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Preface 

Nonparametric regression methods for longitudinal data analysis have been a pop- 

ular statistical research topic since the late 1990s. The needs of longitudinal data 

analysis from biomedical research and other scientific areas along with the recog- 

nition of the limitation of parametric models in practical data analysis have driven 

the development of more innovative nonparametric regression methods. Because of 

the flexibility in the form of regression models, nonparametric modeling approaches 

can play an important role in exploring longitudinal data, just as they have done 

for independent cross-sectional data analysis. Mixed-effects models are powerful 

tools for longitudinal data analysis. Linear mixed-effects models, nonlinear mixed- 

effects models and generalized linear mixed-effects models have been well developed 

to model longitudinal data, in particular, for modeling the correlations and within- 

subjecthetween-subject variations of longitudinal data. The purpose of this book 

is to survey the nonparametric regression techniques for longitudinal data analysis 

which are widely scattered throughout the literature, and more importantly, to sys- 

tematically investigate the incorporation of mixed-effects modeling techniques into 

various nonparametric regression models. 

The focus of this book is on modeling ideas and inference methodologies, al- 

though we also present some theoretical results for the justification of the proposed 

methods. The data analysis examples from biomedical research are used to illustrate 

the methodologies throughout the book. We regard the application of the statistical 

modeling technologies to practical scientific problems as important. In this book, we 

mainly concentrate on the major nonparametric regression and smoothing methods 

including local polynomial, regression spline, smoothing spline and penalized spline 

vii 
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approaches. Linear and nonlinear mixed-effects models are incorporated in these 

smoothing methods to deal with continuous longitudinal data, and generalized linear 

and additive mixed-effects models are coupled with these nonparametric modeling 

techniques to handle discrete longitudinal data. Nonparametric models as well as 

semiparametric and time varying coefficient models are carefully investigated. 

Chapter 1 provides a brief overview of the book chapters, and in particular, presents 

data examples from biomedical research studies which have motivated the use of non- 

parametric regression analysis approaches. Chapters 2 and 3 review mixed-effects 

models and nonparametric regression methods, the two important building blocks 

of the proposed modeling techniques. Chapters 4-7 present the core contents of 

this book with each chapter covering one of the four major nonparametric regression 

methods including local polynomial, regression spline, smoothing spline and penal- 

ized spline. Chapters 8 and 9 extend the modeling techniques in Chapters 4-7 to 

semiparametric and time varying coefficient models for longitudinal data analysis. 

The last chapter, Chapter 10, covers discrete longitudinal data modeling and analysis. 

Most of the contents of this book should be comprehensible to readers with some 

basic statistical training. Advanced mathematics and technical skills are not necessary 

for understanding the key modeling ideas and for applying the analysis methods to 

practical data analysis. The materials in Chapters 1-7 can be used in a lower or 

medium level graduate course in statistics or biostatistics. Chapters 8- 10 can be 

used in a higher level graduate course or as reference materials for those who intend 

to do research in this area. 

We have tried our best to acknowledge the work of many investigators who have 

contributed to the development of the models and methodologies for nonparametric 

regression analysis of longitudinal data. However, it is beyond the scope of this 

project to prepare an exhaustive review of the vast literature in this active research 

field and we regret any oversight or omissions of particular authors or publications. 

We would like to express our sincere thanks to Ms. Jeanne Holden-Wiltse for 

helping us with polishing and editing the manuscript. We are grateful to Ms. Susanne 

Steitz and Mr. Steve Quigley at John Wiley & Sons, Inc. who have made great efforts 

in coordinating the editing, review, and finally the publishing of this book. We 

would like to thank our colleagues, collaborators and friends, Zongwu Cai, Raymond 

Carroll, Jianqing Fan, Kai-Tai Fang, Hua Liang, James S. Marron, Yanqing Sun, 

Yuedong Wang, and Chunming Zhang for their fruitful collaborations and valuable 

inspirations. Thanks also go to Ollivier Hyrien, Hua Liang, Sally Thurston, and 

Naisyin Wang for their review and comments on some chapters of the book. We 

thank our families and loved ones who provided strong support and encouragement 

during the writing process ofthis book. We arc grateful to our teachers and academic 

mentors, Fred W. Huffer, Jinhuai Zhang, Jianqing Fan, Kai-Tai Fang and James S. 

Marron, for guiding us to the beauty of statistical research. J.-T. Zhang also would 

like to acknowledge Professors Zhidong Bai, Louis H. Y. Chen, Kwok Pui Choi and 

Anthony Y. C. Kuk for their support and encouragement. 

Wu’s research was partially supported by grants from the National Institute of 

Allergy and Infectious Diseases, the National Institutes of Health (NIH). Zhang’s 

research was partially supported by the National University of Singapore Academic 
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Guide to Notation 

We use lowercase letters (e.g., a,  z, and a)  to denote scalar quantities, either fixed or 

random. Occasionally, we also use uppercase letters (e.g., X ,  Y) to denote random 

variables. Lowercase bold letters (e.g., x and y) will be used for vectors and uppercase 

bold letters (e.g., A and Y )  will be used for matrices. Any vector is assumed to be a 

column vector. The transposes of a vector x and a matrix X are denoted as x and 

X T  respectively. Thus, a row vector is denoted as x'. 
We use diag(a) to denote a diagonal matrix whose diagonal entries are the entries 

of a, and use diag(A1, . . . , A,) to denote a block diagonal matrix. We use A @ B 
to denote the Kronecker product, (aijB), of two matrices A and B. 

The symbol '%" means "equal by definition". The Lz-norm of a vector x is 

denoted as llxll m. For a function of a scalar 5, f(')(s) 5 d"f(z)/ds' 

denotes the r-th derivative of f(z). The estimator of f("(z) is denoted as f')(x). 

For a longitudinal data set, n denotes the number of subjects, n i denotes the number 

of measurements for the i-th subject, and t ij denotes the design time point for the j-th 

measurement of the i-th subject. The response value, the fixed-effects and random- 

effects covariate vectors at time t i j  are often denoted as g i j ?  xij and zij, respectively. 

We use yi = [g i l t . .  . ,gin,]*, Xi = [xi], 1 . .  , xinilT and Zi = [z i l , .  . . , zinilT 

to denote the response vector, the fixed-effects and random-effects design matrices 

for the i-th subject, and use y = [y?, .. . , y,']', X = [XT,. . . , X:]* and Z = 

diag(Z1,. . . , Z,) to denote the response vector, the fixed-effects and random-effects 

design matrices for the whole data set. We often use a , P  or a(t), f?(t) to denote 

the fixed-effects or fixed-effects functions, and use ai: bi or vi(t), vi(t) to denote the 

xix 
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random-effects or random-effects functions. For the whole longitudinal data set, b 

often means [b:, . . . , b:JT. 



Acronyms 

AIC 

ASE 

BIC 

css 
cv 
df 

GCV 

GEE 

GLME 

GNPM 

GNPME 

GSPM 

GSAME 

LME 

Loglik 

LPK 

LPK-GEE 

Akaike Information Criterion 

Average Squared Error 

Bayesian Information Criterion 

Cubic Smoothing Spline 

Cross-Validation 

Degree of Freedom 

Generalized Cross-Validation 

Generalized Estimating Equation 

Generalized Linear Mixed-Effects 

Generalized Nonparametric Population Mean 

Generalized Nonparametric Mixed-Effects 

Generalized Semiparametric Population Mean 

Generalized Semiparametric Additive Mixed-Effects 

Linear Mixed-Effects 

Log-likelihood 

Local Polynomial Kernel 

Local Polynomial Kernel GEE 

xxi 



xxii Acronyms 

LPME 

MSE 

NLME 

NPM 

NPME 

PCV 

scv 
SPM 

SPME 

TVC 

Local Polynomial Mixed-Effects 

Mean Squared Error 

Nonlinear Mixed-Effects 

Nonparametric Population Mean 

Nonparametric Mixed-Effects 

“Leave-One-Point-Out” Cross-Validation 

“Leave-One-Subject-Out” Cross-Validation 

Semiparametric Population Mean 

Semiparametric Mixed-Effects 

Time-Varying Coefficient 



1 
Introduction 

Longitudinal data such as repeated measurements taken on each of a number of sub- 

jects over time arise frequently from many biomedical and clinical studies as well 

as from other scientific areas. Updated surveys on longitudinal data analysis can be 

found in Demidenko (2004) and Diggle et al. (2002), among others. Parametric 

mixed-effects models are a powerful tool for modeling the relationship between a 

response variable and covariates in longitudinal studies. Linear mixed-effects (LME) 

models and nonlinear mixed-effects (NLME) models are the two most popular ex- 

amples. Several books have been published to summarize the achievements in these 

areas (Jones 1993, Davidian and Giltinan 1995, Vonesh and Chinchilli 1996, Pinheiro 

and Bates 2000, Verbeke and Molenberghs 2000, Diggle et al. 2002, and Demidenko 

2004, among others). However, for many applications, parametric models may be too 

restrictive or limited, and sometimes unavailable at least for preliminary data anal- 

yses. To overcome this difficulty, nonparametric regression techniques have been 

developed for longitudinal data analysis in recent years. This book intends to survey 

the existing methods and introduce newly developed techniques that combine mixed- 

effects modeling ideas and nonparametric regression techniques for longitudinal data 

analysis. 

1 .I MOTIVATING LONGITUDINAL DATA EXAMPLES 

In longitudinal studies, data from individuals are collected repeatedly over time 

whereas cross-sectional studies only obtain one data point from each individual sub- 

ject (i.e., a single time point per subject). Therefore, the key difference between 
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longitudinal and cross-sectional data is that longitudinal data are usually correlated 

within a subject and independent between subjects, while cross-sectional data are 

often independent. 

A challenge for longitudinal data analysis is how to account for within-subject 

correlations. LME and NLME models are powerful tools for handling such a prob- 

lem when proper parametric models are available to relate a longitudinal response 

variable to its covariates. Many real-life data examples have been presented in the 

literature employing LME and NLME modeling techniques (Jones 1993, Davidian 

and Giltinan 1995, Vonesh and Chinchilli 1996, Pinheiro and Bates 2000, Verbeke 

and Molenberghs 2000, Diggle et al. 2002, and Demidenko 2004, among others). 

However, for many other practical data examples, proper parametric models may 

not exist or are difficult to find. Such examples from AIDS clinical trials and other 

biomedical studies will be presented and used throughout this book for illustration 

purposes. In these examples, LME and NLME models are no longer applicable, and 

nonparametric mixed-effects (NPME) modeling techniques, which are the focuses 

of this book, are a natural choice at least at the initial stage of exploratory analy- 

ses. Although the longitudinal data examples in this book are from biomedical and 

clinical studies, the proposed methodologies in this book are also applicable to panel 

data or clustered data from other scientific fields. All the data sets and the corre- 

sponding analysis computer codes in this book are freely accessible at the website: 

http://www. urmc. rochestex edu/smd/biostat/people/faculty/ WuSite/publications. htm. 

1 .I .1 Progesterone Data 

The progesterone data were collected in a study of early pregnancy loss conducted 

by the Institute for Toxicology and Environmental Health at the Reproductive Epi- 

demiology Section of the California Department of Health Services, Berkeley, USA. 

Figures 1.1 and 1.2 show levels of urinary metabolite progesterone over the course 

of the women’s menstrual cycles (days). The observations came from patients with 

healthy reproductive function enrolled in an artificial insemination clinic where in- 

semination attempts were well-timed for each menstrual cycle. The data had been 

aligned by the day of ovulation (Day 0), determined by serum luteinizing hormone, 

and truncated at each end to present curves of equal length. Measurements were 

recorded once per day per cycle from 8 days before the day of ovulation and until 

15 days after the ovulation. A woman may have one or several cycles. The length 

of the observation period is 24 days. Some measurements from some subjects were 

missing due to various reasons. The data set consists of two groups: the conceptive 

progesterone curves (22 menstrual cycles) and the nonconceptive progesterone curves 

(69 menstrual cycles). For more details about this data set, see Yen and Jaffe (1 99 I ) ,  

Brumback and Rice (1 998), and Fan and Zhang (2000), among others. 

Figure 1.1 (a) presents a spaghetti plot for the 22 raw conceptive progesterone 

curves. Dots indicate the level of progesterone observed in each cycle, and are 

connected with straight line segments. The problem of missing values is not serious 

here because each cycle curve has at least 17 out of 24 measurements. Overall, the 

raw curves present a similar pattern: before the ovulation day (Day 0), the raw curves 
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(a) Raw Data 

I 

i5 
4 

P 
8 

0 -  

-I 

-5 - 1 
-5 0 5 10 15 

Day in cycle 

(b) Pointwise Means i 2 STD 

3 7 -  r 1 

+,- 
, 

't- 
/ r 

1: - i - .. 

,L7 G 

I 
15 

-21 . 
-5 0 5 10 

Day in cycle 

Fig. 7.7 The conceptive progesterone data. 

are quite flat, but after the ovulation day, they generally move upward. However, it is 

easy to see that within a cycle curve, the measurements vary around some underlying 

curve which appears to be smooth, and for different cycles, the underlying smooth 

curves are different from each other. Figure 1.1 (b) presents the pointwise means 

(dot-dashed curve) with 95% pointwise standard deviation (SD) band (cross-dashed 

curves). They were obtained in a simple way: at each distinct design time point t ,  
the mean and standard deviation were computed using the cross-sectional data at t .  It 
can be seen that the pointwise mean curve is rather smooth, although it is not difficult 

to discover that there is still some noise appeared in the pointwise mean curve. 

Figure 1.2 (a) presents a spaghetti plot for the 69 raw nonconceptive progesterone 

curves. Compared to the conceptive progesterone curves, these curves behave quite 

similarly before the day of ovulation, but generally show a different trend after the 

ovulation day. It is easy to see that, like the conceptive progesterone curves, the 

underlying individual cycles of the nonconceptive progesterone curves appear to be 

smooth, and so is their underlying mean curve. A naive estimate of the underlying 

mean curve is the pointwise mean curve, shown as dot-dashed curve in Figure 1.2 (b). 

The 95% pointwise SD band (cross-dashed curves) provides a rough estimate for the 

accuracy of the naive estimate. 

The progesterone data have been used for illustrations of nonparametric regres- 

sion methods by several authors. For example, Fan and Zhang (2000) used them 

to illustrate their two-step method for estimating the underlying mean function for 

longitudinal data or functional data, Brumback and Rice (1998) used them to illus- 
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(b) Pointwise Means f 2 STD 

f ig ,  f.2 The nonconceptive progesterone data. 

trate a smoothing spline mixed-effects modeling technique for estimating both mean 

and individual functions, while Wu and Zhang (2002a) used them to illustrate a local 

polynomial mixed-effects modeling approach. 

1.1.2 ACTG 388 Data 

The ACTG 388 data were collected in an AIDS clinical trial study conducted by 

the AIDS Clinical Trials Group (ACTG). This study randomized 5 17 HIV- 1 infected 

patients to three antiviral treatment arms. The data from one treatment arm will be 

used for illustration of the methodologies proposed in this book. This treatment arm 

includes 166 patients treated with highly active antiretroviral therapy (HAART) for 

120 weeks during which CD4 cell counts were monitored at baseline and at weeks 4, 

8, and every 8 weeks thereafter (up to 120 weeks). However, each individual patient 

might not exactly follow the designed schedule formeasurements, and missing clinical 

visits for CD4 cell measurements frequently occurred. CD4 cell count is an important 

marker for assessing immunologic response of an antiviral regimen. Of interest are 

CD4 cell count trajectories over the treatment period for individual patients and for 

the whole treatment arm. More details about this study and scientific findings can be 

found in Fischl et al. (2003) and Park and Wu (2005). 

The CD4 cell count data from the 166 patients during 120 weeks of treatment 

are plotted in Figure 1.3 (a). From this spaghetti plot, it is difficult to capture any 

useful information. It can be seen that the individual CD4 cell counts are quite noisy 
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over time. We usually expect that the CD4 cell counts would increase if the antiviral 

treatment was effective. But from this plot, it is not easy to see any patterns among the 

individual patients’ CD4 counts. Before a parametric model is found to fit this data 

set, we would have to assume that these individual curves are smooth but corrupted 

with noise. 
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Fig. 1.3 The ACTG 388 data. 

Figure 1.3 (b) presents the simple pointwise means (solid curve with dots) of the 

CD4 counts and their 95% pointwise SD band (cross-dashed curves). This jiggly 

connected pointwise mean function shows an upward trend, but it is not smooth, 

although the underlying mean function appears to be smooth. Moreover, the pointwise 

SDs are not always computable, because at some design time points (e.g., the third 

design time point from the right end), only a single cross-sectional data point is 

available. In this case, the pointwise mean is just the cross-sectional measurement 

itself and the pointwise SD is 0, which is not a proper measure for the accuracy of the 

pointwise mean. In the plot, we replaced this 0 standard deviation by the estimated 

standard deviation b of the measurement errors, computed using all the residuals. 

However, this only partially solves the problem. 

Without assuming parametric models for the mean and individual curves for the 

ACTG 388 data, nonparametric modeling techniques are then necessarily involved 

to handle the aforementioned problems. An example is provided by Park and Wu 

(2005), where they employed a kernel-based mixed-effects modeling approach. 
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1.1.3 MACS Data 

Human immune-deficiency virus (HIV) destroys CD4 cells (T-lymphocytes, a vital 

component of the immune system) so that the number or percentage of CD4 cells in the 

blood of a patient will reduce after the subject is infected with HIV. The CD4 cell level 

is one of the important biomarkers to evaluate the disease progression of HIV infected 

subjects. To use the CD4 marker effectively in studies of new antiviral therapies or for 

monitoring the health status of individual subjects, it is important to build statistical 

models for CD4 cell count or percentage. For CD4 cell count, Lange et al. (1992) 

proposed Bayesian models while Zeger and Diggle (1 994) employed a semiparametric 

model, fitted by a backfitting algorithm. For further related references, see Lange et 

a]. (1992). 

A subset of HIV monitoring data from the Multi-center AIDS Cohort Study 

(MACS) contains the HIV status of 283 homosexual men who were infected with 

HIV during the follow-up period between 1984 and 199 1.  Kaslow et al. (1987) 

presented the details for the related design, methods and medical implications of this 

study. The response variable is the CD4 cell percentage of a subject at a number of 

design time points after HIV infection. Three covariates were assessed in this study. 

The first one, “Smoking”, takes the values of 1 or 0, according to whether a subject 

is a smoker or nonsmoker, respectively. The second covariate, “Age”, is the age of 

a subject at the time of HIV infection. The third covariate, “PreCDP, is the last 

measured CD4 cell percentage level prior to HIV infection. All three covariates are 

time-independent and subject-specific. All subjects were scheduled to have clinical 

visits semi-annually for taking the measurements of CD4 cell percentage and other 

clinical status, but many subjects frequently missed their scheduled visits which re- 

sulted in unequal numbers of measurements and different measurement time points 

from different subjects in this longitudinal data set. We plotted the raw data from 

individual subjects and the simple pointwise mean of the data in Figure 1.4. 

The aim of this study is to assess the effects of cigarette smoking, age at sero- 

conversion and baseline CD4 cell percentage on the CD4 cell percentage depletion 

after HIV infection among the homosexual men population. From Figure 1.4, we can 

see that there was a trend of CD4 cell percentage depletion although the pointwise 

mean curve does not provide a good smooth estimate for this trend. Thus, a nonpara- 

metric modeling approach is required to characterize the CD4 cell depletion trend 

and to correlate this trend to the aforementioned covariates. In fact, Zeger and Diggle 

(1994), Wu and Chiang (2000), Fan and Zhang (2000), Rice and Wu (2001), Huang, 

Wu and Zhou (2002), among others have applied various nonparametric regression 

methods including time varying coefficient models to this data set. Similarly, we 

will use this data set to illustrate the proposed nonparametric regression models and 

smoothing methods in the succeeding chapters. 


