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We study minimax rates of convergence for nonparametric regression under a random design with

dependent errors. It is shown that when the errors are independent of the explanatory variables, long-

range dependence among the errors does not necessarily hurt regression estimation, which at ®rst

glance contradicts earlier results by Hall and Hart, Wang, and Johnstone and Silverman under a ®xed

design. In fact we show that, in general, the minimax rate of convergence under the square L2 loss is

simply at the worse of two quantities: one determined by the massiveness of the class alone and the

other by the severity of the dependence among the errors alone. The clear separation of the effects of

the function class and dependence among the errors in determining the minimax rate of convergence

is somewhat surprising. Examples of function classes under different covariance structures including

both short- and long-range dependences are given.
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1. Introduction

1.1. The problem of interest

Assume that we observe random variables (X i, Yi)
n
i�1, where Yi takes values in R and X i

takes values in X , a subset of Rd for some d > 1: The relationship between response

variables Yi and the explanatory or experimental variables X i is modelled as

Yi � u(X i)� åi, i > 1, (1)

where u is an unknown regression function. The random errors fåi, i > 1g are assumed to

have a joint normal distribution conditioned on fX i, i > 1g with mean zero and a known

covariance matrix. A goal is to estimate the regression function u, which is assumed a priori

to be in a nonparametric function class U (e.g., monotone or Lipschitz). In this paper, we

study how well one can estimate u under a minimax consideration over the function class U.

The focus is on determination of minimax rates of convergence for the estimation problem

when the errors are dependent. We will characterize how dependence of the errors as well as

the function class affects the minimax rates of convergence under appropriate conditions.
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1.2. Some background

In recent years, there has been an increasing interest in statistical estimation based on long-

range dependent data ± see Beran (1994) for a survey of work in this area. Long-range

dependence has been observed in many applied scienti®c disciplines. KuÈnsch et al. (1993)

wrote: `Perhaps most unbelievable to many is the observation that high-quality measurement

series from astronomy, physics, chemistry, generally regarded as prototypes of `̀ i.i.d.''

observations, are not independent but long-range correlated'. Based on the empirical evidence

of long-range dependence in measurements and other applications, it becomes important to

study how long-range dependence affects statistical estimation.

For parametric regression with ®xed designs, asymptotic results for maximum likelihood

and least-squares estimators under long-range dependence have been established by Yajima

(see, for example, Yajima 1991). KuÈnsch et al. (1993) show that for certain analysis of

variance models with random designs, contrasts can be estimated at the same rate as that

under independent errors. Asymptotic results for the estimation of long-range dependence

parameters under parametric models are given, for example, in Beran (1986), Fox and

Taqqu (1985), Dahlhaus (1989), Giraitis and Surgailis (1990) and Robinson (1995).

For nonparametric regression, the effect of long-range dependence on minimax rates of

convergence is studied in a pioneering paper by Hall and Hart (1990a) for a differentiable

function class, and later by Wang (1996) and Johnstone and Silverman (1997) for Besov

classes, all under a ®xed equally spaced design. These results show that a certain long-range

dependence of errors damages the minimax rate of convergence for regression estimation.

The latter two papers propose adaptive wavelet estimators. In addition, Wang shows that for

some inhomogeneous Besov classes, linear estimators cannot achieve the minimax rate of

convergence, and Johnstone and Silverman show that when an unknown dependence para-

meter is properly estimated, a wavelet threshold estimator is adaptive with respect to both

the dependence parameter and the smoothness parameters. Robinson (1997) derives local

asymptotic normality for kernel estimators under long-range dependence.

In this work, we study the effects of a general dependence among the errors on

regression estimation for a general nonparametric function class, under a random design.

The focus is on the theoretic determination of the minimax rate of convergence. We do not

address issues of estimation of dependence and adaptive estimation.

Finally, we point out that, independently of our work, Efromovich (1999) obtains minimax

rates of convergence for regression estimation for HoÈlder classes under a long-range

dependence and a random design. He proposes a series expansion estimator and shows that it is

adaptive with respect to a smoothness parameter. Our results on minimax rates of convergence

apply to general classes of regression functions satisfying a mild richness assumption.

1.3. A summary of our ®ndings

We summarize our results informally below. Our conclusions are in terms of minimax rates

of convergence under the square L2 loss with a random design. The errors are assumed to be

independent of the explanatory variables.
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1. If the variances of the errors are uniformly upper-bounded, then the regression

function up to a constant can be estimated as well as under independent and

identically distributed (i.i.d.) errors.

2. Under some mild conditions, the minimax risk for estimating the regression function

in a class converges at a rate of the maximum of two quantities: the minimax rate of

the same function class but under i.i.d. errors, and the minimax rate for estimating the

mean value of the regression function.

From the foregoing, the effect of dependence of serially correlated errors on regression is

sort of `parametric', in the sense that it does not affect the rate of convergence more than

adding the risk for estimating a single parameter (the mean of the regression function).

Similar phenomena have been observed earlier for some parametric models (see, for

example, KuÈnsch et al. 1993) and density estimation (Hall and Hart 1990b) both under

long-range dependence.

The paper is organized as follows. Some preliminary considerations are addressed in

Section 2. The main results on regression estimation are presented in Section 3. A key

proposition on minimax risk bounds is presented in Section 4. The proofs of the main

results as well as useful lemmas are given in Section 5.

2. Risks of interests and metric entropy

2.1. Risk for regression estimation

We assume that fX i, i > 1g are i.i.d. with density h with respect to a measure ì. For the

nonparametric class U supposed to contain u, we assume that U is uniformly bounded

throughout the paper.

For regression estimation, we obtain results when the errors are independent of X n, that

is, the conditional covariance matrix Ùn of fåi, 1 < i < ng given X n � X 1, . . . , X n� � does

not depend on X n. We assume that Ùn is known. Let kuÿ vkL2(h) �
�

(uÿ v)2 h dì
ÿ �1=2

be

the L2 distance between two functions u and v with respect to the design density of X 1.

Since U is uniformly bounded, the distance is well de®ned within the function class.

The minimax risk we examine for estimating the regression function u is

R(U; Ù; n) � min
û

max
u2U

Ekuÿ ûk2
L2(h),

where û is over all estimators based on (X i, Yi)
n
i�1 and the expectation is taken under the true

regression function u. The minimax risk measures how well one can possibly estimate u

uniformly over the function class.

The condition, that tr(Ùÿ1
n ) is of order n (tr(�) denotes the trace of a square matrix), will

be used for identifying minimax rates. It is satis®ed by short- and long-range dependent

cases as given in Section 3.3. It also holds for stationary invertible autoregressive errors as

studied in Hall and Hart (1990a). Let ó 2
i � var(åi): A simple suf®cient condition for

tr(Ùÿ1
n ) � n is that sup ó 2

i ,1 and there is a white noise component in the errors, that is,

åi � å(1)
i � å(2)

i , where få(1)
i , i > 1g are i.i.d. and independent of få(2)

i g (see Lemma 7 in
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Section 5). When the trace condition is not satis®ed, rates better than that under i.i.d. errors

are possible. For instance, assume that the errors are independent with decreasing variances

ó 2
i of order iÿ1: Then it is intuitively clear that the rate of convergence can be faster

compared with that under i.i.d. errors.

2.2. Estimation of the mean of the regression function

Related to the above problem of regression estimation is the problem of estimating the mean

value of the regression function with respect to the design density. As will be seen, this

`parametric' problem characterizes the in¯uence of serial dependence of errors on regression

estimation.

Let Ä � fç(u) � � uh dì: u 2Ug be the set of all possible mean values of u(X ) for the

class U. Let

rn � min
ç̂

max
u2U

E(ç̂ÿ ç(u))2 (2)

be the minimax risk for estimating ç(u), where the minimization is over ç̂ based on

(X i, Yi)
n
i�1.

2.3. Estimation of the regression function up to a constant

Long-range dependence makes the estimation of the mean of the regression function harder

and therefore may affect the rate for estimating the whole regression function. In some

applications, it is the trend or change of the function that is of interest. Then it is appropriate

to estimate the regression function up to a constant.

Let u0(x) � u(x)ÿ ç(u) be a centred version of the regression function (centred ac-

cording to the design density). The minimax risk for the estimation of u0 is

R0(U; Ù; n) � min
û0

max
u2U

Eku0 ÿ û0k2
L2(h),

where û0 is over all estimators based on (X i, Yi)
n
i�1.

2.4. Metric entropy as a measure of massiveness of a function class

It is clear that as the function class U grows larger, so the minimax risk increases (or at least

does not decrease). For nonparametric regression with independent errors, it is known that

massiveness of a target function class affects the minimax rate of convergence in terms of the

metric entropy order of the function class (see, for example, Ibragimov and Hasminskii 1977;

Bretagnolle and Huber 1979; BirgeÂ 1983; 1986; Le Cam 1986, Chapter 16; Yatracos 1988;

Yang and Barron 1999). Metric entropy as a measure of massiveness of a function class was

intensively studied in Kolmogorov and Tihomirov (1959), and since then results have been

obtained on the orders of metric entropy for the classical function classes and some others

under various norms (see, for example, Lorentz et al., 1996).
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A ®nite subset NE is called an E-packing set in U under a distance d if d(u, v) . E for

any u, v 2 NE with u 6� v. Let M2(E) � M2(E; U) be the maximal logarithm of the

cardinality of any E-packing set under the L2(h) distance. Clearly M2(E) is non-increasing in

E: The asymptotic behaviour of M2(E) as E! 0 re¯ects how massive the class U is under

the given distance. We call M2(E) the packing E-entropy or simply the metric entropy of U.

Throughout this paper, we assume M2(E) ,1 for every E. 0 (which necessarily requires

U to be bounded in L2(h) norm) and M2(E)!1 as E! 0 (which excludes trivial cases

when U is ®nite). These conditions are satis®ed if U is not ®nite, separable, and compact

in L2(h) norm.

For most function classes, the metric entropies are known only up to orders. For that

reason, we assume that M(E) is an available non-increasing function known to be of order

M2(E): We call a class U rich if, for some constant 0 , ô, 1,

lim inf
E!0

M(ôE)
M(E)

. 1: (3)

This condition is a characteristic of familiar nonparametric classes (except classes of analytic

functions), for which the metric entropy is usually of order Eÿá log 1=E� �â for some á. 0

and â 2 R.

3. Main results

In this paper, the expression an d bn means that lim sup an=bn� �,1: If an d bn and

bn d an (i.e., an and bn are of the same order), we write an � bn:

3.1. Regression estimation

The explanatory variables X 1, X 2, . . . are assumed to be i.i.d. with known density h with

respect to a measure ì: They are further assumed to be independent of the errors åi in model

(1). The following additional assumptions will be used for our results.

Assumption 1. The class U is uniformly bounded, that is, there exists a known constant L

such that sup u2Ukuk1 < L ,1:

Assumption 2. The class U is rich, as de®ned in (3).

Assumption 3. The class U contains the constant functions u � c with c 2 Ä:

Assumption 4. The mean value set Ä contains an interval a, b� � with a , b.

Assumption 5. sup i>1 ó 2
i ,1:

Assumption 6. tr(Ùÿ1
n ) � n:
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Assumption 4 excludes cases where the estimation of ç(u) is trivial.

Choose En such that

M(En) � nE2
n: (4)

Under the richness assumption in (3), any two sequences of solution to the equation are of

the same order, and E2
n gives the minimax rate of convergence for estimating the regression

function under i.i.d. errors (see, for example, BirgeÂ 1983; Le Cam 1986; and Yang and

Barron 1999). An interpretation of the equation is that if we discretize the function class U
using an E-net, then En balances the estimation error of order M(E)=n (due to identifying a

good element in the E-net based on data) and the approximation error (bias squared, due to

discretization) E2. Throughout this paper, unless stated otherwise, En is de®ned as above.

Theorem 1. If Assumptions 1±6 are satis®ed, we have the following conclusions.

(i) The minimax risk for estimating u0 is of order E2
n, that is,

R0(U; Ù; n) � E2
n: (5)

(ii) The minimax risk for regression function estimation is at the rate of the maximum (or

equivalently, the sum) of two quantities: the minimax rate of the same class but

under i.i.d. errors, and the rate for estimating the mean ç � Eu(X ) of the regression

function under the correlated errors. That is,

R(U; Ù; n) � rn � E2
n: (6)

Remarks. (i) Without assuming tr(Ùÿ1
n ) � n (Assumption 6), the above quantities E2

n and

rn � E2
n give valid upper rates respectively (see the proof of Theorem 1 in Section 5), but they

are not necessarily optimal in general (see Section 2.1).

(ii) A parametric analogue of (5) is given in KuÈnsch et al. (1993), where it is shown that

the rate of convergence for estimating a contrast (similar in spirit to u0) remain unchanged

for some ANOVA models.

From the foregoing, in particular, for stationary Gaussian errors independent of X n, the

regression function up to a constant can be estimated as well as under i.i.d. errors. For the

estimation of the whole regression function, however, the minimax rate for estimating ç(u)

may hurt. Roughly speaking, the dif®culty in estimating u is determined by the maximum

of that caused by largeness of the function class U and that caused by the dependence

among the errors in estimating a constant. The separation of the roles of the function class

and dependence is somewhat surprising. This separation may not hold when the random

errors and the explanatory variables are not independent.

From Theorem 1, once we know the metric entropy order of a nonparametric class and

the minimax rate for estimating ç(u), the minimax rate for regression is determined. The

metric entropies for classical function classes are usually of order M(E) � Eÿd=á log(1=E)� �â,

where d is the dimension of X , á is a smoothness parameter of the class measured in

some way (e.g., in terms of derivatives, or a modulus of continuity) and â 2 R. Then,
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solving M(En) � nE2
n, we have E2

n of order nÿ2á=(2á�d) log n� �2áâ=(2á�d)
. If rn � nÿã for some

0 , ã, 1 (as for the long-range dependence case in Section 3.2), then

R(U; Ù; n) �
nÿ2á=(2á�d)(log n)2áâ=(2á�d) if ã. 2á=(2á� d), or ã � 2á=(2á� d) and â > 0

nÿã if ã, 2á=(2á� d), or ã � 2á=(2á� d) and â, 0:

�
If for some reason Eu(X ) � 0 for all u 2U, that is, Ä � f0g, then there is no need to

estimate ç(u): As a consequence of Theorem 1, the rate of convergence for estimating the

regression function is of order E2
n regardless of the dependence among the errors.

We now consider the rate of convergence of rn. Under Assumption 3, the problem of

estimating ç 2 Ä based on Yi � ç� åi, 1 < i < n (without X i, 1 < i < n) is an easier

subproblem with smaller minimax risk than that of estimating ç(u) � Eu(X ) based on

(X i, Yi)
n
i�1 with Yi � u(X i)� åi, 1 < i < n (see Lemma 6 in Section 5). That is, rn > ~rn,

where ~rn is the minimax mean square error of the easier problem. Since fX ign
i�1 is not

involved, ~rn is handled more easily. Some results on ~rn were given in Hall and Hart

(1990b). The following lemma gives useful bounds on rn and ~rn. Let 1T � (1, 1, . . . , 1) be

of dimension n:

Lemma 1. Under Assumption 4, the minimax risk ~rn satis®es

(1TÙÿ1
n 1)ÿ1 d ~rn d (1TÙn1)=n2:

If (1TÙÿ1
n 1)(1TÙn1) � n2 and 1TÙn1 � n, then under Assumptions 3 and 4,

rn � ~rn � 1TÙn1
ÿ �

=n2:

Remarks. (i) The quantity 1TÙÿ1
n 1

ÿ �ÿ1
is the variance of the best linear unbiased estimator

(BLUE) of ç based on Y1, . . . , Yn with Yi � ç� åi, where fåi, 1 < i < ng have the

covariance matrix Ùn: Adenstedt (1974) showed that for a wide range of stationary error

sequences having a spectral density, the minimum variance 1TÙÿ1
n 1

ÿ �ÿ1
depends asymp-

totically only on the behaviour of the spectral density near the origin.

(ii) Note that (1TÙn1)=n2 is the variance of the average of the errors, which determines

the rate of convergence of
Pn

i�1Yi=n as a simple estimator of ç. For the case of long-range

dependence, it behaves as well as the BLUE in terms of rate of convergence (see Adenstedt

1974; Samarov and Taqqu 1988). The condition 1TÙÿ1
n 1

ÿ �
1TÙn1� � � n2 is to say that

BLUE and the simple estimator converge at the same speed (as in the case for the short-

and long-range dependent cases in Section 3.3). The condition 1TÙn1 � n excludes unusual

situations (e.g., independent errors with ó 2
i � iÿ1) where a better rate than E2

n is possible for

regression.

(iii) If jPn
i�1, j�1 cov(åi, å j)j d n, then the dependence is weak and 1TÙn1=n2 � 1=n. As

a result, rn � 1=n and, from Theorem 1, we have the same rate of convergence for

regression estimation as in the case of i.i.d. errors. For another extreme with 1TÙn1 � n2

(see Section 3.3, case 5), the minimax risk for estimating the regression function does not

converge to zero at all under Assumptions 3 and 4, though the rate remains E2
n for

estimating u0:
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Theorem 2. Under Assumptions 1±6, if 1TÙÿ1
n 1

ÿ �
1TÙn1� � � n2 and 1TÙn1 � n then

R(U; Ù; n) � 1TÙn1
ÿ �

=n2 � E2
n: (7)

3.2. Rates under long-range dependence

3.2.1. Long-range dependence

Assume that the errors are stationary and that the spectral density, say f (ë), of the serially

correlated errors exists. Let r(i) denote the correlation between å j and å j�i: The error process

is said to be long-range dependent if, for some c . 0 and 0 , ã, 1,

f (ë) � cëÿ 1ÿã� � as ë! 0 (8)

(see, for example, Cox 1984). Then r( j ) is of order j jjÿã.

Corollary 1. Assume that f (ë) satis®es (8), is continuous except at the origin and is bounded

away from 0: Under Assumptions 1±4, we have ~rn � rn � nÿã and the minimax rate of

convergence for regression estimation is

R(U; Ù; n) � nÿã � E2
n:

3.2.2. An example with Besov classes

For 1 < ó <1, 1 < q <1, and á=d . 1=qÿ 1=2, let Bá
ó ,q(C) be the collections of all

functions g 2 Lq 0, 1� �d such that the Besov norm satis®es kgkBá
ó ,q

< C (see, for example,

DeVore and Lorentz 1993; Triebel 1975). Then the L2 metric entropy is of order Eÿd=á (see,

for example, Triebel 1975; Lorentz et al., 1996, Chapter 15). Assume the design density h(x)

of X with respect to Lebesgue measure ì is bounded above and away from zero. Then the

metric entropy of the Besov class under L2(h) distance is of order Eÿd=á. Application of

Corollary 1 yields the minimax rate of convergence under the long-range dependence:

R(Bá
ó ,q(C); Ù; n) � nÿmin 2á=(2á�d),ã� �: (9)

3.2.3. A comparison with an equally spaced ®xed design

Results on minimax rates are obtained for long-range dependent errors with a one-

dimensional equally spaced ®xed design in Hall and Hart (1990a), Wang (1996) and

Johnstone and Silverman (1997) for some concrete smoothness function classes. The model

being considered is

Yi � u(i=n)� åi, 1 < i < n,

where corr(åi, å j) � cjiÿ jjÿã for some 0 , ã, 1, and u is in Besov class Bá
ó ,q(C) (or a

differentiable class in Hall and Hart 1990a). The minimax rate of convergence for estimating

u under squared L 2 loss is shown to be of order nÿ2áã=(2á�ã).

Assume there are only measurement errors (independent of the sampling sites X i) in the
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responses and the errors are long-range dependent in the order of measurements. For this

case, if one uses an equally spaced ®xed design, and if the order of measurements

corresponds to the order of the sites, the rate of convergence is nÿ2áã=(2á�ã) from the

foregoing. Alternatively, if one uses a random design, from (9), the rate of convergence is

nÿmin(2á=(2á�1),ã), which is faster than that with the ®xed design. An explanation of the

difference in rates is as follows. Under the ®xed design, observations with x values close to

each other are highly correlated. With the random design, however, the orders of the

measurements of the observations at nearby x values are not necessarily adjacent but on

average quite far away from each other, resulting in weaker correlations between ob-

servations that are close in terms of x values. Thus it is clear that the latter is preferred to

the former design. A closer look suggests that the difference in rates is not due to the

difference in random and ®xed designs, but rather because the order of measurements is not

randomized for the ®xed design case. If one uses an equally spaced ®xed design, one

should randomize the order of measurements and we expect the same rate of convergence

as under the random design. This example also illustrates importance of the randomization

principle in statistical experimental design, as well demonstrated in KuÈnsch et al. (1993)

under some parametric settings with long-range dependence.

3.3. Examples of dependence

For simplicity, we focus on stationary errors.

1. Exponentially decaying correlation. Let r( j ) � ó 2è j, j > 0, for some constants

ó 2 . 0 and è with jèj, 1. Then it can be shown that tr(Ùÿ1
n ) � n and (1TÙn1)=n2

is of order nÿ1.

2. Short-range dependence. More generally than in case 1, we assume that the errors are

weakly correlated or short-range dependent in the sense that
Pm

k�0jr(k)j converges as

m!1. Then (1TÙn1)=n2 is of order nÿ1. A special case is ®nite memory

dependence, where the errors are correlated only when they are not far away from

each other, that is, r( j ) � 0 when j > j� for some j�. 1. Another example is

r(k) � jkjÿã with ã. 1.

3. Long-range dependence. Assume f (ë) � f �(ë)j1ÿ eiëjÿ(1ÿã) for some 0 , ã, 1,

where f �(ë) is a strictly positive continuous function. This includes the spectral

density of a fractional Gaussian noise model (Mandelbrot and Van Ness 1968) and a

fractional ARIMA model (Granger and Joyeux 1980; Hosking 1981). For the ®rst

case, r( j ) � (c=2)(j j� 1j2ÿã ÿ 2j jj2ÿã � j jÿ 1j2ÿã) (then r( j ) � c9 jÿã for some

constant c9 . 0). The fractional ARIMA( p, d, q) process has a spectral density

f (ë; d, ö, è) � cjè(eië)j2=jö(eië)(1ÿ eië)d j2, where è(z) � 1ÿPq
j�1è j z

j and ö(z) �
1ÿP p

j�1ö j z
j are polynomials of order q and p, respectively. From Corollary 1,

rn � nÿã (see also Hall and Hart 1990b).

4. Alternating dependence. For the above long-range dependence, the errors are

eventually positively correlated, that is, r( j ) . 0 when j is large enough. Now

suppose r( j ) � c(ÿ1) jj jjÿã for some ã. 0 as j!1: One can obtain such a

dependence from long-range dependent errors fåig by considering f(ÿ1)iåig. Then
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because the covariances essentially cancel out even when 0 , ã, 1, the rate of

convergence for estimating ç(u) under this correlation is still of order 1=n.

5. An excessively highly correlated case. Let Ùn have diagonal elements ó 2 and off-

diagonal elements ó 2è: For 0 , è, 1, Ùn is positive de®nite for all n. For this case,

(19Ùn1�=n2 � 1, and since 1 is an eigenvector of Ùn, the product (1TÙÿ1
n 1)(19Ùn1�

is easily seen to be of order n2 as required in order to apply Theorem 2.

For cases 2±4, it is assumed that the spectral density of the errors is bounded away from

0. Then tr(Ùÿ1
n ) � n (see Lemma 8 in Section 5). Note that the trace condition is

automatically satis®ed for the other cases.

Take the Besov classes Bá
ó ,q(C), for example. Based on Theorem 2, the minimax rate of

convergence for estimating u is nÿ2á=(2á�d) for cases 1, 2 and 4, and is worsened to

nÿmin 2á=(2á�d),ã� � for case 3 (as seen in the previous subsection). For case 5, by Theorem 1,

the minimax rate for estimating u0 is still nÿ2á=(2á�d): However, since (1TÙn1)=n2 � 1, the

minimax risk for estimating u does not converge at all.

4. A key proposition and its derivation

4.1. Minimax upper and lower bounds for regression

Assume that the errors are independent of X n. Let rn � tr(Ùÿ1
n ):

Choose ~En such that

M2(~En) � (1
2
)rn~E 2

n: (10)

Let

øn � 11
2

ÿ �
rn~E 2

n � log 8Ln1=2=~En

� �
and let En be chosen to satisfy

M2(En) � 2øn: (11)

Let En satisfy

M2(En) � nE 2
n=2, (12)

and de®ne

øn � 11
2

ÿ �
nE 2

n � log 8Ln1=2=En

� �
,

ø�n � min(øn, øn):

Typically (e.g., when rn is of a polynomial order in n), the component rn~E 2
n (or nE 2

n)

dominates the other term in øn (or øn ). Then under the richness condition in (3), ~En and En

are of the same order. If rn � n, then ~En, En, En, øn=n, and øn=n are all of the same order.

They are also of the same order as En determined by M(En) � nE2
n in (4) with M(E) of order

M2(E) (see Yang and Barron 1999). Let ó 2 � supi>1 ó 2
i .
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Proposition 1. Under Assumptions 1 and 5, the minimax squared L2(h) risk for regression

function estimation is bounded as follows:

max(E 2
n=8, rn) < R(U; Ù; n) < rn � CL,ó 2ø�n=n,

where CL,ó 2 is a constant depending on L and ó 2:

Remark. Without the richness assumption (3), even under rn � n, the upper and lower

bounds in the above proposition may not be of the same order. For example, for classes of

analytic functions, the metric entropies are of polynomial orders of log(1=E) (Kolmogorov and

Tihomirov 1959) and the upper and lower bounds differ in a logarithmic term unless rn

dominates. It seems that the use of local entropy (instead of global entropy) as pioneered by

Le Cam (1975) and BirgeÂ (1983) in the construction of the upper bound may overcome the

gap.

4.2. Proof of Proposition 1

In Yang and Barron (1999), minimax rates of convergence for regression under independent

Gaussian errors are derived using a connection between density estimation and data com-

pression. The Cesaro average of the Bayes predictive density estimators of the joint

distribution of (X , Y ) based on the uniform prior on a suitably chosen E-net in the regression

function class U is used to produce an estimator of the regression function to obtain a

minimax upper bound. For regression with dependent errors, however, due to correlations, the

Bayes predictive density `estimators' are targeted at the conditional distributions of (X i, Yi),

i > 1, given the past observations. They are no longer appropriate for estimating the

distributions of (X i, Yi). It becomes much harder to derive a rate-optimal estimator under

general conditions on U and Ù. The dif®culty is overcome through rather delicate

adjustments of the Bayes predictive estimators, as will be seen.

Let Z � (X , Y ), z � (x, y), z n � (z1, . . . , zn). Let U n � (u(X 1), . . . , u(X n)) and

u n � (u(x1), . . . , u(xn)).

4.2.1. Lower bound

We prove R(U; Ù; n) > E 2
n=8 and R(U; Ù; n) > rn separately. The second inequality

follows basically from the observation that estimating the whole regression function is at least

as dif®cult as estimating the mean of the regression function. The proof of the ®rst one

utilizes Fano's inequality together with a suitable upper bound on the involved mutual

information.

Let NE n
be an En-packing set with the maximum cardinality in U and let G~En

be an ~En-

net for U, both under L2(h) distance. Since an E-packing set with the maximum cardinality

is automatically an E-covering set, we can ®nd a G~En
such that logjG~En

j � M2(~En). Following

now a standard argument using Fano's inequality (see, for example, BirgeÂ 1983, Proposition

2.8; Yu 1997, p. 427; Yang and Barron 1999, pp. 1570-1571), we have
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min
û

max
u2U

Eukuÿ ûk2
L2(h) >

E 2
n

4
1ÿ (U ; Z n� � log 2

logjNEn
j

 !
,

where the Shannon mutual information I U ; Z n� � is equal to the average (with respect to the

uniform prior w) of the Kullback±Leibler (KL) divergence between pu(z n) and pw(z n) �P
u2NEn

pu(z n)=jNEn
j. Here

pu(z n) �
Yn

i�1

h(xi)

 !
2ð� �ÿn=2jÙnjÿ1=2 exp(ÿ1

2
(y n ÿ u n)9Ùÿ1

n (y n ÿ u n)):

Since the Bayes mixture density pw(z n) minimizes the average KL divergence over all

choices of joint density q(z n) on the sample space Zn, the mutual information is upper

bounded by the maximum KL divergence between pu(z n) and any q(z n). That is,

I(U ; Z n) < max
u2NEn

D(PZ n,ukQZ n ):

We will choose q(z n) � (1=jGj)Pu2G pu(z n) for a certain appropriate covering set G:
Key to the analysis is the following expression for the KL divergence between PZ n,u and

PZ n,v (see Lemma 2 in Section 5):

D PZ n,ukPZ n,v

ÿ � � 1
2
rnkuÿ vk2

L2(h) � 1
2

X
i 6� j

ùÿ1
i, j

 !
Eu(X )ÿ Ev(X )� �2, (13)

where ùÿ1
i, j denotes the (i, j )th element of Ùÿ1

n : When the errors are i.i.d., the second term in

the above expression is zero and one can simply take G to be G~E n
and obtain the right order

upper bound on maxu2NEn
D(PZ n,ukQZ n ), as shown in Yang and Barron (1999). For dependent

errors,
P

i6� jù
ÿ1
i, j might be large compared to rn and the choice of G~En

, together with the

familiar bound (Eu(X )ÿ Ev(X ))2 < kuÿ vk2
L2(h), is not suf®cient for the result. We instead

construct a covering set carefully to handle this term (
P

i 6� jù
ÿ1
i, j )(Eu(X )ÿ Ev(X ))2: The idea

is to enlarge G~En
slightly by adding constants so that, for each u 2 U, we can ®nd v in the

enlarged covering set such that both terms in (13) are well behaved. Details are as follows.

Let An � fa1, a2, . . . , amg, a j � ÿ2L� jä~En be equally spaced points in [ÿ2L, 2L]

with width ä~En and m � b4L=(ä~En)c (recall that L is an upper bound on the supremum

norms of functions in U ). Let us consider an enlarged net ~G~En
� fv� a : v 2 G~E n

and

a 2 Ang: Note that log(j ~G~En
j) < M2(~En)� log(4L=(ä~En)): For any u 2U, there exist

~u 2 G~En
and a� 2 An such that kuÿ ~ukL2(h) < ~En and j � (~uÿ u)h dìÿ a�j < ä~En: Then

ja�j < äEn � j
�

(uÿ ~u)h dìj < (1� ä)~En: Let u� � ~uÿ a�; then j � (uÿ u�)h dìj < ä~En,

and kuÿ u�kL2(h) < kuÿ ~ukL2(h) � ku� ÿ ~ukL2(h) < (2� ä)~En: Clearly we have u� 2 ~G~E n
:

From (13), we have D(PZ n,ukPZ n,u�) < 1
2
(2� ä)2rnE2

n � 1
2

max(0, $n)ä2~E 2
n, where

$n �
P

i 6� j,1<i, j<n ù
ÿ1
i, j . Now choose w1 to be the uniform prior on ~G~En

and let

q(z n) � pw1 (z n) �Pu2 ~GEn
w1(u) pu(z n) and QZ n be the corresponding Bayes mixture

density and distribution, respectively. Let ë(1),n < ë(2),n < . . . < ë(n),n be the eigenvalues

of Ùn: Then $n < 1TÙÿ1
n 1 < nëÿ1

(1),n. Since rn �
Pn

i�1ë
ÿ1
(i),n > ëÿ1

(1),n, we have $n=rn < n:
From the foregoing we have that, for any u 2U,
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D(PZ n,ukQZ n ) � E log
pu(z n)

(1=j ~G~E n
j)
X

u9

2 ~G~En
pu9(z

n)

< E log
pu(z n)

(1=j ~G~En
j) pu� (z n)

� logj ~G~En
j � D(PZ n,ukPZ n,u�)

< M2(~En)� log 4L= ä~En� �ÿ �� 1
2
(2� ä)2rn~E 2

n � 1
2
nrnä

2~E 2
n: (14)

Taking ä � nÿ
1
2, together with our choice of ~En in (10), we have

D(PZ n,ukQZ n ) < log(4Ln1=2=~En)� 11
2
rn~E 2

n: (15)

Thus we have shown that I(U ; Z n) < log(4Ln1=2=~En)� 11
2
rn~E 2

n: By our choice of En in (11),

(I(U ; Z n)� log 2)=logjNEn
j < 1

2
: Thus minû maxu2U Ekuÿ ûk2

L2(h) > E 2
n=8:

The inequality R U; Ù; n� � > rn follows from the simple fact that for any estimator û

based on Z n, letting ç̂ � � ûh dì,

E(ç̂ÿ ç)2 � E

�
ûÿ u� �h dì

� �2

< Ekûÿ uk2
L2(h):

4.2.2. Upper bound

We divide the proof of the upper bound into several steps. In step 1, as in the derivation of

the lower bound, consider the covering set ~G~En
with uniform prior. We show the resulting

Bayes predictive densities (at different sample sizes) are good `estimators' of the conditional

densities of the observations Zi given the past Z iÿ1. The Bayes predictive densities are mix-

tures of Gaussian densities. In step 2, based on the Bayes predictive densities, we construct

density estimators (of the same conditional densities) that have the form of a single Gaussian

density (instead of a mixture), still with good risk bounds. Being a single Gaussian density is

important in the later construction of the regression estimator. In step 3, the risk bounds on

the estimators in Step 2 are shown to imply that the regression function can be estimated well

up to a constant. In step 4, the estimation of the constant is shown to be determined by the

correlations between the errors. Together with step 3, we have a good estimator of the

regression function. In step 5, we consider the case when rn is of higher order than n: A

suitable modi®cation improves the upper rate of convergence. This is why ø�n is used instead

of øn in the upper bound in Proposition 1.

Step 1. As in the derivation of lower bounds, consider the covering set ~G~En
with uniform

prior w1: Let the Bayes predictive density estimators be p̂i(z) � p Zi�1jZ i
ÿ �

evaluated

at Zi�1 � z, which equal pw1 (Z i, z)=pw1 (Z i) for i . 0 and p̂i(z) � pw1 (z) �
1=j ~G~En

j
ÿ �P

u2 ~G~En
pu(z) for i � 0. For n > 1, let

Ùn � Ùnÿ1 ânÿ1

â9nÿ1 ó 2
n

� �
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be the partition of Ùn. Under the Gaussian assumption, given X i�1 � x and (X j, Y j)
i
j�1, Yi�1

has a normal distribution with mean mi,u(xjZ i) � u(x)� â9
iÙ
ÿ1
i Y i ÿ U i� � and variance

ó 2
i�1 ÿ â9

iÙ
ÿ1
i âi. Let

pzi�1jZ i;u(xi�1, yi�1) � h(xi�1) 2ð ó 2
i�1 ÿ â9

iÙ
ÿ1
i âi

� �� �
ÿ1=2 (16)

3 exp ÿ1= 2 ó 2
i�1 ÿ â9

iÙ
ÿ1
i âi

� �� �
yi�1 ÿ mi,u xi�1jZ i

ÿ �ÿ �
2

� �
:

This is the conditional density of Zi�1 given Z i under the regression function u. Then by the

chain rule (see, for example, Barron 1987), for any u 2U,Xnÿ1

i�0

E log
pzi�1jZ i;u(Zi�1)

p̂i(Zi�1)
� E log

pu(Z n)

pw1 (Z n)
� D PZ n,ukQZ n

ÿ �
< øn,

where the last inequality is as in (15). Thus

max
u2U

Xnÿ1

i�0

ED( pzi�1jZ i;uk p̂i) < øn: (17)

Since the squared Hellinger distance satis®es

d2
H( p1, p2) �

�
p

1=2
1 ÿ p

1=2
2

� �2

dì < D( p1kp2),

we have

max
u2U

Xnÿ1

i�0

Ed2
H( pzi�1jZ i;u, p̂i) < øn:

This means that we can estimate (or predict) well the conditional densities of Zi�1 given Z i

by p̂i in terms of the cumulative squared Hellinger risk.

Step 2. Note that p̂i(xi�1, yi�1) takes the form of h(xi�1) ĝ i(yi�1jxi�1), where ĝ i(yi�1jxi�1) is

an estimator of the conditional density of Yi�1 given X i�1 and Z i: It is a mixture of Gaussians

using a posterior based on the uniform prior on the E-net. We now construct an estimator taking

the form of a single Gaussian density. The simpli®ed form (instead of a mixture) is easier to work

with in the next step. First, ®x vi 2 Ri: For given (X j, Y j)
i
j�1 and vi, for each x, let

~mi(x) � ~mi(xjvi) be the minimizer of the Hellinger distance dH ĝ i(�jx), öb� � between ĝ i(yjx)

and the normal density öb(y) with mean b and the variance ó 2
i�1 ÿ â9iÙ

ÿ1
i âi over choices of b

with jbÿ â9
iÙ
ÿ1
i Y i ÿ vi� �j < L. Here ~mi(xjvi) and ui(x) � ui(xjvi) � ~mi(x)ÿ â9

iÙ
ÿ1
i Y i ÿ vi� �

can be viewed as `estimators' of the conditional mean mi,u and of u respectively, based on

(X j, Y j)
i
j�1 except that vi is used in place of U i (unknown) in the second term of

u(x)� â9
iÙ
ÿ1
i Y i ÿ U i� �: Denote by pzi�1jZ i;s;vi the density function of (xi�1, yi�1):

h(xi�1) 2ð ó 2
i�1 ÿ â9

iÙ
ÿ1
i âi

� �� �
ÿ1=2

3 exp ÿ1= 2 ó 2
i�1 ÿ â9

iÙ
ÿ1
i âi

� �� �
yi�1 ÿ (s(xi�1)� â9

iÙ
ÿ1
i (Y i ÿ vi)

� �2
� �

,
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with given Z i, function s(x), and vi. Let vi� be the minimizer of d2
H( p̂i, pzi�1jZ i;ui;vi ) over

vi 2 Ri and denote the corresponding ~mi and ui by ~m�i and u�i . Then, using the triangle

inequality,

d2
H( pzi�1jZ i;u, pzi�1jZ i;u�i ;vi�

) < 2d2
H( pzi�1jZ i;u, p̂i)� 2d2

H( pzi�1jZ i;u�i ;vi�
, p̂i)

< 2d2
H( pzi�1jZ i;u, p̂i)� 2d2

H( pzi�1jZ i;u0
i ;U i , p̂i)

< 2d2
H( pzi�1jZ i;u, p̂i)� 2d2

H( pzi�1jZ i;u, p̂i)

� 4d2
H( pzi�1jZ i;u, p̂i),

where, in the second inequality, u 0
i is ui(xjU i) (vi � U i), and, for the third inequality, we use

the fact that

d2
H( pzi�1jZ i;u0

i ;U i , p̂i) �
�

h(xi�1)d2
H ĝ i(�jxi�1), ö

u0
i�â9

i
Ùÿ1

i (Y iÿU i)

� �
dì

is upper-bounded by�
h(xi�1)d2

H ĝ i(�jxi�1), ömi,u

ÿ �
dì � d2

H( p̂i, pzi�1jZ i;u):

It follows that

max
u2U

Xnÿ1

i�0

Ed2
H pzi�1jZ i;u, pzi�1jZ i;u�i ;vi�

� �
< 4 max

u2U

Xnÿ1

i�0

Ed2
H pzi�1jZ i;u, p̂i

ÿ �
< 4øn:

Thus the estimators pzi�1jZ i;u�i ;vi�
of a simpler form continue to have a good bound on the

cumulative Hellinger risk.

Step 3. Now note that

Ed2
H( pzi�1jZ i;u, pzi�1jZ i;u�i ;vi�

)

� 2E

�
h(x) 1ÿ exp ÿ (u(x)ÿ u�i (x))ÿ â9iÙ

ÿ1
i (U i ÿ vi

�)
� �

2= 8 ó 2
i�1 ÿ â9iÙ

ÿ1
i âi

ÿ �ÿ �� �� �
dì:

From Lemma 3 in Section 5,�
h(x) 1ÿ exp ÿ (u(x)ÿ u�i (x))ÿ â9iÙ

ÿ1
i (U i ÿ vi

�)
� �2

= 8 ó 2
i�1 ÿ â9iÙ

ÿ1
i âi

ÿ �ÿ �� �� �
dì

> cL,ó 2

�
h(x)(u(x)ÿ u�i (x)ÿ ôi)

2 dì,

where ôi �
�

h(x)(u(x)ÿ u�i (x)) dì and cL,ó 2 is a constant depending only on L and ó 2.

Thus, for any u 2U,
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Xnÿ1

i�0

E

�
h(x)(u(x)ÿ u�i (x)ÿ ôi)

2 dì (18)

< cL,ó 2
ÿ1
Xnÿ1

i�0

E

�
h(x) 1ÿ exp ÿ (u(x)ÿ u�i (x))ÿ âiÙ

ÿ1
i (U i ÿ vi

�)9
� �2

= 8 ó 2
i�1 ÿ âiÙ

ÿ1
i â9i

ÿ �ÿ �� �� �
dì

� cL,ó 2
ÿ1
Xnÿ1

i�0

2ÿ1Ed2
H pzi�1jZ i;u, pzi�1jZ i;u�i ;vi�

� �
< 2cL,ó 2

ÿ1øn:

This means that we have obtained a sequence of estimators u�i of u with the variances

E(
�

h(x)(u(x)ÿ u�i (x)ÿ ôi)
2 dì) of uÿ u�i well controlled on average. However, a possibly

large bias remains. To obtain a ®nal estimator of u, we estimate the mean ç(u) � � hu dì
based on current data Z i.

Step 4. For any ç̂i based on Z i, let ^̂ui(x) � u�i (x)ÿ � u�i (x)h(x) dì� ç̂i. Then the new

estimator satis®es�
h(x)(u(x)ÿ ^̂ui(x))2 dì �

�
h(x)(u(x)ÿ u�i (x)ÿ ôi)

2 dì� (ç̂i ÿ ç(u))2:

It follows thatXnÿ1

i�0

E

�
h(x)(u(x)ÿ ^̂ui(x))2 dì �

Xnÿ1

i�0

E

�
h(x)

�
u(x)ÿ u�i (x)ÿ ôi

�2

dì�
Xnÿ1

i�0

E(ç̂i ÿ ç(u))2

< 2cL,ó 2
ÿ1øn �

Xnÿ1

i�0

E(ç̂i ÿ ç(u))2:

Taking ç̂i to be the minimax estimator of ç based on Z i, we haveXnÿ1

i�0

E

�
h(x) u(x)ÿ ûi(x)� �2 dì < 2cL,ó 2

ÿ1øn �
Xnÿ1

i�0

ri:

Here r0 � minç9 maxu2U ç9ÿ ç(u)� �2: As a consequence, we have the cumulative risk bound

1

n

Xnÿ1

i�0

Ekuÿ ^̂uik2
L2(h) < 2cL,ó 2

ÿ1 øn

n
� rn,

where rn � 1=n� �Pnÿ1
i�0 ri. For the usual risk R U; Ù; n� �, we do not need to require ç̂i to

depend only on Z i: Then we set ç̂i � ç̂n for all 1 < i , n, where ç̂n is the minimax

estimator based on Z n: Then the above risk bound becomes 2cL,ó 2
ÿ1øn=n� rn. From

Lemma 4 in Section 5, we have an estimator ûn based on Z n such that

max
u2U

Ekuÿ ûnk2
L2(h) < max

u2U
E
Xnÿ1

i�0

kuÿ ^̂uik2
L2(h) < 2cL,ó 2

ÿ1 øn

n
� rn: (4:19)
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Step 5. When rn is of higher order than n, the upper bound above may be suboptimal.

For instance, suppose we have independent errors with ó 2
i � i1ÿä for some 1 , ä, 2, which

implies that rn � nä: Assume that M2(E) � Eÿd=á for some á. 0. Then the upper bound

rate given in terms of øn is näÿ1ÿ2áä=(2á�d), which is worse than the rate nÿ2á=(2á�d)

obtained with i.i.d. errors. Clearly, this inferior rate is not because the problem is more

dif®cult. It can be improved in general as follows. Let us generate i.i.d. random variables

~å1, ~å2, . . . , ~ån from a standard normal distribution. Let ~Yi � Yi � ~åi, 1 < i < n. Then the

random errors åi � ~åi in ~Yi have covariance matrix ~Ùn � I n �Ùn (I n is the n 3 n identity

matrix). Then ~rn � tr( ~Ùÿ1
n ) < tr(Iÿ1

n ) � n because I n �Ùn > I n implies I n �Ùn� �ÿ1
<

Iÿ1
n (here the symbol `>' for matrix comparison means the difference is non-negative

de®nite). Note also that the variances of the new errors åi � ~åi are uniformly upper-bounded

by ~�ó 2 � ó 2 � 1. Applying similar analysis to (X i, ~Yi) replacing rn by n yieldsXnÿ1

i�0

E

�
h(x) u(x)ÿ u�i (x)ÿ ôi

ÿ �2
dì < 2cL,~�ó 2

ÿ1øn, (4:20)

where the u�i are obtained with the new data (X j, ~Y j)
i
j�1: Estimating ç(u) the same way as

before, we obtain a randomized estimator ûn with risk bounded by 2cL,~�ó 2
ÿ1øn=n� rn. The

estimator depends on both Z n and the generated random variables ~åi, 1 < i < n: One could

average out the randomness in ~åi to obtain a non-randomized estimator with no bigger risk

since the loss being considered is convex. Thus R(U; Ù; n) < 2cL,~�ó 2
ÿ1øn=n� rn: This

completes the proof of Proposition 1.

5. Proofs

5.1. Main results

Proof of Lemma 1. For the upper rate on ~rn, taking ç̂ �Pn
i�1Yi=n, we obtain ~rn <

(1TÙn1)=n2: For the lower bound, consider 2m equally spaced points in Än � [an, bn] � Ä:
Denote the set of these points by Dn and let È take values in Dn with equal probability. Let

än � bn ÿ an� �2ÿm: Then as in the proof of Proposition 1, we have

~rn >
ä2

n

4
1ÿ I È; Y n� � � log 2

mlog 2

� �
:

Similarly to the analysis there, consider a rougher net in Än: Let D9
n be the set of 2m9 equally

spaced points in Än and let ä9
n � (bn ÿ an)2ÿm9. Then it can be shown similarly that

I(È; Y n) < m9log 2� (1=2)(ä9
n)2(1TÙÿ1

n 1). Take bn ÿ an of order (1TÙÿ1
n 1)ÿ1=2 and m9 � 1

to have I(È; Y n) d 1 (note that (1TÙÿ1
n 1)ÿ1 is the variance of the BLUE and thus

(1TÙÿ1
n 1)ÿ1 d 1). Thus there exists a constant C such that I(È; Y n) < C for all n: Take m

suitably large (independent of n) such that (C � log 2)=(m log 2) < 1
2
: Then ~rn > ä2

n=8: This

establishes the lower bound rate (1TÙÿ1
n 1)ÿ1.

For an upper bound on rn in the second statement, consider ç̂n � Y � 1=n� �Pn
j�1Y j:

Then
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E(ç̂n ÿ ç(u))2 � E
1

n

Xn

i�1

u(X i)ÿ ç(u)� � � 1

n

Xn

i�1

åi

 !2

� E
1

n

Xn

i�1

u(X i)ÿ ç(u)� �
 !2

� E
1

n

Xn

i�1

åi

 !2

� 1

n

�
u(x)ÿ ç(u)� �2 h(x) dì� 1TÙn1

n2

<
4L2

n
� 1TÙn1

n2
:

Under the given conditions, together with Lemma 6 later in this section, we have

~rn d rn d 1TÙn1
ÿ �

=n2:

If (1TÙÿ1
n 1)(1TÙn1) � n2, then clearly ~rn � rn � 1TÙn1� �=n2: This completes the proof

of Lemma 1. h

Proof of Theorem 1. The upper bound part for the ®rst conclusion follows from (20) in the

proof of Proposition 1 using û0 � 1=n� �Pnÿ1
i�0 u�i (x)ÿ � u�i (x)h(x) dì
ÿ �

as an estimator of u0:
From (20) and using Lemma 4, we have that

E

�
h(x) u0(x)ÿ û0(x)� �2 dì <

1

n

Xnÿ1

i�0

E

�
h(x) u0(x)ÿ u�i (x)ÿ

�
u�i (x)h(x) dì

� �� �2

dì

< 2cL,~�ó 2
ÿ1øn d E2

n:

Note that Assumption 6 is not needed for the above upper rate of convergence for estimating

u0:
To prove E2

n is also a lower rate for R0(U; Ù; n), consider the distance d0 de®ned as

d0(u, v) � � u0 ÿ v0� �2 h dì, where u0 � uÿ � uh dì and v0 � vÿ � vh dì: Replacing

L2(h) distance by d0 in the derivation of the lower bound in the proof of Proposition 1,

we have

R0(U; Ù; n) > ç2
n=8,

where çn is determined by M0(çn) � 2øn with M0(E) being the packing entropy of U under

d0: It is straightforward to show that M0(E) is of the same order as M2(E) for a uniformly

bounded rich class. As a consequence, under Assumption 6, çn � En:
The second conclusion in (6) follows directly from Proposition 1 using that E 2

n and ø�n=n

are both of order E2
n under the condition tr(Ùÿ1

n ) � n: Note that the upper bound in

Proposition 1 always satis®es ø�n=n d E2
n, regardless of the trace condition. This completes

the proof of Theorem 1. h

Proof of Theorem 2. The conclusion follows directly from Theorem 1 and Lemma 1. h
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Proof of Corollary 1. Assumption 5 is obviously satis®ed. From Lemma 8 later in this

section, Assumption 6 is satis®ed. It remains to verify (1TÙÿ1
n 1)(1TÙn1) � n2, (1TÙn1) � n

and (1TÙn1)=n2 � nÿã. Since r( j ) � j jjÿã, it is straightforward to show that (1TÙn1) �
n2ÿã: Under our assumptions on the spectral density, Adenstedt (1974, Theorem 5.2) shows

that (1TÙÿ1
n 1)ÿ1 is of order nÿã ± note that (1TÙÿ1

n 1)ÿ1 is the variance of the BLUE. This

completes the proof of Corollary 1. h

5.2. Technical lemmas

Let PZ n,u denote the distribution of Z n � X i, Yi� �ni�1 when the regression function is u. The

density of PZ n,u is

pu(z n) �
Yn

i�1

h(xi)

 !
2ð� �ÿn=2jÙnjÿ1=2 exp(ÿ1

2
(y n ÿ u n)9Ùÿ1

n (y n ÿ u n)):

Let ùÿ1
i, j denote the (i, j )th element of Ùÿ1

n : Recall that the Kullback±Leibler divergence

D(PkQ) between two distributions P and Q with densities p and q with respect to ì is

de®ned as D(PkQ) � � p log( p=q) dì:

Lemma 2. The KL divergence between PZ n,u and PZ n,v is

D(PZ n,ukPZ n,v) � 1
2
tr(Ùÿ1

n )kuÿ vk2
L2(h) � 1

2

X
i6� j

ùÿ1
i, j

 !
(Euÿ Ev)2:

Proof. We have

2 log
pu(z n)

pv(z n)
� 2(u n ÿ vn)9Ùÿ1

n y n ÿ (u n)9Ùÿ1
n u n � (vn)9Ùÿ1

n vn:

Given X n,

2E Z njX n;u log
pu(Z n)

pv(Z n)
� 2 u n ÿ vn� �Ùÿ1

n u n� �9ÿ u nÙÿ1
n u n� �9� vnÙÿ1

n vn� �9 (21)

� (u n ÿ vn)Ùÿ1
n (u n ÿ vn)9:

Then

2E Z n,ulog
pu(Z n)

pv(Z n)
� E

X
i, j

ùÿ1
i, j (u(X i)ÿ v(X i))(u(X j)ÿ v(X j))

 !

�
Xn

i�1

ùÿ1
i,i kuÿ vk2

L2(h) �
X
i6� j

ùÿ1
i, j E(u(X i)ÿ v(X i))(u(X j)ÿ v(X j)):

Under the i.i.d. assumption on X 1, . . . , X n, we have
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2E Z n,u log
pu(Z n)

pv(Z n)
�
Xn

i�1

ùÿ1
i,i kuÿ vk2

L2(h) �
X
i 6� j

ùÿ1
i, j

 !
(E(u(X )ÿ v(X )))2:

This completes the proof of Lemma 2. h

Lemma 3. Assume supx jg(x)j < A for some constant A and ó 2 < ó 2
0. Let h(x) be a

probability density function. Then

min
è2R

�
h(x) 1ÿ eÿ( g(x)ÿè)2=ó 2

� �
dì > c

�
h(x) g(x)ÿ

�
h(x)g(x) dì

� �2

dì,

where the constant c depends only on A and ó 2
0.

Proof. It is easy to prove that, for jgj < A,

1ÿ eÿ( g(x)ÿè)2=ó 2

>
c(g ÿ è)2, jèj < 2A,

cg2, jèj. 2A,

(
for some constant c depending only on A and ó 2

0. It follows that�
h(x) 1ÿ eÿ( gÿè)2=ó 2

� �
dì >

c
�

h(x)(g(x)ÿ è)2 dì, jèj < 2A,

c
�

h(x)g(x)2 dì, jèj. 2A:

(
Since

�
h(x) g(x)ÿ a� �2 dì is minimized when a � � h(x)g(x) dì, the lemma follows. h

Lemma 4. Let û1, . . . , ûk be k estimators of u. Then the estimator ^̂uk � 1=k� �Pk
i�1 ûi

satis®es

Ekuÿ ^̂ukk2
L2(h) <

1

k

Xk

i�1

Ekuÿ ûik2
L2(h):

Proof. The result follows from the fact that kuÿ vk2
L2(h) is convex in v. h

Lemma 5. Let Ùn be the n 3 n ®nite section of the covariance matrix of a stationary

process. Assume Ùn is invertible for n > 1: Then tr Ùÿ1
n

ÿ �
is at least of order n. More

generally, if supi>1 ó 2
i ,1, then tr Ùÿ1

n

ÿ � � n.

Proof. Let Ùn be as in step 1 of the proof of the upper bound of Proposition 1. Then simple

linear algebra gives

Ùÿ1
n �
Ùÿ1

nÿ1 � (ó 2
n ÿ â9

nÿ1Ù
ÿ1
nÿ1ânÿ1)ÿ1Ùÿ1

nÿ1ânÿ1â9
nÿ1Ù

ÿ1
nÿ1 ÿ(ó 2

n ÿ â9
nÿ1Ù

ÿ1
nÿ1ânÿ1)ÿ1Ùÿ1

nÿ1ânÿ1

ÿ(ó 2
n ÿ ânÿ1Ù

ÿ1
nÿ1â

9ÿ1

nÿ1)ÿ1â9
nÿ1Ù

ÿ1
nÿ1 (ó 2

n ÿ â9
nÿ1Ù

ÿ1
nÿ1ânÿ1)ÿ1

 !
:

It follows that
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tr Ùÿ1
n

ÿ �
> tr Ùÿ1

nÿ1

ÿ �� ó 2
n ÿ â9

nÿ1Ù
ÿ1
nÿ1ânÿ1

� �ÿ1

> tr Ùÿ1
nÿ1

ÿ �� óÿ2
n :

The conclusion follows by induction. h

Let rn be de®ned as in (2) and let ~rn � minç̂ maxç2Ä E(ç̂ÿ ç)2 be the minimax risk for

estimating ç based on (Yi)
n
i�1 under the model Yi � ç� åi, 1 < i < n.

Lemma 6. Under Assumption 3, we have rn > ~rn:

Proof. Under Assumption 3, rn decreases when u 2 U is instead restricted to the set of

constant functions fç, ç 2 Äg: For the restricted model, it is easy to see by the factorization

theorem that (Y1, . . . , Yn) is a suf®cient statistic for ç: Then for any estimator ç̂ based on

(X i, Yi)
n
i�1, we may take ç̂ � E(ç̂jY1, . . . , Yn) to obtain an estimator based only on

Y1, . . . , Yn with no bigger mean squared error. The conclusion follows. h

The following two lemmas give suf®cient conditions for tr(Ùÿ1
n ) � n as used in Section

3.

Lemma 7. Assume that supi ó 2
i ,1 and that Ùn can be expressed as the sum of two

components Ùn � Ù(1)
n �Ù(2)

n , where Ù(1)
n � diag (ù1,n, . . . , ùn,n) with min1<i<n ùi,n >

c . 0 for some constant c . 0 independent of n, and Ù(2)
n is non-negative de®nite. Then

tr(Ùÿ1
n ) � n.

Proof. By Lemma 5, under the condition supi ó 2
i ,1, we have tr(Ùÿ1

n ) � n: Under the other

condition, we have Ùn > Ù(1)
n and hence Ùÿ1

n < (Ù(1)
n )ÿ1: So tr(Ùÿ1

n ) < tr(Ù(1)
n )ÿ1 d n. This

completes the proof of Lemma 7. h

Lemma 8. For stationary serially correlated errors with spectral density bounded away from

zero, tr Ùÿ1
n

ÿ � � n.

Proof. From Lemma 5, tr Ùÿ1
n

ÿ �
is at least of order n. From Grenander and SzegoÈ (1958,

p. 64), the minimum eigenvalue of Ùn is uniformly bounded away from zero for n > 1:
Since tr Ùÿ1

n

ÿ �
is the sum of the reciprocals of the eigenvalues of Ùn, we have tr Ùÿ1

n

ÿ �
d n.

This completes the proof of Lemma 8. h
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