necessary to derive a probability distribution for R over all positive integers,

using De Finetti's representation theorem [9] which then allows representation in terms of ciid random

quantities, with a distribution function for the model parameter, p in this case. Willemain and

Runger's result effectively uses the same concepts, although it is not explicitly stated that a probability

distribution for a parameter is used. However, to get meaningful probabilities, they must necessarily

make the assumption of independent and identically distributed random quantities. The fact that

we get the same numerical values for run length probabilities is interesting, and perhaps a slight

coincidence, yet pleasing at the same time as there are now three fundamentally different approaches

leading to the same probability distribution for run length in such cases. We strongly feel that our

approach is intuitively attractive, as it appears to be more direct then both the frequentist approach

of Willemain and Runger, and the Bayesian approach described above, both of which use a parametric

distribution and integrate out the parameter.

It might be useful, for example to decide on choices of the size n of the reference set and the

value of b, to consider the expected run length and probabilities for minimal run length. Of course,

these are again the same as those derived by Willemain and Runger [22], namely E(R) = .n~b and

P(R ) (b+r-l)!n! £ 'f ld d I> r = (b-l)!(n+r)! or 1 ~ b :s: n - 1 and r 2: 1. For example, 1 we wou want to Het n an )

such that E(R) 2: 50, these must satisfy b 2: 4ion , so n = 100 and b = 98 would be a possible choice.

We briefly illustrate our probability distribution for the run length in two examples.

Examples run length distribution

Suppose we have n = 4 and b = 2, then the probabilities for R being equal to, say, 1,2,3,4.5, are, ill

that order, 0.6, 0.2, 0.0857, 0.0429, 0.0238, with probability 0.0476 for R exceeding 5. The expected

run length is equal to 2, which in practice is probably considered to be too small. If the process iH

actually in control, one would not want to get a false alarm too often. Even if one setH b = 3, the

expected run length of 4, is very small. To prevent false alarms happening too often, one needs more

information on the production process, which implies that the reference set has to be larger.

For a more interesting example assume that the reference set contains 80 observations, and that we

are interested in B created by taking the control limits equal to the 2nd and 79th ranked observation,

so b = 77. The distribution of the run length is plotted in Figure 3.1, together with the geometric
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distribution with p = 77/80. This geometric distribution corresponds to the situation that the control

limits are set such that the probability that a future observation falls between the control limits is

equal to p = 77/80, assuming that future observations are independent. The distribution of the run

length under the A(n)-assumption has a longer tail than the geometric distribution. Under the A(n)­

assumption, P(R > 100) = 0.037, while for the geometric distribution, P(R > 100lp = 77/80) = 0.022.

The expected run length in both cases is equal to 80/3, implying that if the process is in-control, one

would expect a false alarm for 3 out of 80 future observations. The expected run length could be

increased to 80 by taking the control limits equal to the 1st and 80th observation.

Figure 3.1: Distribution of the run length
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On studying the random run length, we do not necessarily have to restrict attention to control

limits set at values of observations in the reference set. However, if such limits where set at different

values, precise probabilistic results are not possible following our approach, as we do not add any

assumptions on the location of the probability masses l/(n + 1) for the next observation within each

interval rj. We could, however, easily derive bounds for probabilities P(R = r) for any given control

limits, by optimising this probability with regard to the probability masses per interval Ij, for the

intervals that contain the control limits. We do not pursue this further as we regard the above precise

result for P(R = r) to be of main interest.
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It is clear that to get a large expected run length, one needs a large reference set. This is probably

not very realistic, especially if one wants to control a low volume production process. Therefore, next

we consider the possibility of using a control chart based on the extreme(s) of m future observations,

as introduced in section 3.1. Even if one uses the extreme(s) of only two future observations, one can

reduce the size of the reference set considerably, still obtaining a reasonably large expected run length.

In section 3.1 we derived the probability that the minimum (maximum) of m future observations

falls in an interval created by two subsequent observations from the reference set. Suppose that we

want to detect a change in the production process, using a one-sided control chart which gives an out

of control signal if the minimum of a sample of size m is larger than Xb (b = 1, ... ,n), the lyth ordered

observation from the reference set. From section 3.1 we can find that the probability that the first

sample gives an out-of-control signal is equal to

For this scenario, this is the probability that the run length R is equal to 1. Let Ml be the minimum

of the lth sample, i.e. Ml = min(Xn+(I-l)m+l" " ,Xn+lm), for l 2': 1. Then the distribution of the run

length R is given by (for r = 1,2, ... )

P(R = r) P(M1, , Mr- 1 S Xb, Mr > Xb)

= P(M1, , Mr- 2 S Xb, Mr > Xb) - P(M1 , ... ,Mr-2 S Xb, Mr-l' Mr' > :1:b)

= P(M1, , Mr-2 S Xb, Mr- 1 > Xb) - P(M1, •. ·, Mr-2 S :1:b, MI'-I, Mr' > :1:/))

= P(M1, , Mr-3 S Xb, Mr- 2 > Xb) - 2P(M1 , ... , Mr-3 S Xb, Mr- 2 , M,.-l > Xb)

+P(M1, ..• , Mr- 3 S Xb, Mr- 2 , Mr- 1 , Mr > Xb)

~ (r-l) I= L...J l-1 (-I)P(M1, ... ,M1 >Xb)

1=1

~ (r -1) I= L...J l-1 (-1) P(Xn+1, X n+2 , ... , Xn+lm > Xb)

1=1

= t (r-l)(_I)1 n! (n-b+(l+l)m)!.

1=1 l - 1 (n - b)! (n + (l + l)m)!

It should be noted that some of the equalities are justified by the exchangeability assumption for the

future observations, which implies for example that

P(Ml,'" ,Mr -2 S Xb, Mr > Xb) = P(M1 , ... ,Mr- 2 S Xb, Mr-l > Xb)'

We can also again look at the run length from the perspective of classical frequentist theory, as was

used by Willemain and Runger [22] for the case m = 1, by first conditioning the run length on p, the

parameter representing the probability that a future observation exceeds Xb' Then the distribution of
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the run length is given by

P(R = rip) = (1 - (1- p)my-1(1 _ p)m = t (r - 1) (_1)l(1- p)m+l(r-1).

l=l 1 - 1

To derive the distribution of R, we note once more that p is here regarded as a random variable with

a beta distribution, and we can integrate p out, which gives us the same result as above. In this

situation it is fairly easy to calculate the average run length by first taking the expectation conditional

on p, whic..:h is equal to 1j (1 - p) m, and then taking the expectation with regard to p, resulting in

ARL = ER = (n - b - m)! n!
(n - m)! (n - b)!'

where ARL is the abbreviation of Average Run Length. This is, of course, also the expected run length

under the A(ntassumption. Note that ARL reduces to nj(n - b) if m = 1, the expected run length

from the previous section.

For example, to obtain an ARL of about 250 if m = 2, one needs a reference set of size n = 23,

setting the upper control limit at X21. It is clear that using the minimum of two observations instead

of just one observation, the size of the reference set can be reduced considerably, still obtaining a

reasonably large ARL if a process is in-control.

3.3 Changes in a process

In this section we analyse the control chart based on extremes, which we call the extrema chart, in

case the process changes. We look at the distribution of the run length and the expected run length,

corresponding to the results of sections 3.1 and 3.2 based on all the required A(n)-assumptions and

finite exchangeability. Note that the extrema chart is especially useful to detect shifts in the process. It

can also detect changes in the process variation, but charts that use statistics respresenting the process

variation in some way (for example the range of a sample) might be more efficient. We will compare

the extrema chart with the X-chart (which uses the normality assumption), both for a process which

is actually known to be normal and for a process with a non-normal distribution.

First we consider a process which is controlled by looking at a single observation at regular points

in time (m = 1). Suppose that after observing the reference set of size n, a positive shift of size e
occurs in the production process. In our predictive setting, we can denote observations after this shift

has occurred by Y;l+i, which are assumed to be represented as future observations under the A(n)

assumption plus the shift e, so Yn+i = X n+i + e, where probabilities for X n+i on the basis of the given

reference set are as presented in section 2.

After the shift has occurred, an out-of-control signal is given if Yn+i > Xb, or equivalently, if

X n+i > :r:1J - e. If Xb - () is equal to Xk, for a particular 0 < k < b, than the ARL after the process has

shifted is equal to nj(n - k), rather than the in-control ARL of nj(n - b). If we can only determine a
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value k such that Xk-l < Xb - () < Xk, then we cannot determine the ARL exactly, but we know that

it will be between 11,/(11, - k + 1) and 11,/(11, - k).

Willemain and Runger [22J, whose results for m = 1 are equal to ours as discussed in section

3.2, present the ARLs for different shifts based on a particular reference set from a standard normal

distribution. The size of the reference set is 500, and the upper control limit is set at X498, resulting

in an ARL of 250 if the process is in-control. We denote this upper control limit by UCLe . If one

would actually know that, if the process is in-control, the observations are from the standard normal

distribution, then the ARL would also be equal to 250 when using an upper control limit equal to

2.652, the 99.6-percentile of that distribution. We shall denote this latter upper control limit by

UCL.f( = 2.652, as it is the upper control limit of an X-chart with the size of the samples equal to

m=1.

The ARL using UCLe = X498 can be compared to the ARL using UCL.f( = 2.652. Of course, for a

particular reference set the value X498 will not be equal to 2.652, so the ARLs using UCL r, = X498 and

UC L.f( = 2.652 will differ. However, as Willemain and Runger [22} remark, provided that the control

limits are set sufficiently far from the extremes, the sample percentiles converge to the population

percentiles, and hence the ARL using the bth ordered observation from the reference set as upper

control limit will converge to the ARL using the upper control limit based on the normality assumption

as the size of the reference set increases, as long as the in-control process is indeed perfectly modelled

by the standard normal distribution. However, if this is not the case, then the control chart with the

upper control limit based on the normality assumption will no longer assure a prescribed ARL if the

process is in-control, in contrast to the control chart with the upper control limit equal to the bth

ordered observation from the reference set, which would still assure a prescribed ARL.

Next we consider the situation where samples of size m 2: 1 are used to control the process.

Using samples of size 2 or more enables us to set control limits using a smaller reference set, and

results in control charts that detect a shift in the process quicker than a control chart where only

one observation at a time is used. As before, we can obtain the ARL exactly if the process shifts

upwards with a shift () = Xb - Xk. Let M{ be the minimum of the [th sample from the shifted process,

so M{ = min(Yn+(I-l)m+l"'" Yn+lm ). Representing observations from the shifted process again as

Y n +i = Xn+i+(J, we obtain an out-of-control signal at the lth sample if this is the first sample with M{ >

Xb, or equivalently, if sample [ is the first with Ml > Xk, where Ml = min(Xn+(I-l)m+l"" ,Xn+lm )'

This implies an ARL of
(11, - k - m)! n!

(11, - m)! (11, - k)!'

If we can only determine k such that Xb - Xk < (J < Xb - Xk-l, then we have

(n - k - m)! n! < ARL < (11, - k - m + 1)' n!
(11, - m)! (11, - k)! (11, - m)! (11, - k + 1)!
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For a given shift 0, the value of k for which Xb - Xk < 0 < Xb - Xk-l will of course depend on the

actual reference set. Nevertheless, for a given reference set and shift 0, so with nand k known, these

bounds clearly indicate how the ARL depends on the chosen sample size m.

Example average run length

To illustrate how the ARL depends on m, suppose that we have a production process which is con­

trolled by using a one-sided extrema chart to detect a positive shift in a characteristic of interest. We

consider sample sizes m = 1, ... ,5, and we use a reference set of size n = 100. We actually simulated

the reference set from the t(4)-distribution, but do not make any further use of this fact, which fits

nicely with practical situations where no further knowledge of underlying distributions is available.

For each value of m, a value of b is chosen such that the ARL for the in-control process, denoted

by ARL(O), is as close to 100 as possible, with ARL(O) as derived in section 3.2. Table 3.1 gives,

for m = 1, ... ,5, the values of b, Xb, and the corresponding ARL(O). In addition, for shifts 0 = 0.7

and 0 = 1.4 (these are shifts of about half and one standard deviation), Xk-l and Xk are given such

that Xk-l < .'Eb - 0 < ;l:k, together with the corresponding value of k, and finally the lower and upper

bounds for the ARL are given for both these shifts.

Table 8.1: Bounds for ARLs for different sample sizes (example).

m b Xb ARL(O) Xk-l Xk k(0.7) Xk-l Xk k(1.4) ARL(0.7) ARL(1.4)

1 99 4.35 100.0 3.26 3.80 96 2.91 3.26 95 20.0 25.0 16.7 20.0

2 90 2.05 110.0 1.33 1.35 79 0.64 0.68 67 21.4 23.6 8.8 9.4

3 78 1.33 105.0 0.59 0.64 66 -0.08 -0.06 42 24.7 27.0 5.0 5.2

4 67 0.68 95.8 -0.04 -0.00 46 -0.81 -0.60 23 11.5 12.4 2.7 2.9

5 59 0.42 110.5 -0.33 -0.26 35 -1.01 -0.98 20 8.4 9.1 2.9 3.1

Although the in-control ARLs are slightly different, this example gives reasonable insight into the

decrease of the ARLs according to our method with the extrema chart when the sample size m

increases, in case of shifts in the process.

This example is relevant for situations where, for example, once per hour a sample is taken from

a production process and compared to the reference set. To make a choice for the sample size, one

should balance the costs of sampling and the costs related to delayed detection of a shift. For example,

if the costs related to sampling are hardly influenced by the sample size, so sampling 5 units at the

same time is not much more expensive than sampling a single unit, then it is probably better to use

a sample size of 5 instead of just 1, as it will detect a shift earlier. It is important, per value of m,

to compare ARL(O) with ARL(0.7) and ARL(1.4). For m = 5, if there is no shift the ARL is 110.5,

indicating that on average one in 110.5 samples would lead to interruption of the process caused by
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a false alarm. However, a shift of size () = 0.7 would tend to be noticed after a much shorter run

length, with expected value between 8.4 and 9.1. So, if each hour one sample would be taken of size

5, one would expect such a shift to be noticed about 9 hours after it occurred. If m = 1 were used, it

would take on average between 20 and 25 hours to notice a similar shift. The improvement achieved

by larger m-values for a larger shift () = 1.4 are even better in this example.

In practice, one could first get a reference set while the process is in-control, then determine lower

and upper bounds for ARL for different shifts as we did in this example, and then decide how large

m should be for the actual control chart to be used.

3.4 Further consideration of the extrema chart

In this section, we pay a bit more attention to the extrema chart by comparing it to the traditional

X-chart. Again, we consider a situation where we want to detect a positive shift using a one-sided

control chart. In case of the extrema chart, an out-of-control signal is given when the minimum of

a sample of size m is larger than the upper control limit. In case of the X-chart, an out-ot:·control

signal is given when the average of a sample of size m is larger than the upper control limit. The

control limit in the extrema chart is set at Xb, the bth ordered observation from the reference set. III

the X-chart, the upper control limit is set such that the ARL for an in-control process is the same

as for the extrema chart, under the assumption that the process is normally distributed with perfect

knowledge of the mean and variance of the in-control process.

First, we compare the two charts theoretically in the case that the actual productioll process is

normally distributed, with standard deviation equal to 1. The mean is equal to 0 if the process is ill

control. For the extrema chart, the ARL if the process is in control does not depend on the actual

distribution, but on the values of n, band m, and can be derived as in section 3.2. This ARL is the

basis to set the control limit for the X-chart. The control limit for the X-chart is determined such

that if the process is in control, and indeed is normally distributed, the ARL is the same as for the

extrema chart. Now, given the values of n, band m for the extrema chart and the upper control

limit for the X-chart, we compare the ARL of the two charts if a shift occurs. As we actually know

the distribution of the process, we can calculate the ARL for both charts exactly, in the frequentist

context that ARL is the average run length over infinitely many possible reference sets, using the chart

over an infinite time period in which the process is shifted upwards with 0, but otherwise remains the

same. Computation for the extrema chart was performed using that E(Rlp) = 1/(1 - p)m, where p

is the probability that an observation from the shifted process falls outside the control limit Xb, and

then take the expectation over p, having a Beta(b, n - b+ I)-distribution. Note that the results for this

normally distributed process are merely for comparison purposes, and the assumption of normality is

not needed to actualy use the extrema chart.
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In Table 3.2 we give the ARL of the extrema chart for different values of n, band m, and for

different shifts. We compare these with the ARL using the X-chart, also using samples of size m.

Table .'3.2: ARLs for a normally distributed process with shift 8.

(n, b, m) 8: 0.0 0.1 0.2 0.5 1.0 1.5 2.0

(250,249,1) ARL(extr) 250.0 184.0 136.9 59.9 18.5 7.2 3.5

ARL(X) 250.0 186.8 140.8 63.7 20.3 8.0 3.9

(25,23,2) ARL(extr) 300.0 191.1 124.8 40.1 9.4 3.5 1.9

ARL(X) 300.0 197.6 132.5 44.6 10.3 3.6 1.8

(25,20,3) ARL(extr) 230.0 141.0 89.1 26.9 6.2 2.5 1.5

ARL(X) 230.0 140.2 87.9 25.4 5.4 2.0 1.3

(25,15,5) ARL(extr) 210.8 117.7 68.9 18.0 4.0 1.8 1.2

ARL(X) 210.8 112.6 62.9 14.3 2.8 1.3 1.0

(20,12,5) ARL(extr) 276.9 147.8 83.2 19.9 4.2 1.8 1.2

ARL(X) 276.9 145.1 79.5 17.1 3.1 1.3 1.0

From Table 3.2 we can observe that in most cases the X-chart detects a positive shift earlier than

the extrema chart, but the ARLs of both charts are not far apart. If the sample size m is small,

the extrema chart detects a small positive shift a bit quicker than the X-chart does, but again, the

difference in ARL is not large. So, even in the 'ideal' situation that the normality assumption is true,

the performance of the extrema chart is similar to the performance of the X-chart.

Next we compare the extrema chart with the X-chart in case the process follows a t(lO)-distribution,

which has heavier tails than the normal distribution. For the extrema chart we use the same value

for b as before, resuJting in the same ARL as before in case the process is in-control, as in that case

the ARL does not depend on the actual distribution of the process. Again, as the distribution of the

process is assumed to be known, we can calculate the ARL for the extrema chart exactly. For the

X-chart we used simulation, as the distribution of the mean of t-distributed variables is not available

analytically. So the ARL results for the X-chart are actually estimates based on simulation, we give

the standard error for each estimate between brackets.

For the X-chart we use two different upper control limits. The first one is the control limit that

results in an estimated ARL which is the same as the ARL for the extrema chart if the process is

in-control. The results using this control limit can be found in Table 3.3. Remark that in reality

we would not be able to determine such a control limit for the X-chart because the distribution is

unknown. Therefore, we also used the control limit based on the assumption that the process is

normally distributed. As the actual distribution is not normal, this will result in an ARL for an in-
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control process different from the anticipated value (i.e. the ARL for the extrema chart). If the upper

control limit for the X -chart is based on the normality assumption, the ARL for an in-control process

is much smaller than anticipated. For the different combinations of n, band m that we considered,

the ARLs for the in-control process using the X-chart are 158.7, 199.2, 173.5, 170.6 and 218.6. So

the false alarm rate is much larger than anticipated if the actual distribution of the process is t(lO)

rather than normal.

Table 3.3: ARLs for a t(lO)-distributed process with shift 8.

(n, b, m) 0: 0.0 0.1 0.2 0.5 1.0 1.5 2.0

(250,249,1) ARL(extr) 250.0 212.2 179.9 109.4 47.5 20.9 9.5

ARL(X) 250.0 211.0 178.1 106.6 45.3 19.6 9.0

(25,23,2) ARL(extr) 300.0 216.6 156.9 61.5 15.0 4.9 2.3

ARL(X) 299.9 223.6 164.9 73.2 20.1 6.7 2.9

(7.33) (4.72) (2.98) (0.88) (0.12) (0.02) (0.01)

(25,20,3) ARL(extr) 230.0 150.1 99.4 32.0 7.2 2.8 1.6

ARL(X) 230.0 163.2 113.2 40.0 9.0 3.0 1.6

(4.92) (2.94) (1.70) (0.35) (0.04) (<0.01) «0.01)

(25,15,5) ARL(extr) 210.8 121.4 72.5 19.4 4.4 2.0 1.3

ARL(X) 210.8 129.4 80.2 21.6 4.1 1.6 1.1

(4.32) (2.07) (1.70) (0.14) (0.01) «0.01) «OJ)!)

(20,12,5) ARL(extr) 276.9 154.1 89.1 21.8 4.6 2.0 1.3

ARL(X) 276.9 166.4 101.9 25.9 4.6 1.7 1.1

(6.50) (3.03) (1.45) (0.18) (0.01) «0.01) «0.01)

If we use control limits such that both charts have the same ARL if the process is in-control, then

from Table 3.3 we see that there is not much difference in ARL if a shift occurs. The extrema chart

works slightly better in detecting small shifts. Larger shifts are detected earlier by the extrema chart

in case of small sample sizes, but by the X-chart for larger sample sizes, although the difference in

the ARL is not large.

In addition to the t(10)-distribution, we also considered the Gamma(2, I)-distribution. Results

have been derived in a similar way as for the t(lO)-distribution, which can be found in the Table 3.4.
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Table 3.4: ARLs for a Gamma(2, I)-distributed process with shift e.

(n, b, Tn) 8: 0.0 0.1 0.2 0.5 1.0 1.5 2.0

(250,249,1) ARL(extr) 250.0 228.7 209.3 160.4 103.3 66.8 43.4

ARL(X) 250.0 228.8 209.5 160.9 103.9 67.4 44.0

(25,23,2) ARL(extr) 300.0 253.6 214.5 130.3 57.6 26.1 12.2

ARL(X) 299.9 252.9 216.5 140.7 66.2 32.2 16.5

(7.33) (5.64) (4.49) (2.35) (0.76) (0.25) (0.09)

(25,20,3) ARL(extr) 230.0 182.0 144.2 72.5 24.1 8.6 3.4

ARL(X) 230.0 188.2 155.8 86.5 34.2 14.2 6.4

(4.92) (3.64) (2.74) (1.13) (0.28) (0.07) (0.02)

(25,15,5) ARL(extr) 210.8 147.8 104.1 37.6 8.0 2.3 1.2

ARL(X) 210.8 158.8 119.0 51.6 14.8 5.1 2.2

(4.32) (2.82) (1.83) (0.52) (0.08) (0.01) «0.01)

(20,12,5) ARL(extr) 276.9 192.6 134.6 47.4 9.4 2.6 1.2

ARL(X) 276.9 207.6 156.2 68.0 18.9 6.2 2.6

(6.50) (4.22) (2.75) (0.78) (0.11) (0.02) «0.01)

If instead we would use the upper control limit for the X-chart based on the normality assumption,

then the ARL for an in-control process is much smaller than anticipated, even lower than for the

t(lO)-distribution. The ARLs for the values of n, band m in Table 3.4 would be 9.0, 4.7, 2.6, 1.4 and

1.5, resulting in very frequent false alarms. Using control limits that result in the same ARL for an

in-control process, we see that the extrema chart works better than the X-chart, especially for the

sample size m = 5, where the ARL for the X-chart is about twice as large as for the extrema chart

for shifts of one standard deviation and more.

From the results presented here, we see that the extrema chart performs well compared to the

X-chart. The big advantage of the extrema chart over the X-chart is that the ARL for an in-control

process is known. Furthermore, even in the unrealistic situation that the X-chart is used with the

ARL equal to the anticipated value, the extrema chart works just as well in case of small sample sizes.

The ARL for the extrema chart is in many situations smaller than for the X-chart, and only slightly

larger for some large positive shifts.

Example extrema chart

To illustrate the use of the extrema chart, consider a process that has a t(4)-distribution, and while

the process is in-control, 5 samples of size 5 are obtained to set the control limits for both the extrema

chart and the X -chart. After observing the reference set, the process is shifted upwards with a shift of
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size e= 1. Another 10 samples of size 5 are obtained from the shifted process. The control limit for

the extrema chart is set at the 15th observation from the reference set, corresponding to an ARL of

210.8. For the X-chart the control limit is set such that if the process would be normally distributed,

with a mean and standard deviation as estimated from the reference set, then the corresponding ARL

would also be equal to 210.8. In Figure 3.2 we have plotted the minimum and the mean of the samples

in the reference set and of the samples after the process has changed.

Figure 3.2: Control charts based on minimum and mean
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We see that for the samples in the reference set, no out-of-control signal is given by either minimum

or mean. After the shift has occured, an out-of-control signal is given at sample 10 if the extrema

chart is used, while with the X-chart, we have to wait until the twelth sample to get an ont-of-control

signal. It is interesting to note that in sample 12 the extrema chart would not give an out-of-control

signal. Overall in this example, the extrema chart appears to be a bit better than the X-chart in

detecting the shift.

3.5 Some other inferential methods

In this section, we briefly mention a few other inferential methods based on the A(ntassumption that

might be of use in some process control situations.

Coolen [6] shows how two independent samples can be compared using the method of section 2.

Suppose that the ordered observations for the two samples are Xl, ••• , X n (we will refer to this as the
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X-sample) and Y1, . .. Ym (Y-sample), where we assume that n, m 2: 2 and that there are no ties at all,

for convenience of notation. We can compare the two sources, from which these samples were taken,

predictively by comparing future observations X n +1 and Ym +1, based on the two samples and the

assumptions A(n) for the X-sample and A(m) for the Y-sample. We assume that these two sources are

independent, in the sense that any information we learn about one source does not affect our beliefs

about the other source. Denoting, as before, XQ = -00 and X n+1 = 00, we introduce the notation (for

j=l, ... ,n)

tj = #{Yi IXj-1 < Yi < Xj, i = 1, ... ,m},

so tj is the number of observations from the Y -sample in interval Ij, created by the observations from

the X-sample. To compare X n+1 and Ym +1 we can consider the probability P(Xn+1 > Ym+1). On the

basis of the n + m observations, and the assumptions A(n) and A(m), we cannot derive this probability

precisely. Coolen [6] derives the maximum lower bound (P) and minimum upper bound (P) for this

probability under these assumptions as

1 n

(n + l)(m + 1) .f;(n - j + l)tj,

1 ( n.)( )( ) n+m+1+I)n-J+1)tj .
n + 1 m + 1 j=l

These bounds are impr-ecise probabilities in the sense of Walley [21]. Coolen and van der Laan [8]

generalize these results to comparison of more than two samples, which could also playa role in

statistical process control, but we do not consider this any further.

It is interesting to see how such predictive comparison based on two independent samples might

be used for statistical process control. One could, for example, take one sample of products per

day, and compare two days predictively. If there is considerable difference, e.g. in an extreme case

where all X-sample observations are smaller than all Y-sample observations, these bounds will clearly

indicate such a difference via the probabilities for the next observations, e.g. that Ym+1 is very likely

to exceed the X n+1• One could also use a reference set, for example a sample taken under favourable

conditions ('process in-control'), and compare this with a sample taken at a different time, and even

do so repeatedly. One could conclude that the process is out-of-control if the lower or upper bound

is too small or too large, i.e. exceeds some specified lower or upper control limit. Unfortunately,

however, it is difficult to establish control limits for either this lower or upper bound, corresponding

to a prescribed average run length for a process which is in-control. Note that the probability bounds

above are basically rank-based inferences, and they are equivalent to the Wilcoxon rank sum statistic

[15]. It is easy to see that

- n+m+1
P(Xn+1 > Ym+r) = P(Xn+1 > Ym +1) + (n + l)(m + 1)'
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and the Mann-Whitney form of the Wilcoxon statistic is

n m n

U = LL1{xj>Yi} = L#{YiIYi<Xj, i=l, ... ,m}
j=l i=l j=l

n j n

L L tk - 2:(n - j + l)tj = (n + l)(m + 1)P{Xn+1 > Ym+r).

j=l k=l j=l

Alloway and Raghavachari [1] and Pappanastos and Adams [19] discuss control charts based on the

Hodges-Lehmann estimator, which is related to Wilcoxon's rank sum statistic. However, Pappanastos

and Adams conclude that the way in which the control limits are set results in ARLs that are quite

different from the anticipated values.

As these probability bounds are rank-based inferences, they do not use further information on

location from the data. Coolen [6] also briefly presents an alternative method, based on the same

assumptions, but providing bounds on expected value for the next observation. Such inferences could

also be useful for statistical process control, but we do not consider this further.

A different way of predictively comparing two independent samples might also be of interest,

it could be used, for example, to compare aspects of variation. Using the Y-sample awl A(m) for

predictive probabilities for Ym +1 , we can consider bounds of probabilities for the position of Y,n+l with

regard to the X-sample. For example, lower and upper bounds for P{Ym+1 < xr) and P(Y,n+l > xn )

can easily be derived, and if these are particularly large it would reflect that the two samples are

quite different. Of comse, if m is about equal to n, one would expect these probabilities to be close

to l/{n + 1) if the two samples are fairly similar, as this is the value which would have occurred if we

had considered Xn+l instead of Ym +1 .

Another concept that can be used for statistical process control [5] makes use of so-called pr-ecedence

probabilities. Let X(n+k)' for k = 1, ... ,m, denote the k-th ordered value of the future observations

X n+1 ,··. , X n+m· The probability that X(n+k) does not exceed a reference set observation Xb (b =

1, ... , n) is of interest, and is called a precedence probability [2, 3]. Using our method, this probability

is again easily derived using a combinatorial argument and the random quantities Sj as introduced in

section 2:

The probability P ( L ~ = l Sj = l) in this derivation plays a central role, and is effectively identical to a

corresponding result at the heart of a classical frequentist approach to precedence tests (equation (4) in
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Chakraborti and van del' Laan [2]), except that in our A(n)-based framework this is simply a probability

on the future observations for a given reference set, whereas in the approach by Chakraborti and van

del' Laan the probability statement holds before the reference set has actually been observed, and is

considered to be justified in the common frequentist sense of embedding the particular reference set

of interest in an infinite sequence of reference sets that could occur. For both approaches, of course,

this probability is only correct under the assumption that the process is in-control. As the actual

results of these two approaches are identical, our approach can be used for similar inferences using

such precedence probabilities as discussed in more detail by Chakraborti and van del' Laan [2, 3, 5].

Again, the difference in these two approaches is in the ease of dealing throughout with predictive

probabilities in our approach, and the different interpretation of the results.

So far, we have suggested a variety of possible inferences for process control. One obvious possibility

not yet mentioned, and perhaps more suitable for problems in quality control (although the difference

between these terms is sometimes rather vague), is to consider discrete random quantities counting

numbers of successes and failures in batches. Coolen [7] presents a nonparametric predictive approach

to such problems, closely related to the work in this paper, where on the basis of observed numbers of

successes and failures, bounds for probabilities of such numbers in future observations are derived. We

do not consider possible application of such an approach to problems in process control any further

at this stage.

4 Discussion

The methods we have suggested and outlined in this paper can be used in several ways. One could

use them on their own, which especially for inferences which are identical with those based on more

classical llonparametric approaches would appear to be logical and acceptable. However, as only

few assumptions have been made, one might also use our inferences as a sort of baseline method,

next to, for example, inferences based on parametric models. If the overall guidelines to actually

control the processes do not differ too much between the methods, that should give confidence in

the appropriateness of both approaches. If, however, such guidelines are quite different, one may

need to consider the assumptions underlying both approaches more carefully, where the assumptions

underlying parametric models and related inferences might give cause for reconsideration. So, our

method could actually be used to provide further insight into the effect of modelling assumptions in

other approaches.

In section 3 it has been shown that the extrema chart is a useful tool to control a production

process. It has been suggested [17] that practical use of control charts, and related characteristics
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such as the ARL, benefits from regularly updating the reference set and the corresponding control

limits. A topic of interest is study of theoretically justified guidelines for such updating, which could

quite well suggest different frequencies of updating for different types of control charts. We are not

aware of any existing work that explicitly addresses this topic.
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