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Abstract. Nonparametric approaches have recently emerged as a flexible way to model lon-

gitudinal data. This entry reviews some of the common nonparametric approaches to incor-

porate time and other covariate effects for longitudinally observed response data. Smoothing

procedures are invoked to estimate the associated nonparametric functions, but the choice

of smoothers can vary and is often subjective. Both fixed and random effects may be in-

cluded for vector or longitudinal covariates. A closely related type of data is functional data,

where the prevailing approaches to model random effects are through functional principal

components analysis and B-splines. Related semi-parametric regression models also play an

increasingly important role.
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1 Introduction

Longitudinal data involve repeated measurements that are recorded over a period of time

on the same subject. The number of measurements for each subject may be different and

is denoted by ni for the ith subject, and there are a total of n subjects in the study. We

use N =
n∑

i=1
ni to denote the total number of observed measurements on all subjects. The

time points at which those measurements were taken are also often different and denoted

by ti1, · · · , tini . We use Yij = Y (tij) to denote a measurement for the ith subject at the jth

time point, and Yi = (Yi1, · · · , Yini) to denote the observed vector for the ith subject. This

leads to a correlation structure between the repeated measurements within the same subject.

Longitudinal data arise commonly in health sciences and engineering research, but different

terms have been applied to describe them. They are usually referred to as ”longitudinal data”

in biomedical applications, where a small number of repeated measurements, ni, over time

per subject is common, and as ”functional data” in engineering and biological applications,

where ni is often large. Statistical approaches to analyze such data have also been intrinsi-

cally different for longitudinal and functional data. Longitudinal data are treated as vectors,

Yi, with subject specific dimension ni for the i-th subject, while functional data are regarded

as realizations of random processes with smooth paths, Y (t), that are observed at discrete

time points. Parametric GEE-based marginal models and parametric random effects models

(GLMM) are the predominant approaches for longitudinal data, and non- or semi-parametric

approaches are the standard practice to analyze functional data. Recent challenges in the

biomedical and biological fields prompted the development of more complex and flexible ap-

proaches to model longitudinal data. Nonparametric regression, well known to be more data

adaptive and less restrictive than parametric approaches, thus emerged as promising alterna-

tive to handle longitudinal data. For readers searching for such nonparametric approaches in

the literature, a keyword to include is ”functional data” in addition to ”longitudinal data”.

The two books [20] and [21] on functional data analysis provide an excellent introduction to
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this topic.

In this entry, we focus on situations where the responses for the experimental subjects

are longitudinal data. The covariates can be a baseline vector (X), a time-varying covariate

vector (X(tij)) which is longitudinal data itself, or a combination of both. Key issues in non-

parametric regression for such data include inference for the overall mean and nonparametric

fixed effects, and modeling of the within subject covariance structure through nonparametric

random effects. We will use the fecundity data set described in the next section to illustrate

these issues.

We begin with nonparametric mean function estimation, treating the overall mean as

a function on a time interval, [0, T ], over which data were recorded for the subjects. This

overall mean function is assumed to be smoothed and often referred by researchers as the

mean curve.

2 Estimating the Overall Mean as a function of time

We assume that the overall mean function (or mean curve), µ(t) = E(Y (t)), is an unknown

but smooth function on [0, T ]. Hence, E (Yij) = µ(tij). If we ignore for the moment the

within-subject correlations, then the mean function can be regarded as a nonparametric

regression function with the regressor being the time variable. A scatter-plot smoother can

then be applied to all N observed data points (tij , Yij) to estimate the mean function µ(·).
Specifically, the estimate at a particular time t is

µ̂(t) =
n∑

i=1

ni∑

j=1

wijYij . (1)

This is simply a weighted average of all the N measurements, where the weights wij

depend on the design points tij and the particular smoother. The choice of the smoother can

be subjective and common choices include the kernel method ([8]), local polynomials ([6],

[14] and [32]) and splines ([22], [23] and [24]).
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Standard software such as S-plus can be employed easily to obtain a mean function esti-

mate. The only difference with respect to the standard nonparametric regression setting is

that repeated measurements are available for each subject. For this reason, the estimated

mean function in (1) can be expected to be consistent if n tends to infinity, provided the time

points tij are spread out over the design interval [0, T ].

However, standard nonparametric smoothing methods may need to be adjusted for lon-

gitudinal data. An example for such an adjustment is the choice of smoothing (or tuning)

parameter, that is required by all smoothing methods. For the popular cross-validation

method, it was shown in [22] that a leave-one-subject-out scheme should be employed for

longitudinal data rather than the standard leave-one-observation-out scheme. All smoothing

procedures require the proper choice of a tuning parameter. This problem is less understood

and studied in longitudinal settings, and further research is needed.

Example of Reproductive Fecundity Data: We illustrate here the mean function estimate

through a data set collected on 1,000 female Mediterranean fruit flies (medflies) that was

analyzed in [6]. Daily egg production, in terms of the number of eggs laid, were recorded

individually until death for each of the 1,000 female medflies. This results in a sample of

1,000 longitudinally recorded fecundity curve data, with Yij = Number of eggs laid on day j

by fly i. The goal is to explore the reproductive behavior of medflies through the pattern and

modes of variation of these fecundity curves, Y(t). Such information is important because

reproduction is considered by evolutionary biologists as the single most important life history

trait besides lifetime itself. See [6] and the references therein for details and biological features

of the experiment.
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Figure 1: Mean egg-laying curves of 1,000 female Mediterranean fruit flies. (a) daily cross-

sectional means of flies alive at the beginning of the day (circles) (b) smoothed mean curve

with fixed bandwidth b = 15 (dash line) (c) smoothed mean curve with cross-validated

bandwidth choice b = 2.5 (solid line).
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Figure 1 provides the mean function estimates at various bandwidths based on a local

linear scatter-plot smoother. Details of the procedure, including the leave-one-subject-out

cross-validated bandwidth choice are available in [6]. Because of the large number of subjects

(there are 1,000 flies) in the study and the dense recording per subject (repeated measure-

ments were available daily), cross-validation selected a very small bandwidth at 2.5 days. The

mean curve based on the larger bandwidth 15 is smoother but has larger bias than the mean

curve based on the smaller bandwidth 2.5, as is expected for any nonparametric smoothing

procedure.

The smoothing weights for the scatter-plot smoothing procedure in Figure 1 were deter-

mined by the choice of the local linear smoother and the corresponding bandwidths following

the standard practice in nonparametric regression. The within-subject correlation structure

was not incorporated. An intriguing question for longitudinal data is how to effectively ad-

just the weights wij in (1) in the smoothing step to reflect the within- subject correlation

structure of Yi. This was cleverly demonstrated for the case of smoothing splines in [29], and

for local polynomial smoothers in [26] and [27]. It was shown that the asymptotic variance of

the mean function estimators can be minimized if the weights are selected properly. However,

these optimal weights require the use of the true within-subject correlation structure and do

not necessarily minimize the asymptotic bias. The bias issue is more elusive and has not been

resolved.

3 Nonparametric Fixed-effects Covariates

The procedures and discussion in the previous section apply directly to covariates other

than time. To estimate the regression function E(Yi|Xi), corresponding to fixed-effects of

covariates Xi, simply replace in the scatter-plot smoother the tij by Xij for time-varying

covariates, and by Xi for vector covariates. Another framework mimicking the marginal

approach of GEE (Generalized Estimating Equations) can be found in [14], [26], [27] and
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[29]; where E(Yij |Xij) = µij = h(g(Xij)), with h a known and differentiable link function,

and g an unknown smooth function. Here, the covariance structure of the response Yi is

also assumed to be a function of the means µij , as suggested in the generalized linear model

setting. The asymptotic variance of the minimum variance estimate, ĝ(·), was derived in

[29] for smoothing splines and in [27] for local polynomial estimators. Additional results on

semiparametric marginal models are also available in these two papers and [15] and [18].

4 Nonparametric Random-Effects

The overall mean function in Section 2 represents the population average, but individual

trajectories may vary due to subject effects which also contribute to correlated repeated

measurements within the same subject. Subject-specific random-effects can be added for

example by assuming:

Yi(t) = µ(t) + vi(t) + ei(t), i = 1, · · · , n, (2)

where µ is the unknown overall mean function, vi are unknown subject-specific random effects

reflecting the individual variation from the overall mean function, and ei are measurement

errors independent of vi. The random effects are often regarded as realizations of a mean zero

random process with smooth paths. It is thus expected that both the smoothed mean and

random effects functions in (2) can be approximated using some basis functions. A B-spline

basis, such as cubic splines, is a common choice and was proposed independently in [23] and

[24], resulting in the following mixed-effects model:

Yi(t) =
K∑

k=1

βkBk(t) +
K∑

k=1

bkBk(t) + ei(t). (3)

Here βk are coefficients, bk are random variables with mean zero, Bk(·) is a basis of spline

functions on [0, T ], and e(t) is the measurement error. Consequently, the first summand

yields the population mean function and corresponds to a fixed effect, while the second

summand represents the random effects attributed to subject variations and describes the
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within subject correlation structure. It is possible to use separate bases for random and fixed

effects in (3). If we further assume normality for bk and ei, then model (3) becomes a linear

mixed-effects model and thus can be fitted using either S-PLUS LME or SAS PROC MIXED.

This computational advantage is an attractive feature of the B-spline approach. However,

it requires the choice of the spline basis and the number of basis functions K, which in

turn involves fairly complex choices of the number and location of knots. Cross-validation

procedures or information based criteria such AIC and BIC are among the suggestions in [23]

for the choice of knots, but the issue is elusive and remains unsettled.

The B-spline basis approach may have difficulties for a data set that requires a large

number of basis functions. This is because the degrees of freedom involved in (3) may be

too small or even negative for sparse data. One solution is to use instead a local basis such

as local polynomials in model (3) as only a low degree polynomial is needed locally to fit

the data, and often a linear polynomial suffices. This is explored in [32]. The trade-off is

computation time as smoothing is done locally at each point while the B-spline approach is

a global smoothing procedure.

Another remedy for the B-spline procedure is proposed in [10] based on the reduced rank

procedure that involves the use of principal components. This approach aims at reducing the

actual number of parameters needed in the nonparametric mixed-effects model (3) so that

one can increase the degrees of freedom. However, it often involves a compromise in terms

of computational feasibility and model flexibility. An alternative is the principal component

analysis approach, a commonly used method for functional data which can be adapted to

longitudinal data.

Principal Component Analysis Approach

Simply put, this approach just replaces the pre-specified basis Bk in (3) by the eigenfunc-

tions of the covariance operator of the response. This is the essence of principal component

analysis and results in a data-adaptive basis that can effectively reduce the number of basis
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functions needed to model the random effects. They are effective dimension reduction tools

for longitudinal data. The concept is similar to the problem to find the best K-dimensional

linear model for stochastic processes, and has been extended in [4] and [22] to the case of

functional or longitudinal data and termed functional principal components analysis.

Here the response functions Yi(t) are considered realizations of smooth L2-process with

mean µ(t) and covariance function cov(Y (s), Y (t)) = γ(s, t). The covariance function γ allows

a spectral decomposition into orthonormal eigenfunctions ρk(·)

γ(s, t) =
∞∑

k=1

λkρk(s)ρk(t), (4)

with ordered nonnegative eigenvalues λ1 ≥ λ2 ≥ . . . ≥ 0.

Let < ·, · > denote the inner product in L2 space. The Karhunen-Loève representation

for a randomly selected curve is

Y (t) = µ(t) +
∞∑

k=1

Akρk(t), (5)

where the random variables ak correspond to the principal component scores, and are given

by

Ak =< ρk, Y − µ > . (6)

The principal components Ak in (6) are uncorrelated random variables with

E(Ak) = 0, var(Ak) = λk,
∞∑

k=1

λk < ∞,

i.e., the k-th eigenvalue in (4) corresponds to the variance of the k-th principal component

as in the multivariate case. The principal components Ak and basis functions ρk in (5) can

be interpreted as defining the variation of the stochastic process about its mean function,

and A1ρ1 explains the maximum amount of variation in Y among all functions which involve

a single real-valued random variable. Similarly, the function A2ρ2 explains the maximum

additional amount of process variation which is unexplained by A1ρ1, and so forth for k =

3, 4, . . ..
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Methods to estimate the eigenfunctions and principal components are described in [22]

based on smoothing splines. The leave-one-subject-out cross-validation method to select the

number of eigen-basis is also first proposed there. Theoretical properties of the functional

principal components estimates can be found in [19] under the hypothetical assumption that

the entire process Y (t) is observable. Similar theoretical results for another functional prin-

cipal components approach based on kernel smoothers are provided in [2].

Compared to the nonparametric mixed-effects model in (3), functional principal compo-

nent analysis is more data adaptive and therefore typically requires fewer basis functions.

It also has the advantage to allow direct interpretations in terms of modes of variation of

the underlying process and is favored by biologists to explore the covariance structure of

the data. Although functional principal component analysis is not yet available on standard

statistical packages, it is not difficult to write code in either MATLAB or S-PLUS to perform

this analysis.

Example of Fecundity data: To incorporate subject specific random effects of the repro-

duction process of medflies, we perform principal component analysis on the fecundity data.

As in [6], we restricted the analysis to the first 50 days of lifetime due to high variability

of the fecundity curves beyond day 50. This avoids the eigen-analysis being dominated by

erratic tail behavior of the data, and provides more sensible analysis. See [6] for more details.

The rest of the principal component analysis presented below is based on the first 50 days

of daily egg counts for the 167 flies that lived beyond day 50. The egg-laying curves Yi(t),

i = 1, . . . , 167, are considered as realizations of a stochastic process on the interval T = [0, 50].

We applied the eigen-analysis based on local linear smoothing as described in [6]. The

optimal number of principal components based on AIC is 9, but there is little gain after 4

components as these four components explain 95.88% of the total variation of the fecundity

data. The eigen-functions corresponding to the largest four eigen-values of the covariance

function, γ(s, t), are shown in Figure 2. This example demonstrates how principal component

analysis effectively reduces the dimension of the data from an infinite-dimensional curve to a
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Figure 2: First four eigenfunctions for egg-laying data. The fraction of variation explained

by each of these components are: 0.6183, 0.2090, 0.0779, 0.0536 respectively.
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Figure 3: Observed data, predicted egg-laying curves and mean egg-laying curves for four

randomly selected subjects.
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few components. In fact, selecting two components may suffice as they explain already 82%

of the total variation based on Figure 2. To see whether one can reasonably predict the shape

of the fecundity curve using just two principal components, we proceed to fit the fecundity

curves of four randomly selected flies using the Karhunen-Loève representation (5) with two

components.

Figure 3 exhibits the observed and predicted egg-laying profiles of individual flies, as well

as the overall mean curve. The overall mean curve would be the predicted curve when no

random effects are included. As can be seen form Figure 3, the functional PCA approach

seems to fit the curves reasonably well and has much less bias than the overall mean curve. We

have thus demonstrated the effectiveness of the nonparametric principal components analysis

approach for longitudinal data.

Although the fecundity data illustrated here were sampled at the same time points (daily

in this case), the procedure can as well be applied to longitudinal data sampled at irregular

time points.

5 Nonparametric Mixed-Effects Models with Covariates

The procedures in the previous section allow to handle the time effects for a sample of

individuals from the same population. When there are other covariates X that affect the

longitudinal response data, one needs to incorporate these covariate effects in addition to the

time effects. This has been explored for vector covariates in [6] by taking the conditional

expectation with respect to X on both sides of (5). As a result, we have the following model:

E(Yi(t)|Xi) = µ(t) +
∞∑

k=1

E(Aik|Xi)ρk(t). (7)

Procedures to estimate all the components including the mean function, the eigenfunctions

and the conditional principal components E(Aik|(Xi)) can be found in [6], which also includes

a semiparametric index model to tackle situations when the vector X is high dimensional.

It is interesting to note here that the fixed-effect of a covariate in (7) is derived from the
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unconditional principal components Aik and eigenfunctions ρk(t). This is because although

Aik has overall mean zero, the conditional mean E(Aik|Xi) in (7) is not zero and thus

contributes to the fixed-effects. Additional random effects can then be added to the model

through bik = Aik − E(Aik|Xi) to reach the following nonparametric mixed-effects model:

Yi(t) = µ(t) +
∞∑

k=1

E(Aik|Xi)ρk(t) +
∞∑

k=1

bikρk(t).

Other types of mixed-effects functional PCA regression models include [3] and [25], and

more parsimonious semiparametric mixed-effects models in [28] and [33].

6 Other Non- and Semi-parametric Regression Approaches

So far, we discussed briefly a few nonparametric approaches for longitudinal/functional data.

There are many other non- and semiparametric alternatives. One of them is the Generalized

Additive Model (GAM) of the form:

E(Yi(t)) = β0 +
P∑

k=1

gk(Xitk) + ei(t), (8)

where (Yi(t), Xit1, · · · , XitP ) is observed at time t for the ith subject with P -dimensional

covariates denoted by Xitj at time tj . The functions gk in (8) are unknown smooth functions.

Backfitting algorithms were proposed in [1] and [30], and inference procedures studied in [16].

When the data exhibit a common shape or structure, a smooth curve g can be used to

model this common shape with individual responses adjusted by some parametric transfor-

mation of the common curve. This is referred to as self-modelling regression (SEMOR) in

[13] and studied in [12] and [17] among others. A more general semiparametric model which

includes SEMOR is recently proposed in [11].

Another approach which emerged recently to model longitudinal data is the varying-

coefficients model of the form:

Yi(t) = µ(t) +
K∑

k=1

β(t)Xi(t) + ei(t).
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This was first applied to longitudinal data in [9], and subsequently studied in [7], [5] among

others. See the review of this model in [31] for details.
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