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Abstract

New non-parametric regression procedures called BSML (Basis Selection from Mul-

tiple Libraries) are proposed in this paper for estimating a complex function by a lin-

ear combination of basis functions adaptively selected from multiple libraries. Different

classes of basis functions are chosen to model various features of the function, e.g. trun-

cated constants can model change points in the function, while polynomial spline rep-

resenters may be used to model smooth components. The generalized cross-validation

and covariance inflation criteria are used to balance goodness-of-fit and model complex-

ity where the model complexity is estimated adaptively by either the generalized de-

grees of freedom or covariance penalty. The cross-validation method is also considered

for model selection. Spatially adaptive regression and model selection in multivariate

non-parametric regression will be used to illustrate the flexibility and efficiency of the

BSML procedures. Extensive simulations show that the BSML procedures are more

adaptive than some well-known existing non-parametric regression methods. Anal-

yses of real data sets are used to illustrate the BSML procedures. This article has

supplementary materials online.
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1 Introduction

Consider the non-parametric regression model

yi = f(xi) + ǫi, ǫi
iid
∼ N(0, σ2), i = 1, . . . , n, (1)

where xi’s are design points on an arbitrary domain X . Our goal is to estimate the unknown

function f . For an introduction to this vast field, see Hastie and Tibshirani (1990), Wahba

(1990), Green and Silverman (1994), Gu (2002), Fan and Gijbels (1996), Ruppert, Wand

and Carroll (2003) and Wang (2011), among others.

In this article we assume that f can be approximated well by a linear combination of basis

functions. The term “basis” is used loosely in this paper to represent a collection of func-

tions which may be used to capture certain features (signals) in the function f , where this

collection of functions may or may not constitute a basis of a functional space. Two key in-

gredients in non-parametric modeling are the choice of basis functions and a model selection

procedure that selects basis functions and/or controls the balance between goodness-of-fit

and model complexity. There are many choices for the family of basis functions includ-

ing Fourier, spline, radial and wavelet bases to name only a few (see Chapter 5 of Hastie,

Tibshirani and Friedman (2009)). Within each family, there are many choices for the type

of basis, e.g. B-splines, truncated polynomials and reproducing kernel representers for the

spline family. Within each type, there are many choices for the order of basis, such as lin-

ear, cubic or quintic for polynomial splines. Ideally, a basis should be chosen to achieve an

excellent approximation with a small number of basis functions. However, basis function fam-

ilies/types/orders differ in their global and local adaptivity. Different families/types/orders

may be best suited for different parts (or components) of the target function. A universally

best basis does not exist.

In this article we propose a new non-parametric regression method called Basis Selection

from Multiple Libraries (BSML), with two variants known as BSML-C (BSML with combined

libraries) and BSML-S (BSML with separate libraries). Non-parametric regression is usually

constructed using only one class of basis functions (e.g. cubic spline). Progress has been made

to obtain sparse representations using multiple classes of basis functions in signal processing

and function estimation (see for example Tropp (2004) and Gribonval and Nielsen (2003)).
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To our knowledge, fusion among different classes of basis functions has not been studied

extensively in the context of non-parametric regression. Substantial open research questions

remain in this context, especially when fusing substantially different classes of basis functions.

Our goal is to develop more adaptive non-parametric methods by data-driven selection of

basis functions from different classes of basis functions, with the classes potentially differing

in their smoothness and other properties.

Unlike the case of a single basis family where the representation usually is unique, finding

the “best” approximation with multiple libraries and noisy data is a challenging problem.

The näıve adoptions of greedy search (Luo and Wahba 1997) and basis pursuit (Chen,

Donoho and Saunders 2001) may not work well. We develop the BSML adaptive basis se-

lection methods based on adaptively estimated model complexities. These BSML-C and

BSML-S methods are general in the sense that they can be applied to any generic libraries

of candidate bases. We illustrate the flexibility and efficiency of the BSML procedures using

two interesting applications: spatially adaptive regression, and model selection in multivari-

ate non-parametric regression. Extensive simulations show that the BSML method is more

adaptive when compared with Hybrid Adaptive Splines (HAS), Multivariate Adaptive Re-

gression Splines (MARS), COmponent Selection and Selection Operator (COSSO) and L1

norm based procedures.

The outline of the paper is as follows. Section 2 presents the general BSML procedure.

Sections 3 and 4 present applications of the BSML methodology to spatial adaptive regression

and multivariate regression. Section 5 provides a summary and further discussion.

2 Basis Selection from Multiple Libraries

The basic idea behind the BSML methodology is to explore the advantage of multiple li-

braries of basis functions using advanced model selection methods. The resulting BSML

procedures advance both key ingredients in non-parametric modeling by incorporating more

comprehensive basis functions as well as more adaptive model selection procedures.

2.1 Approximating the Function Using Multiple Libraries

A limitation of most existing adaptive non-parametric regression procedures is their use of

a single class of basis functions. A truly flexible procedure should be able to choose from a

variety of basis functions of different constructions to model complex features of a regression

function.
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Let L0 = {φ1, . . . , φm}, Ll = {ψl,1, . . . , ψl,nl
}, l = 1, . . . , L, be L + 1 libraries of basis

functions. Each library consists of basis functions with similar properties. Otherwise, there

is no limitation on the number of libraries and the elements of each library. There may be

different families of basis functions for each Ll: e.g. Fourier, wavelets or smoothing spline.

There may be different types of basis functions for each Ll: e.g. B-spline, truncated poly-

nomial or reproducing kernel representer. There may be different orders of basis functions

for each Ll: e.g. linear, cubic or quintic. To allow flexibility of the procedure, we do not

restrict the family, type, order, etc. of the basis functions in Ll. In fact, as discussed earlier,

libraries do not need to be bases. They could be any sets of functions that may be used to

approximate the target function.

The idea of multiple libraries is close to the representation using overcomplete bases pro-

posed in the wavelet and machine learning literature (Lewicki and Sejnowski 2000, Chen et

al. 2001). Overcomplete representations have attracted a great deal of attention in Engi-

neering. Many methods have been proposed to represent signals using overcomplete bases

for achieving simultaneously the following goals: speed, sparsity, separation, resolution and

stability (Coifman and Wickerhauser 1992, Mallat and Zhang 1993, Chen et al. 2001). Mul-

tiple libraries may contain a large set of diverse basis functions such that relatively few are

required to represent any particular signal. Various methods have been proposed within the

field of signal and image processing for learning sparse overcomplete representations, with

methods based on the L1 norm being especially popular (Mallat and Zhang 1993, Chen et

al. 2001, Lewicki and Sejnowski 2000).

Unlike the case of a single basis where the representation is unique, finding the “best” ap-

proximation in multiple libraries with noisy data is a challenging problem. Simple extensions

of HAS (Luo and Wahba 1997), matching pursuit (Mallat and Zhang 1993) and L1 norm

procedures (Chen et al. 2001, Efron, Hastie, Johnstone and Tibshirani 2004) to the case of

multiple libraries do not work well (see Section 2 of the Supplement for an illustration).

2.2 Model Selection

Basis functions in L0 are automatically entered into the model (note that L0 could be an

empty set). Up to a total pre-specified number M (including those in L0), the procedure

then selects basis functions from O = ∪Ll=1Ll one at a time according to a criterion. For

the BSML-C procedure, the criterion is to maximize the reduction in the residual sum

of squares (RSS). For the BSML-S procedure, the criterion is more sophisticated, and is

presented in Section 2.4. Within each BSML procedure, denote the sequentially selected
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basis functions as φk for k = m + 1, · · · ,M . Let Bk = {φ1, · · · , φk} for k = m, · · · ,M

where Bm = L0. For simplicity, we write “model Bk” for “a linear combination of the basis

functions in Bk”. We need to develop model selection criteria to select the “best” model

among {Bk, k = m, . . . ,M}. In the following we adapt the Generalized Cross Validation

(GCV), Covariance Inflation Criterion (CIC), and K-fold Cross-Validation (CV) criteria for

model selection in the BSML-C procedure.

Let y = (y1, · · · , yn)
T and f = (f(x1), . . . , f(xn))

T . For k = m, · · · ,M , let f̂k be the

estimate of the function f based on Bk and f̂ k = (f̂k(x1), · · · , f̂k(xn))
T . Denote Mk as the

modeling procedure leading to f̂k. Note that the modeling procedure Mk includes both

basis functions selection and estimation. Define the mean squared error (MSE) based on

Mk as

MSE(k) =
1

n
E(||f̂k − f ||2). (2)

It is easy to check that

1

n
E{||f̂ k − y||2} =

1

n
E{||y − f ||2 + 2(y − f)T (f − f̂k) + ||f − f̂k||

2}

= σ2 −
2

n
C(Mk) + MSE(k),

where

C(Mk) = E(y − f)T (f̂k − f) =
n

∑

i=1

cov{f̂k(xi), yi} (3)

is the covariance penalty (Tibshirani and Knight 1999, Efron 2004). Then we have the

covariance inflation criterion (CIC) (Tibshirani and Knight 1999, Shen and Huang 2006)

CIC(k) =
1

n
RSS(Bk) +

2

n
C(Mk) (4)

as an unbiased estimate of (MSE(k) + σ2), where RSS(Bk) = ||f̂k − y||2 is RSS for model

Bk.

Ye (1998) introduced the generalized degrees of freedom (GDF) as a measure of model

complexity for the whole procedure:

D(Mk) =
n

∑

i=1

∂Ef (f̂ik)

∂fi
=

1

σ2
C(Mk), (5)

where f̂ik = f̂k(xi) and fi = f(xi). GDF extends the standard degrees of freedom to general

modeling procedures, and can be viewed as the sum of the sensitivities of the fitted values
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to a small change in the response. A highly flexible modeling procedure will have a large

GDF and covariance penalty because the fitted values will be close to the observed values.

Based on (5), the CIC (4) can be written as

CIC(k) =
1

n
RSS(Bk) +

2σ2

n
D(Mk). (6)

Criterion (6) requires an estimate of σ2 when it is unknown. It is preferable to use an

estimator of σ2 that does not require an estimate of f . A difference-based estimator such as

the Rice estimator or a regression estimator may be used (Tong and Wang 2005). We use

the Monte Carlo algorithms suggested in Ye (1998), Tibshirani and Knight (1999), Efron

(2004) and Shen and Huang (2006) to obtain estimates of D(M) and C(M), say D̂(M) and

Ĉ(M). Section 4.2 of the Supplement describes these Monte Carlo algorithms and Section

3 of the Supplement discusses the estimation of σ2.

The generalized cross-validation (GCV) criterion is defined as (Luo and Wahba 1997)

GCV(k) =
RSS(Bk)

{n− c(Mk)}2
, (7)

where c(Mk) is a measure of model complexity for the modeling procedure Mk. To correct

for the bias incurred by adaptive model selection, Luo and Wahba (1997) used c(Mk) =

m + (k − m) × IDF in the HAS procedure where the complexity of each selected basis

function was inflated by a factor of IDF (Inflated Degrees of Freedom). Luo and Wahba

(1997) suggested that IDF = 1.2 is a good choice for their HAS procedure. The same

GCV criterion was used in MARS (Friedman 1991) with IDF = 3, TURBO (Friedman and

Silverman 1989) with IDF = 2 and SARS (Zhou and Shen 2001) with IDF = 3. The choices

of the IDF in these procedures are ad hoc and this inflation factor is fixed throughout

the selection process. Empirical evidence (see Section 1 of the Supplement) reveals that

appropriate inflation factors for adaptively selecting basis functions in search procedures

such as HAS are not constant, but depend on many factors including the true function,

the type of basis functions, the signal-to-noise ratio, and the basis functions that have been

selected. It is not surprising that Friedman (1991) and Luo and Wahba (1997) recommended

different IDFs because they used quite different bases: truncated polynomials in Friedman

(1991) and cubic spline representers in Luo and Wahba (1997).

Since the true function is never known and there is no clear rule for deciding the IDF, we

propose to estimate the GDF or covariance penalty at each step of the selection procedure

and incorporate it into the GCV criterion. Specifically, we set c(Mk) = D(Mk) in the GCV

criterion (7) for all analyses in this paper. Alternatively, we could set c(Mk) = C(Mk)/σ
2

where σ2 is estimated by a difference-based or a regression estimator.
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K-fold cross-validation (CV) may also be used to select the best model among {Bk, k =

m, · · · ,M}. Divide the original sample intoK subsamples at random. For a fixed 1 ≤ j ≤ K,

apply the forward selection procedure to all the data except the jth subsample. Denote the

resulting estimates of the function as f̂
(j)
k for k = m, . . . ,M . Let y(j) be the vector of

response variables in the jth subsample and f̂
(j)

k be the vector of the function f̂
(j)
k evaluated

at the design points in the jth subsample. Then the K-fold CV estimate of the MSE is

CV(k) =
1

n

K
∑

j=1

||f̂
(j)

k − y(j)||2, for k = m, . . . ,M. (8)

2.3 The BSML-C Procedure

Combining steps together, we have:

The BSML-C procedure

1. Initialization: set Bm = L0 and let M be an upper limit on the total number of basis

functions to be selected (including all bases in L0).

2. For k = m+ 1, . . . ,M , do:

(a) Forward Selection: find φk from the remaining basis functions not yet selected in

O that maximizes the reduction in the residual sum of squares

φk = argmax
ψ ∈ O ∩ Bc

k−1

{RSS(Bk−1) − RSS(Bk−1 ∪ {ψ})} .

(b) Update: Bk = Bk−1 ∪ {φk}.

(c) Estimate GDF and covariance penalty as needed: calculate D̂(Mk) and Ĉ(Mk).

3. Elimination: choose k∗, m ≤ k∗ ≤M , as the minimizer of one of the following criteria:

the CIC in (4), the GCV criterion in (7) and the CV criterion in (8).

4. Final model: fit a standard or ridge regression model of y on the final selected basis

functions Bk∗ .

BSML-C does not distinguish basis functions from different libraries in the selection

process. Often, different libraries have different degrees of adaptivity and complexity. It

may be beneficial to consider libraries separately in the selection process, and for the model

selection criterion to incorporate a different measure of complexity for each library. We now

describe an alternative BSML procedure, BSML-S, that treats different libraries separately.
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2.4 The BSML-S Procedure

Let Bk−1 be the k − 1 basis functions selected at step k − 1. At step k, for each library Ll,

1 ≤ l ≤ L, we first find a basis function, ψ
(k)
l,jl

, from the remaining basis functions not yet

selected in Ll to maximize the reduction in the RSS

ψ
(k)
l,jl

= argmax
ψ ∈ Ll ∩ Bc

k−1

{RSS(Bk−1) − RSS(Bk−1 ∪ {ψ})} . (9)

We then need to select a basis function, φk, to be included in the model at step k, from the

collection of L candidate basis functions, Ψk =
{

ψ
(k)
1,j1
, . . . , ψ

(k)
L,jL

}

.

To allow basis functions in different libraries to compete on an equal footing, in addition

to the basis selection cost within each library D̂(Mk,l) where Mk,l is the modeling procedure

that includes both the selection of Bk−1 ∪ {ψ
(k)
l,jl

} and the estimation based on Bk−1 ∪ {ψ
(k)
l,jl

},

we need to account for differences in complexity among libraries. Again, we estimate the

library complexity using GDF. Let M
(l)
k be the modeling procedure that, starting with L0,

selects k − m additional basis functions one at a time from library Ll and estimates the

function f based on k selected basis functions. Let D̂(M
(l)
k ) be the estimated GDF of M

(l)
k .

We estimate the library cost at step k for library l by

Âk(Ll) =
D̂(M

(l)
k ) −m

k −m
, (10)

which is an estimated IDF for the kth basis function from library Ll, if all k − m basis

functions had been adaptively selected from Ll. We select all k − m basis functions from

library Ll so that Âk(Ll) represents an average library cost.

We choose the kth basis function φk ∈ Ψk to minimize the doubly penalized criterion

DPC(φk) = RSS(Bk−1 ∪ {φk}) + c1σ
2D̂(Mk,l) + c2σ

2Âk(Ll), (11)

where c1 and c2 are constants. The first two components in (11) constitute the final predic-

tion error criterion (Akaike 1970) which includes the commonly used AIC and BIC criteria.

Similar to the idea of adding a penalty term to account for selection bias due to basis selec-

tion in a single library, we add the last term in (11) to account for selection bias for selection

between libraries. The need for an extra penalty term has been recognized theoretically by

Yang (1999), Lebarbier (2005) and Picard, Robin, Lavielle, Vaisse and Daudin (2005). The

DPC criterion (11) is similar to the ABC criterion in Yang (1999) where ways to compute

model space (library) complexity were discussed. However, none of the existing theoretical

criteria can be applied directly in our setting, since they depend on unknown constants. We
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have found in our simulations that c1 = ln(n) and c2 = 2 work well, so we use these values

in our simulations and examples. A relatively larger range of combinations of c1 and c2 also

provide good estimates (see Section 5.2 of the Supplement). Again, a difference-based or

regression estimator of σ2 may be used in (11).

The K-fold CV method from Section 2.2 may also be used to select φk in Ψk. The only

difference is that the candidate models are now {Bk−1 ∪ {ψ
(k)
l,jl

}, l = 1, . . . , L}.

To use the GCV criterion to decide the final number of basis functions k∗, we need to

estimate the GDF, D̂(Mk), at each step k. However, calculation of D̂(Mk) is computation-

ally intensive for the BSML-S procedure. We define the cost for selecting ψ
(k)
l,jl

conditional

on Bk−1 as

D̂
(

ψ
(k)
l,jl

|Bk−1

)

= max
{

D̂(Mk,l) − (k − 1), 1
}

.

Small scale simulations indicate that m +
k

∑

h=m+1

D̂(ψ
(h)
lh,jlh

|Bh−1) provides a reasonable ap-

proximation for D̂(Mk). Therefore we minimize the following modified generalized cross-

validation criterion to select k∗

GCV(k) =
RSS(Bk)

{

n−

(

m+
k

∑

h=m+1

D̂(ψ
(h)
lh,jlh

|Bh−1)

)}2

.

(12)

By compiling these stages, we have:

The BSML-S procedure

1. Initialization: set Bm = L0 and let M be an upper limit on the number of basis

functions to be selected (including those in L0).

2. Forward selection: for k = m+ 1, . . . ,M , do

(a) Select within each library: for l = 1, . . . , L do

i. Select ψ
(k)
l,jl

∈ Ll according to (9).

ii. Estimate GDF and conditional cost as needed : compute D̂(Mk,l) and

D̂
(

ψ
(k)
l,jl

|Bk−1

)

.

(b) Select between libraries: select φk ∈ Ψk to minimize (11) or the K-fold CV crite-

rion.

(c) Update: Bk = Bk−1 ∪ {φk}.
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3. Elimination: choose k∗, m ≤ k∗ ≤M , as the minimizer of one of the following criteria:

the CIC in (4), the GCV criterion in (12) and the CV criterion in (8).

4. Final model: fit a standard or ridge regression model of y on the final selected basis

functions Bk∗ .

2.5 Bootstrap Confidence Intervals

Consider model (1) and assume that f can be represented as f(x) =
∑L

l=0 gl(x) where

gl ∈ span{Ll} and span{Ll} represents the linear space spanned by basis functions in Ll.

Let L0 be any well-defined functional. We construct confidence intervals for L0 applied to

the following form of linear combinations of the L+ 1 components of f ,

fγ =
L

∑

l=0

γlgl, (13)

where γl = 1 when gl is to be included and γl = 0 otherwise. A confidence interval for

fγ evaluated at a particular point, say x, corresponds to the special case when L0 is the

evaluational functional L0gl = gl(x) for each l ∈ {0, 1, . . . , L}.

Let f̂ and σ̂2 be pilot estimates of f and σ2 respectively. Let

y∗i,b = f̂(xi) + ǫ∗i,b, i = 1, . . . , n; b = 1, . . . , B

be B bootstrap samples where ǫ∗i,b
iid
∼ N(0, σ̂2). Apply the BSML-C or BSML-S procedure to

the bth bootstrap sample {y∗i,b, i = 1, . . . , n} and denote f̂ ∗
γ ,b as the estimate of fγ in (13).

The 100(1 − α)% percentile bootstrap confidence interval of L0fγ is

(L0f̂γ ,L, L0f̂γ ,U),

where L0f̂γ ,L and L0f̂γ ,U are the lower and upper α/2 quantiles of the B bootstrap estimates

of L0fγ , i.e., the specified quantiles of {L0f̂
∗
γ ,b, b = 1, . . . , B}.

In the smoothing spline literature, it is well-known that, due to nonuniform bias, the boot-

strap and Bayesian confidence intervals have an across-the-function coverage property which

is weaker than the pointwise coverage property (Wang and Wahba 1995, Wang 2011). Ef-

forts have been made to construct confidence intervals with more uniform pointwise coverage

(Cummins, Filloon and Nychka 2001). One approach is to reduce bias by a slight under-

smoothing (Hall 1992). We have found that, in general, the cross-validation method tends to

overfit. Therefore, we apply the BSML-C or BSML-S procedure with cross-validation selec-

tion of the final model to derive a undersmoothed pilot fit f̂ . Since the true function is known
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in the generation of bootstrap samples (namely f̂), instead of using the CIC, GCV or CV

criterion in Step 3, we use the average squared error ASE(k, b) =
∑n

i=1(f̂
∗
b,k(xi) − f̂(xi))

2/n

to select the final model for each bootstrap sample where f̂ ∗
b,k is the estimate of f in the

kth iteration of the BSML-C or BSML-S procedure based on the bth bootstrap sample.

Extensive simulations (some of them are shown in Section 5.3 of the Supplement) indicate

that the percentile bootstrap confidence intervals based on the BSML procedures have more

uniform pointwise coverage than the smoothing spline Bayesian confidence intervals. For all

percentile bootstrap confidence intervals in presented simulations and data analyses, we used

10-fold CV to generate the pilot fit and ASE to select the optimal k within each bootstrap.

2.6 Computation and the BSML package

We have developed a user-friendly R package called bsml which implements the HAS, BSML-

C and BSML-S procedures. The bsml package is available at http://cran.r-project.org

(Wu, Sklar, Wang and Meiring 2011). R code for an example in Section 3.3 is given in

Section 4.3 of the Supplement, together with a brief description of the forward selection

process and Monte Carlo based estimation of D(M) and C(M). Also see Section 2.2, Sklar

(2003), and Wu (2011).

3 Spatially Adaptive Regression

3.1 Existing Methods

In this section we consider the estimation of spatially inhomogeneous curves defined on

x ∈ [0, 1]. A polynomial smoothing spline model of order-m assumes that f in model (1)

belongs to the reproducing kernel Hilbert space (RKHS) (Wahba 1990)

Wm[0, 1] =

{

f : f, f ′, . . . , f (m−1) absolutely continuous,

∫ 1

0

(

f (m)(x)
)2
dx <∞

}

. (14)

For a fixed smoothing parameter λ, the corresponding spline estimate of f , f̂λ, is the mini-

mizer of the penalized least squares (PLS) criterion

n
∑

i=1

(yi − f(xi))
2 + λ

∫ 1

0

(

f (m)(x)
)2
dx. (15)

The smoothing parameter λ controls the smoothness of the spline fit. Data-based meth-

ods such as GCV are used frequently to choose λ. The space Wm[0, 1] can be decom-

posed into Wm[0, 1] = H0 ⊕ H1 where H0 contains polynomials that are not penalized.
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Specifically, let kr(x) for r = 0, 1, 2, . . . be scaled rth Bernoulli polynomials defined re-

cursively by k0(x) = 1, k′r(x) = rkr−1(x) and
∫ 1

0
kr(x)dx = 0. Then H0 = span (R0,m)

with R0,m = {k0(x), k1(x), . . . , km−1(x)}. Also H1 is a RKHS with reproducing kernel

Rm(s, t) = km(s)km(t) + (−1)m−1k2m(s− t). Let R1,m = {Rm(x1, x), . . . , Rm(xn, x)}. Then

the spline estimate f̂λ ∈ span {R0,m ∪R1,m} (Wahba 1990).

The PLS criterion (15) relies on a single global smoothing parameter, λ, to control the

trade-off between the goodness-of-fit and the smoothness of the estimated function over the

entire domain [0, 1]. Thus an implicit assumption is that f is smooth with relatively homo-

geneous curvatures over the entire domain. If the true function is spatially inhomogeneous,

then spline estimates tend to over-smooth in regions where f is rough and under-smooth in

regions where f is smooth. To make the spline estimate spatially adaptive, Luo and Wahba

(1997) proposed the HAS procedure, which is a special case of the BSML-C procedure with

L = 1, L0 = R0,2, and L1 = R1,2. HAS uses GCV criterion (7) with c(Mj) = 2+(j−2)×IDF

with fixed IDF = 1.2 at the elimination step. In several examples, Luo and Wahba (1997)

show HAS to be spatially adaptive with comparable or better performance than wavelets.

Spatially adaptive methods have been actively researched. Other spline-based spatially

adaptive methods include MARS (Friedman 1991), adaptive knots selection schemes (Zhou

and Shen 2001, Miyata and Shen 2003), variable smoothness penalties (Abramovich and

Steinberg 1996, Ruppert and Carroll 2000, Liu and Guo 2010), and Bayesian methods (Deni-

son, Mallick and Smith 1998, DiMatteo, Genovese and Kass 2001, Dias and Gamerman 2002).

Beyond the spline literature, spatially adaptive methods have also been developed for local

polynomials (Fan and Gijbels 1995) and wavelets (Wang 1995). All methods are limited by

using a single family of basis functions to approximate the regression function. Even though

a single family, often of infinite dimension, may eventually be able to capture a spatially

heterogeneous signal in the data, the methods based on a single basis are limited in their

adaptivity with finite samples.

3.2 Simulations

We simulate from model (1), for each of six test functions, f , listed in Table 2, and displayed

in Figure 1. Functions LW6 and LW7 are examples 6 and 7 in Luo and Wahba (1997).

We also use those authors’ Heavisine function scaling, and their definition of signal to noise

ratio (SNR). That is, the SNR is SD(f)/σ where SD(f) is the standard deviation of the

function f(x) across values of x. We ran simulations for eight values of σ, corresponding

to a regular grid of SNR values, SNR ∈ {1, 2, 3, 4, 5, 6, 7, 8}, for each function f in Table 2.
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For each sample size n, we use a regular grid of design points {xi = i/n : i = 1, . . . , n}. We

present detailed results for each f for n = 256, but only illustrate sample size changes for

the Heavisine function due to space.
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Figure 1: Six functions used in spatially adaptive regression simulations.

Table 1 defines several families of basis functions we use, including truncated polynomial,

polynomial spline, and Fourier bases. The family (P2) of basis functions derived from periodic

spline reproducing kernels (RK) of order-2 are defined based on the space (Wahba 1990)

W2(per) =

{

g : g(j) abs. cont., g(j)(0) = g(j)(1), j = 0, 1,

∫ 1

0

(

g(2)(t)
)2
dt <∞

}

,

with RK

Rper,2(s, t) =
∞

∑

v=1

2

(2πv)4
cos 2πv(s− t). (16)

Each of the reproducing kernel (cubic or periodic) and truncated polynomial families begins

with one basis function corresponding to each of the design points xi, i = 1, . . . , n.

Note that, when L = 1, BSML-C is a simple extension of the HAS procedure which will

be referred to as the BSML1 procedure in our simulations (Sklar, Meiring and Wang 2006).

We compare the performance of the BSML-S and BSML-C methods to that of HAS, BSML1,

and an L1 norm method. The L1 norm method used here is a direct extension of basis pursuit

(Chen et al. 2001) and LARS (Efron et al. 2004) procedures. For general A containing N(A)

basis functions, this procedure represents f(x) =
∑

ψj∈A

βjψj(x) and estimates coefficients by

minimizing

1

n

n
∑

i=1

(yi − f(xi))
2 + λ

N(A)
∑

j=1

|βj|. (17)

To obtain L1-norm lasso estimates with sets A listed in Table 2, we used the R function lars

with default options (Hastie and Efron 2011). For each function, the BSML-S, BSML-C and

13



Table 1: Basis functions notation.

U0 {1}, constant functions

U1 {1, x}, constant and linear functions

Cm R(1,m), polynomial spline representers as defined in Section 3.1

P2 {Rper,2 (xi, x)}, periodic smoothing spline representers of order-2 given in (16)

Tm
{

(x− x1)
m

+ , (x− x2)
m

+ , . . . , (x− xn)
m

+

}

, truncated polynomials

F {sin(16πkx), cos(16πkx) : k = 1, 2, 3, . . . , 25}, Fourier basis functions

Table 2: Six functions f(x) used in simulations, and three candidate basis function collections

labelled {Gi : i = 0, 1, 2} for reference in Table 3.

True f(x) in (1) SD(f) Basis families

with 1A(x) = 1 if x ∈ A, zero otherwise. G0 G1 G2

Sine-Jumps sin (2πx) − 1(0.5,1] (x) + 1(0.25,1] (x) 1.003 U0 P2 T0

Heavisine 2.2 [4 sin (4πx) − sign(x− 0.3) − sign(0.72 − x)] 6.534 U0 P2 T0

Blocks-Curves 1[.2,.4)(x) + exp
[

(x+ 0.5)2] 1[.4,.7)(x) − x101[.7,1](x) 1.458 U1 C2 T0

LW6 sin [2(4x− 2)] + 2 exp [−256(x− .5)2] 0.838 U1 C2 T2

LW7 (4x− 2) + 2 exp [−256(x− .5)2] 1.264 U1 C2 T2

Poly-Sine sin (16πx) − 8(x− .5)2 + 8(x− .5)31(0.5,1](x) 0.840 U1 F T2

Table 3: Basis families for different estimation methods, with notation as in Table 2.

HAS BSML1 LARS BSML-C BSML-S

L0 G0 G0 G0 G0

L1 G1 G1 G1 ∪ G2 G1

L2 G2

A
2

⋃

i=0

Gi
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L1 norm (LARS) simulations use basis functions from the three libraries listed in Table 3.

HAS and BSML1 use two libraries, L0 and L1. GDF estimation is by the algorithm of Ye

(1998), using 100 perturbations (see Section 4.2 of the Supplement). The performance of

each method was measured by the mean squared error (MSE):

MSE(f̂) =
1

n

n
∑

i=1

[f(xi) − f̂(xi)]
2.

Figures 2 and 3 present results based on 100 simulations for n = 256. Each row cor-

responds to one of the six functions in Table 2. The left panel of each row illustrates the

relative performance of the five estimation methods of Table 3 across different SNR values.

The vertical axis in the left panel scales the median MSE at each SNR by dividing by σ2 for

clarity, since the MSE decreases as the SNR increases (i.e., as σ decreases). The symbols

used are: △ for HAS, + for BSML1, × for LARS, ∇ for BSML-C, and � for BSML-S. We

used M = 100 for HAS; and M = 50 for BSML1, BSML-C and BSML-S throughout. In the

center panel of each row, boxplots are presented to compare MSE values across estimation

methods, when estimating f based on n = 256 observations, for each of 100 simulated data

sets with SNR=5. The right panel presents boxplots for the corresponding total number of

basis functions selected by each method.

The BSML-S method has the smallest, or close to the smallest, MSE under all settings in

Figures 2 and 3. BSML-S also achieves this often with the fewest number of basis functions.

The MSE reductions of BSML-S compared with the HAS method are substantial for all

functions except for the LW6 and LW7 functions, which are relatively simple and smooth

compared to the other four functions. Both LW6 and LW7 functions can be well approx-

imated by a small number of basis functions from one class of basis, so HAS and BSML1

perform comparatively well. Nevertheless, for the LW6 and LW7 functions, the BSML-S

did have slightly smaller median MSE with smaller median number of basis. The BSML-S

method is also more stable than all other methods.

The BSML1 method performs slightly better than the HAS method with slightly fewer

basis functions. Neither HAS nor BSML1 performs well for the Poly-Sine function, which lies

outside the span of the Fourier basis functions. The L1 norm based method performs well for

the Sine-Jumps and Block-Curves functions, but relatively poorly for the other functions.

It tends to select a large number of basis functions and therefore does not work well in

general with multiple libraries with different types of basis functions. We also ran a naive

extension of HAS with two non-null libraries and a fixed IDF of 1.2 (results not shown),

but this consistently overfitted, performing worse than HAS with 1 non-null library (results
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shown). Choosing bases naively from multiple libraries using a constant IDF, as in HAS

with two non-null libraries, does not necessarily improve the fit (see also Section 5.1 of the

Supplement). When using multiple libraries, there is need of more sophisticated, adaptive

estimation of model complexity, such as implemented in BSML using either GDF or the

Covariance Penalty.

Except for the Heavisine function, the BSML-C method had similar performance as the

BSML-S method. For the Heavisine function it is necessary to treat libraries separately, and

BSML-S has superior performance. The BSML-C performance improves relative to LARS

as n increases for the heavisine function, with BSML-C performing better than LARS for

n = 1024 (not shown). We note that the BSML-S method is much more computational

intensive than the BSML-C method, but exhibits greater stability that is especially evident

in the heavisine simulations.

Figure 4 shows boxplots of MSE values for 100 BSML-S Heavisine fits for each of five

sample sizes n ∈ {128, 256, 512, 1024, 2048}, and the corresponding number of basis functions

chosen by BSML-S. For each of the latter three sample sizes, BSML-S was run after initial

selection of 256 basis functions from each library via HAS.

The median MSE decreases with sample size in these simulations. The number of basis

functions chosen by BSML-S increases slightly with sample size, but remained relatively

stable compared to other methods.
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Figure 4: Left panel: Boxplots of MSE of BSML-S fits for 100 simulated data sets from (1)

with f the Heavisine function, for sample sizes n ∈ {128, 256, 512, 1024, 2048} and SNR=5.

Right panel: Boxplots of the corresponding number of basis functions selected by BSML-S.

The detailed results we present for n = 256 are representative of our simulations across
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multiple functions. We also have run simulations across multiple sample sizes, as illustrated

for the heavisine in Figure 4. Results are similar to those presented here. Our results for

spatially adaptive BSML-C and BSML-S support the value of adaptive methods when the

SNR is sufficiently large (Wasserman 2006).

3.3 Applications

To illustrate the value of the BSML methods in the practitioner’s toolbox, we analyze the US

penny thickness data set from Scott (1992), contained in R library locfit (Loader 2010).

The data are thickness measures of two pennies from each of the years 1945 to 1989 (n = 90).

As previously noted in the adaptive estimation and change-point literature, the thicknesses

changed abruptly at least twice in this time period. Figure 5 shows the observations (dots).

We first transform the explanatory variable into x = [0, 1], and use basis families G0 = U1,

G1 = C2, G2 = T0, G3 = T1, and G4 = T2 from Table 1. Each Gj, j ≥ 1 has 45 elements

(one basis function per unique xi value), corresponding to 45 unique years. The cubic spline

with 95% Bayesian confidence intervals, fitted using R library assist with GCV (Wang

and Ke 2011), oversmooths some of the jumps in the data. HAS with G0 and G1 (section

3.1) shows greater adaptivity than the cubic splines, but cannot capture abrupt jumps in

the penny thicknesses. Let O = ∪4
l=1Gl. BSML-C used L0 = U1 and adaptively selected

from L1 = O using GCV with data-based GDF methods. BSML-S adaptively selected

from L = 4 candidate basis families Ll = Gl for l = 1, . . . , 4, using the DPC (11) and

GCV-based elimination. HAS, BSML-C and BSML-S fits use M = 30, 300 perturbations

in the GDF estimation (Ye 1998), and B = 300 for bootstrap percentile confidence interval

computations. Our analyses capture the abrupt increase in penny thickness a few years after

World War II, and then a subsequent reduction in thickness during the 1970’s. Interestingly,

adaptive selection from multiple libraries enables us to capture the two major jumps as well

as gradually increasing thickness trends around these jumps. These general features compare

well with a local linear estimate (Gijbels, Lambert and Qiu 2007) and a spline estimate with

constant and linear spaces (Ma and Yang 2011).
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Figure 5: Thickness of 90 US Pennies (dots) with fits. Left to right: Cubic splines using GCV

(with 95% Bayesian confidence intervals); HAS, BSML-C and BSML-S (with 95% percentile

bootstrap confidence intervals).

4 Model Selection in Multiple Regression

4.1 Smoothing Spline ANOVA

Consider model (1) with multiple explanatory variables x1, · · · , xd. The goal is to approx-

imate f using basis functions, resulting in an estimate of f from these noisy data. Many

methods have been proposed to approximate the multivariate function. We consider the

smoothing spline ANOVA (SS ANOVA) decomposition for comparison with the COSSO

method.

Let the domain of each xk be an arbitrary set Xk and denote x = (x1, · · · , xd). Let H(k)

be a RKHS on Xk and

H(k) = H
(k)
(1) ⊕ · · · ⊕ H

(k)
(rk), k = 1, 2, · · · , d.

Then the tensor product space H(1) ⊗H(2) ⊗ · · · ⊗ H(d) on X = X1 × X2 × · · · × Xd can be

decomposed into

H(1) ⊗H(2) ⊗ · · · ⊗ H(d) =
{

H
(1)
(1) ⊕ · · · ⊕ H

(1)
(r1)

}

⊗ · · · ⊗
{

H
(d)
(1) ⊕ · · · ⊕ H

(d)
(rd)

}

=

r1
∑

j1=1

· · ·

rd
∑

jd=1

H
(1)
(j1)

⊗ · · · ⊗ H
(d)
(jd). (18)

See Wang (2011) for details about the SS ANOVA decomposition. The number of compo-

nents in SS ANOVA decomposition (18) increases exponentially as the dimension d increases

(curse of dimensionality). To overcome this problem, it is desirable to have model selection

methods that determine which components (subspaces) should be included in the model.

Lin and Zhang (2006) proposed the COSSO procedure for model selection and estimation

based on the SS ANOVA decomposition.
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A model containing any subset of components in the SS ANOVA decomposition is referred

to as an SS ANOVA model. Given an SS ANOVA model, we can regroup subspaces and

write the model space as

S = H0 ⊕H1 ⊕ · · · ⊕ Hq, (19)

where H0 is a finite dimensional space collecting all functions which are not going to be

penalized, and H1, · · · ,Hq are orthogonal RKHS’s with RKs Rj for j = 1, · · · , q. The

COSSO procedure estimates f ∈ S by minimizing the penalized least squares criterion

1

n

n
∑

i=1

(yi − f(xi))
2 + λ

q
∑

j=1

‖Pjf‖, (20)

where Pj is the orthogonal projector in S onto Hj, and parameter λ penalizes the L1 norm

terms, ‖Pjf‖. For some special models, it has been shown that the COSSO procedure selects

the correct model with probability tending to one and leads to consistent estimation of f .

4.2 BSML Model Selection and Simulations

Consider model (1) with model space (19). Let L0 = H0 and Lj = {Rj(x1,x), . . . , Rj(xn,x)}

for j = 1, · · · , q. Then the BSML procedure can be applied to select basis functions from

O = ∪ql=1Ll and estimate the function f . A further thresholding procedure may be applied to

eliminate libraries with negligible contributions. Specifically, denote the estimated function

based on all selected bases as f̂ . Let f̂(x) = f̂0(x)+
∑q

j=1 f̂j(x) where f̂j for j = 0, . . . , q are

projections of f̂ onto Hj. We can eliminate all selected bases in library j if ||f̂j||/||f̂ || < τ

for j = 1, . . . , q where τ is a small threshold. A similar procedure was used in Lin and Zhang

(2006) where the thresholding was achieved through the smoothing parameters.

We use the following simulation to evaluate the performances of the BSML-C and BSML-

S procedures in fitting multivariate regression functions and model selection and compare

them with the COSSO procedure. Data are generated from model (1) with x = (x1, x2, x3, x4)

and an additive function f(x) = f1(x1) + f2(x2) where f1(x1) is the Blocks-Curves function

in Table 2 and f2(x2) = −1 + 1.5x2 + 10φ(50 · (x2 − .5)) where φ is the standard normal

density function. Note that f does not depend on x3 and x4. We consider three sample

sizes, n ∈ {100, 300, 500}, and three SNR values, SNR ∈ {2, 4, 8}. Design points for the four

explanatory variables are generated as iid random samples from the uniform distribution on

[0, 1]. For each combination of sample size and SNR, the simulation is repeated 100 times.

To apply the BSML procedures, we consider the following libraries: L0 = {1, x1, x2, x3, x4},

L1 = C2(x1), L2 = T0(x1), L3 = C2(x2), L4 = T0(x2), L5 = C2(x3), L6 = C2(x4) where
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Table 4: The number of times variables x3, x4 are selected out of 100 simulation runs. Results

for x1 and x2 are not shown since each method always selected these variables. Results with

SNR = 8 are not shown since the number of times these variables are selected is zero for all

methods.

SNR = 2 SNR = 4

n = 100 n = 300 n = 500 n = 100 n = 300 n = 500

BSML-C 3,4 0,0 0,0 1,0 0,0 0,0

BSML-S 13,12 5,3 1,0 1,1 0,0 0,0

COSSO 9,0 12,2 6,11 0,0 2,0 0,0

L2 and L4 are added to the additive SS ANOVA model space of the tensor product of

cubic splines to deal with spatial inhomogeneity in f1 and f2. For each simulation sam-

ple, we apply the BSML-C and BSML-S procedures with these libraries and M = 40.

We also apply the COSSO procedure using the MATLAB code downloaded from http:

//www4.stat.ncsu.edu/~hzhang/software.html. The estimate of σ2 from the COSSO

procedure is used as the initial estimate of σ2 in the BSML-C and BSML-S procedures.

Figure 6 shows the median MSE from the BSML-C, BSML-S and COSSO procedures.

The BSML procedures have smaller MSEs than the COSSO procedure. We have conducted

simulations with smooth functions where the MSEs from the BSML and COSSO procedures

are similar (see Section 5.5 of the Supplement). We also applied the MARS procedure

(Friedman 1991) using the function “mars” in the R package “mda” (Hastie, Tibshirani,

Leisch, Hornik and Ripley 2006). The resulting MSE values (not shown) are substantially

larger than those from the BSML and COSSO procedures, perhaps due to the fact that

the true function in these simulations is additive. Section 4.4 of the Supplement presents

information on computation times for the algorithms compared in this section.

To evaluate the performances in term of variable selection, we apply the thresholding

procedure as described above with τ = .01 to the BSML-C, BSML-S and COSSO procedures.

For the purpose of variable selection, we combine bases in L1 and L2 for variable x1 and L3

and L4 for variable x2 for thresholding. BSML-C, BSML-S and COSSO all selected x1 and

x2 100% of the time under all settings. Table 4 shows the number of times each of these

methods incorrectly selected variables x3 and x4 out of 100 simulations. Overall, all three

methods performed quite well. The false selection rate diminishes quickly as SNR increases.

As sample size increases, the false selection rate decreases to zero for the BSML procedures.

The BSML procedures performed better than COSSO for large sample sizes and small SNRs.
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Figure 6: Median MSE vs. n for COSSO (+), BSML-S (�), and BSML-C (∇).

4.3 Application

We analyzed 946 monthly mean ozone thickness measurements (Dobson units) during the

82 years from 1926 to 2007 from Arosa, Switzerland, shown in Figure 7 (a). Data were

downloaded from ftp://iaclin2.ethz.ch/pub_read/maeder/totozone_arosa_monthly .

We first scale the original times (in years and months) into the interval x ∈ [0, 1]. We

consider the additive model

f(x) = µ+ f1(x) + f2(x), x ∈ [0, 1] (21)

where f1 is a periodic function with period 1/82 to model seasonal trend (seasonal main-

effect), while f2(x) models long term trend (year main-effect). We compare three estimation

methods: SSANOVA, BSML-C, and BSML-S. Due to space limitations we concentrate on

the estimate of the main effect of year f2(x) in Figure 7(b)-(d), since the estimates of the

dominant seasonal cycle variation f1(x) are very similar for all three methods (not shown).

In Figure 7(b)-(d), dots show the Arosa total column ozone annual averages for years with at

least nine months of monthly mean data. Annual averages for the years with more than 1/4

of the months missing are not plotted, but all available months are included in the analyses.
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Model (21) is a special case of an SS ANOVA model, which we fit via the ssr function in

the assist package (Wang and Ke 2011), using GCV to select smoothing parameters. We

assume that f1(82x) ∈W2(per)⊖{1} (see (16)), where the multiplicative constant 82 makes

f1(82x) a periodic function with period 1, and f2(x) ∈ W2[0, 1] ⊖ {1} (see (14)). Panel (b)

shows the fitted year main effect f̂2(x) together with 95% Bayesian confidence intervals.

Panel (c) shows BSML-C results, and Panel (d) displays those of BSML-S, using libraries

L0 = U1, L1 = P2, L2 = C2, and L3 = T0 (see Table 1). For BSML-C and BSML-S,

the periodic spline space (16) describes the seasonal cycle, while L2 = C2, and L3 = T0

describe the long-term trend f2. We used 300 perturbations in the GDF estimation (Ye

1998), M = 30, and B = 300 for bootstrap percentile confidence interval computations.

Unlike the seasonal cycle estimates (not shown), the estimates of the main effects of

years differ across methods (Figure 7(b)-(d)). The SS ANOVA estimate may over-fit the

data. The estimate based on BSML-C displays intermediate complexity, including abrupt

changes around 1940, a possible dip around 1993 and a gradually decreasing trend in most

other years. By comparison, the BSML-S estimate gives a smooth long term trend, except

for the bump around 1940. It is interesting in this illustrative example that both the BSML-

S and BSML-C main-effects of year especially highlight the period around 1940 as being

very different from other time periods, requiring further study. Indeed, there is substantial

scientific interest in the atmospheric conditions associated with the high ozone years from

1940 to 1942, potentially linked with a strong El Nino event ((Bronnimann, Luterbacker,

Staehelin and Svendby 2004b) and (Bronnimann, Luterbacher, Staehelin, Svendby, Hansen

and Svenoe 2004a)). While the scientific interpretation must lie beyond the scope of our

paper, this example illustrates the value of BSML-procedures to highlight features of scientific

interest in f(x).

5 Discussion

We have introduced a new approach to adaptive non-parametric regression. The combination

of multiple libraries with adaptive estimation of selection cost provides the key to flexibility

of this new approach. Multiple libraries allows approximation of different components (or

regions) by different basis functions. Adaptive estimation of selection cost allows basis

functions in different libraries to compete on an equal footing. The method is general since

it allows fusion among different families/types/orders of basis functions.

We used spatially adaptive non-parametric regression and multivariate non-parametric
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Figure 7: (a) Observations of Arosa total column ozone (monthly mean total ozone records

over the period 1927-2007). (b) SSANOVA estimated year effect (estimated f2(x)) with 95%

Bayesian confidence intervals. (c), (d) BSML-C, BSML-S estimated year effect with 95%

percentile bootstrap confidence intervals. In panels (b)-(d), each dot is the annual average

for a year with at least nine months of monthly mean data. Years with fewer than nine

months of data were included in the analysis, but their annual averages are not plotted.

model selection to motivate and illustrate the BSML methods. Nevertheless, the BSML

procedures are adaptive in the more general sense that each dynamically adjusts its strategy
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to take into account the behavior of the function to be estimated (Friedman 1991). As

general procedures, they have other potential applications. One of our future research topics

is to extend the BSML methodology to different variance/covariance structures and to fit

data from exponential families. We also plan to explore further the value of slight over-fitting

in the pilot fits to reduce bias in the percentile bootstrap confidence intervals, since these

intervals depend on the pilot fit. This will extend the study of coverage properties, beyond

the promising results regarding close to nominal coverage already provided in Section 5.3 of

the Supplement.

Supplementary Materials

A pdf document containing the following sections:

Adaptive IDF Empirical evidence that IDF depend on many factors including the true

function, the type of basis functions, the signal-to-noise ratio, and the basis functions

that have been selected.

Challenge Additional motivation for the need of data-based cost criteria.

Variance estimation Difference-based estimators for σ2.

Computation Details for forward selection, Monte Carlo algorithms for GDF and covari-

ance penalty, the R BSML package including the code for the Penny Thickness data,

and information on computation times.

More simulations Comparison between different model selection criteria, sensitivity to the

choice of c1 and c2 in DPC (11), bootstrap confidence interval coverages, sensitivity to

library specifications, and additional simulation results.
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