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Nonparametric Regression with Missing Outcomes Using Weighted

Kernel Estimating Equations

Lu Wang, Andrea Rotnitzky and Xihong Lin ∗

Abstract

We consider nonparametric regression of a scalar outcome on a covariate when the outcome

is missing at random (MAR) given the covariate and other observed auxiliary variables. We

propose a class of augmented inverse probability weighted (AIPW) kernel estimating equations

for nonparametric regression under MAR. We show that AIPW kernel estimators are consistent

when the probability that the outcome is observed, i.e., the selection probability, is either

known by design or estimated under a correctly specified model. In addition, we show that

a specific AIPW kernel estimator in our class that employs the fitted values from a model

for the conditional mean of the outcome given covariates and auxiliaries is double-robust, i.e.

it remains consistent if this model is correctly specified even if the selection probabilities are

modeled or specified incorrectly. Furthermore, when both models happen to be right, this

double-robust estimator attains the smallest possible asymptotic variance of all AIPW kernel

estimators and maximally extracts the information in the auxiliary variables. We also describe

a simple correction to the AIPW kernel estimating equations that while preserving double-

robustness it ensures efficiency improvement over non-augmented IPW estimation when the

selection model is correctly specified regardless of the validity of the second model used in the

augmentation term. We perform simulations to evaluate the finite sample performance of the

proposed estimators, and apply the methods to the analysis of the AIDS Costs and Services

Utilization Survey data. Technical proofs are available online.
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1 INTRODUCTION

The existing missing data literature mainly focuses on estimation methods in parametric regression

models, i.e. models for the conditional mean of an outcome given covariates indexed by finite

dimensional regression parameters. However, the functional form of the dependence of an outcome

on a covariate is often unknown in advance and can be complicated (Hastie and Tibshirani 1990;

Wand and Jones 1994). For example, Zhang et al. (2000) found that the profile of progesterone

level during a menstrual cycle follows a nonlinear pattern which is hard to fit using standard

parametric models and is best fitted by non-parametric smoothing techniques. Likewise, Harezlak,

et al. (2007) found that the protein intensities from mass spectrometry are very complex and need

to be fit using nonparametric smoothing methods. Limited literature is available for nonparametric

regression in the presence of missing data.

Our work is motivated by the AIDS Costs and Services Utilization Survey (ACSUS) (Berk et

al. 1993). The ACSUS sampled subjects with AIDS in 10 randomly selected U.S. cities with the

highest AIDS rates. A question of interest in this study is how the risk of hospital admission one

year after study enrollment is related to the baseline CD4 counts. Although it is known that a lower

CD4 count is associated with a higher risk of hospitalization, the functional form of dependence

is unknown and expected to be nonlinear with a potential threshold. We are hence interested

in modeling this relationship nonparametrically. However, about 40% of the patients did not

have the first year hospital admission data available. As shown in Section 4, naive nonparametric

regression using complete data only could yield an inconsistent estimator of the mean curve if the

missing is not completely at random, a likely situation in this problem. It is therefore of interest

to develop flexible nonparametric regression methods to estimate the effect of baseline CD4 counts

on the risk of hospitalization that adequately adjust for outcomes missing at random (MAR), i.e.

missing depending on observed data (Little and Rubin 2002). In addition, because the fraction

of missing outcomes is large, it is also important that the methodology maximally exploits the

information in available auxiliary variables. The methods we develop in this paper are also useful

for nonparametric regression estimation in two-stage studies (Pepe 1992), where the second-stage

outcome is not observed for all study units and the probability of observing the outcome depends

on the first-stage auxiliaries and covariates, but is independent of the outcome, i.e. it is MAR.

Limited work has been done on nonparametric regression in the presence of missing data. Wang

et. al. (1998) considered estimation of a non-parametric regression curve with missing covariates.

Liang et. al. (2004) considered estimation of a partially linear model with missing covariates
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and described inverse probability weighted (IPW) estimation of the non-parametric component of

the model. Chen et. al. (2006) studied local quasi-likelihood estimation with missing outcomes

when missingness depends only on the regression covariate. None of these articles considered,

as we do here, the possibility that always observed auxiliaries are available, a case that arises

often in practice. Our work differs in that we propose augmented inverse probability weighted

(AIPW) kernel estimators that exploit the information in the auxiliary variables while at the same

time allowing for the possibility that missingness may depend on them, thus making the MAR

assumption more plausible.

In this paper we generalize kernel estimating equation methods (Wand and Jones 1995; Fan

and Gibjels 1996; Carroll et al. 1998) to accommodate outcomes missing at random in a similar

spirit to IPW and AIPW methods for parametric regression (Robins et al. 1995; Rotnitzky and

Robins 1995; Robins et al. 1994; Rotnitzky et al. 1997; Robins 1999). After studying the

properties of naive kernel estimating equations based on complete cases, we propose the IPW

kernel estimating equations and a class of AIPW kernel estimating equations. We present the

asymptotic properties of the solutions to these weighted kernel estimating equations and compare

them in terms of asymptotic biases and variances. We argue that clever choices of the augmentation

term can yield important efficiency gains over the IPW kernel estimators. The proposed IPW and

AIPW kernel estimators are consistent under MAR if the missingness mechanism is known by

design or can be parametrically modeled. Indeed, with one specific choice of the augmentation

term, the AIPW kernel estimator confers some protection against model misspecification in that it

remains consistent even if the model for the missingness probabilities is misspecified provided that

a parametric model for the conditional mean of the outcome given the covariates and auxiliaries

is correctly specified, a property known as double-robustness.

2 THE GENERALIZED NONPARAMETRIC MODEL WITH
MISSING OUTCOMES

We consider a generalized nonparametric mean model when the outcome may be missing at ran-

dom. Specifically, suppose the study design calls for a vector of variables (Yi, Zi, U i) to be measured

in each subject i of a random sample of n subjects from a population of interest. The variable

Yi denotes the outcome which may not be observed in all subjects and the variable Zi denotes a

scalar covariate that is always observed. We assume that the mean of Yi depends on Zi through

2

Hosted by The Berkeley Electronic Press



a generalized nonparametric model

g(µi) = θ(Zi), (1)

where g(·) is a known monotonic link function (McCullagh and Nelder, 1989) with a continuous first

derivative, µi = E (Yi|Zi), and θ(z) = g {E (Y |Z = z)} is an unknown smooth function of z that

we wish to estimate. The variables U i , which we assume are always observed, are recorded in the

dataset for secondary analyses. However, for our purposes they are regarded as auxiliary variables

as we are not interested in estimation of E (Yi|Zi, U i) , but rather in estimation of E (Yi|Zi). The

covariates U i are nevertheless useful in that they can both help explain the missing mechanism

and improve the efficiency with which we estimate the nonparametric function θ(·).
We assume that outcomes are missing at random (MAR) (Little and Rubin 2002), which in

our setting amounts to assuming that

Pr(Ri = 1|Zi, U i, Yi) = Pr(Ri = 1|Zi,U i) (2)

where Ri = 1 if Yi is observed and Ri = 0 otherwise. That is, we assume the probability that

the outcome is missing may depend on the observed data, i.e. covariates and auxiliaries, but is

independent of the outcome given the observed data. This assumption automatically holds in two

stage sampling designs (Pepe 1992; Reilly and Pepe 1995) with covariates and auxiliaries measured

at the first stage and outcomes measured on a subsample at the second stage. Using probabilities

of selection into the second stage that depend on the variables collected at the first stage can help

improve the efficiency with which one estimates the regression of Y on Z (Breslow and Cain 1988).

3 THE KERNEL ESTIMATING EQUATIONS FOR MISSING
OUTCOMES AT RANDOM

In the absence of missing data, local polynomial kernel estimating equations have been proposed

by Carroll et al. (1998) as an extension of local likelihood estimation. When the data are not fully

observed, one naive estimation approach is to simply solve the local polynomial kernel estimating

equations using only completely observed units. However, as we show in Theorem 1 in Section

4, the resulting estimator θ̂naive (z) is generally inconsistent under MAR, except when: a) the

conditional mean of E(Y |Z, U) depends at most on Z or, b) the selection probability Pr(R =

1|Z,U) depends at most on Z. This result is not surprising once we connect our inferential

problem to causal inference objectives and relate it to well known facts in causality. The MAR

assumption (2) is equivalent to the assumption of no unmeasured confounding (Robins et al.
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1999) or ignorability (Rubin, 1976) for the potential outcome under treatment R = 1 in the

subpopulation with Z = z. This assumption stipulates that, conditional on Z = z, U are the

only variables that can simultaneously be i) correlates of the outcome within treatment level and

ii) predictors of treatment R = 1. When a) or b) holds, either i) or ii) is violated. In such case,

the effect of R = 1 on Y is unconfounded and consequently naive conventional, i.e. unadjusted,

estimators of the association of Y with R = 1 conditional on Z = z are consistent estimators

of the causal estimand of interest. In fact, when b) holds but a) is false, the naive estimator

will be consistent but inefficient because it fails to exploit the information about E (Y |Z = z) in

the auxiliary variables U . Thus, even in such setting it is desirable to develop alternative, more

efficient, estimation procedures. The Augmented Inverse Probability Weighted (AIPW) kernel

estimators developed in this paper address this issue.

When the outcomes are missing at random, Robins et al. (1995) and Rotnitzky and Robins

(1995) proposed an inverse probability weighted (IPW) estimating equation for parametric regres-

sion, i.e. when θ (·) is parametrically modeled as θ (·;ν) indexed by a finite dimensional parameter

vector ν, where ν ∈ Rk. Robins and Rotnitzky (1995) showed that one can improve the efficiency

of the IPW estimator by adding to the IPW estimating function a parametric augmentation term.

We extend their idea and propose a class of AIPW kernel estimating equations for estimating the

non-parametric function θ (·). We weight the units with complete data by either the inverse of the

true selection probability πi0 = Pr(Ri = 1|Zi, U i) (if known, for instance as in two-stage sampling

designs) or the inverse of an estimator of it, and add an adequately chosen augmentation term.

We show that, just as for estimation of a parametric model for θ (·) , inclusion of the augmentation

term can lead to efficiency improvement for estimation of the nonparametric regression function

θ (·). Unlike parametric regression, the augmentation term depends on a kernel function.

Specifically, let Kh(s) = h−1K(s/h), where K(·) is a mean-zero density function. Without loss

of generality, we here focus on local linear kernel estimators. For any scalar x, define G(x) = (1, x)T

and α = (α0, α1)T . For any target point z, the local linear kernel estimator approximates θ(Zi)

in the neighborhood of z by a linear function G(Zi − z)T α. Let µ(·) = g−1(·). Suppose we

postulate a working variance model var (Yi|Zi) = V [µ{θ(Zi)}; ζ], where ζ ∈ Rr is an unknown

finite dimensional parameter and V (·, ·) is a known working variance function. To estimate πi0 we

postulate a parametric model

πi0 = π(Zi, U i; τ ), (3)

where π(Z,U ; τ ) is a known smooth function of an unknown finite dimensional parameter vector
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τ ∈ Rk. For example, we can assume a logistic model logit(πi0) = τ1 + τ2Zi + τT
3 U i, where

τ = (τ1, τ2, τ
T
3 )T . We compute τ̂ , the maximum likelihood estimator of τ under model (3) and

then we estimate πi0 with π̂i = π(Zi, U i; τ̂ ). Then we define the augmented inverse probability

weighted (AIPW) kernel estimating equations as

n∑

i=1

{UIPW,i (α)−Ai (α)} = 0, (4)

where

UIPW,i (α) =
Ri

π̂i
Kh(Zi − z)µ(1)

i V −1
i G(Zi − z)

[
Yi − µ{G(Zi − z)T α}] (5)

Ai (α) =
(

Ri

π̂i
− 1

)
Kh(Zi − z)µ(1)

i V −1
i G(Zi − z)

[
δ(Zi, U i)− µ{G(Zi − z)T α}]

with µ
(1)
i is the first derivative of µ(·) evaluated at G(Zi − z)T α , δ(Zi, U i) is any arbitrary,

user-specified, possibly data-dependent, function of Zi and U i, and Vi = V [µ{G(Zi − z)T α}; ζ].

As ζ is unknown in practice, we estimate it using the inverse probability weighted moment equa-

tions
∑n

j=1 Rj π̂
−1
j V

(1)
j

[
{Yj − α̂0,j(ζ)}2 − V {α̂0,j(ζ), ζ}

]
= 0, where V

(1)
j = ∂V {α̂0,j(ζ); ζ} /∂ζ,

and α̂j(ζ) = {α̂0,j(ζ), α̂1,j(ζ)}T solve (4) with z = Zj , j = 1, ..., n,. Denote the resulting es-

timator by ζ̂ . The AIPW estimator of θ (z) is θ̂AIPW (z) = α̂0,AIPW (ζ̂) where α̂AIPW ={
α̂0,AIPW (ζ̂), α̂1,AIPW (ζ̂)

}
solves (4) with Vi replaced by V [µ{G(Zi − z)T α}; ζ̂ ].

In the AIPW kernel estimating equations (4), the term UIPW,i (α) is zero for subjects with

missing outcomes and for those with observed outcomes it is simply equal to their usual contribu-

tion to the local kernel regression estimating equations weighted by the inverse of their probability

of observing the outcome given their auxiliaries and covariates. The term Ai (α), which is often

referred to as an augmentation term, differs from that used in parametric regression (eq.38 and

eq.39, Robins et al. 1994) in that it additionally includes the kernel function Kh(·), and in that it

approximates µ{θ(Zi)} = g−1{θ(Zi)} by the local polynomial µ{G(Zi − z)T α}.
Two key properties, formally proved in Section 4, make the AIPW kernel estimating equation

methodology appealing, namely: (1) exploitation of the information in the auxiliary variables of

subjects with missing outcomes and (2) double robustness.

Informally, property (1) is seen because both the subjects with complete data and those with

missing outcomes in a local neighborhood of Z = z have a non-negligible contribution to the

AIPW kernel estimating equations. Consider the alternative IPW kernel estimator θ̂IPW (z),

which is obtained by simply solving the IPW kernel estimating equations
∑

i UIPW,i (α) = 0, i.e.

ignoring the augmentation term in the estimating equations (4). Although θ̂IPW (z) depends on the

5
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auxiliary variables U of the units with missing outcomes through the estimators τ̂ that define the

π̂i’s, this information is asymptotically negligible. Specifically, in Theorem 2, we show that when

the support of Z is compact, under regularity conditions, the asymptotic distribution of θ̂IPW (z)

as h → 0, n →∞ and nh →∞ is the same regardless of whether one uses the true πi0 (and hence

do not use auxiliary data of incomplete units) or the fitted value π̂i computed under a correctly

specified parametric model (3). This is different from inference under a parametric regression

model for E (Y |Z) where, as noted by Robins et al. (1994, 1995), estimation of the missingness

probabilities helps improve the efficiency in estimation of regression coefficients. The reason is that

the convergence of the ML estimator of πi0 under a parametric model is at the
√

n-rate while non-

parametric estimation of θ (z) is at a slower rate. To see this note that only the O (nh) units that

have values of Z in a neighborhood of z of width O (h) contribute to the IPW kernel estimating

equations for E (Y |Z = z), so only the auxiliary variables of these units are relevant. However, as

n →∞, the data of these units could not enter into the IPW kernel estimating equations via the

estimation of πi0 through the estimation of the finite dimensional parameter τ . This is so because

for computing τ̂ parametrically all n units are used and the contribution of the O (nh) relevant

units is asymptotically negligible. The above discussions suggest that compared to the IPW kernel

estimator, the AIPW kernel estimator of θ(z) can better explore the information in the auxiliary

variables of subjects with missing outcomes.

To construct AIPW estimators with property (2), the double-robustness, we specify a para-

metric model

E(Yi|Zi, U i) = δ (Zi, U i; η) , (6)

where η is an unknown finite dimensional parameter vector, and we estimate η using the method of

moments estimator η̂ based on data from completely observed units. Under the MAR assumption

(2), η̂ is
√

n− consistent for η, provided model (6) is correctly specified (Little and Rubin 2002).

We then compute θ̂AIPW (z) using δ(Zi, U i) = δ (Zi, U i; η̂) . In Theorem 3 in Section 4, we show

that such estimator θ̂AIPW (z) is doubly robust, that is, it is consistent when either model (3)

for πi0 is correct or model (6) for E(Yi|Zi, U i) is correct, but not necessarily both. The practical

consequence of double-robustness is that it gives data analysts two opportunities of carrying out

valid inference about θ (z), one for each of the possibly correctly specified models (6) or (3). In

contrast, as shown in Theorem 1 in Section 4, consistency of the IPW kernel estimator θ̂IPW (z)

requires that the selection probability model (3) for πi0 must be correctly specified. One may

question the possibility that the fully parametric model (6) for E(Yi|Zi, U i) is correct when in fact
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the model of scientific interest for E (Yi|Zi) is left fully non-parametric precisely because of the

lack of knowledge about the dependence of the mean of Y on Z. This valid concern is dissipated

when it is understood that model (6) is only a working model that simply serves to enhance the

chances of getting nearly correct (and indeed, nearly efficient) inference. Aside from this, it should

also be noted that it is possible that data analysts may have refined knowledge of the conditional

dependence of Y on Z within level of U , but not marginally over U .

In addition, in Section 4 we show that the preceding double-robust estimator θ̂AIPW (z) has

an additional desirable property. Specifically, if model (6) is correctly specified then the double-

robust estimator θ̂AIPW (z) has the smallest asymptotic variance among all estimators solving

AIPW kernel estimating equations with πi0 either known or estimated from a correctly specified

parametric model (3). That is, the asymptotic variance of the resulting double-robust estimator

θ̂AIPW (z) that uses δ(Zi, U i) = δ (Zi,U i; η̂) with η̂ a
√

n−consistent estimator of η under a

correct model (6), is less than or equal to that of an AIPW kernel estimator using any other

arbitrary function δ(Zi, U i) when the selection probability model (3) is correct.

Remark: Our estimators θ̂AIPW (z) use the IPW method of moments estimator of the variance

parameter ζ. Although one could construct an AIPW method of moments estimator of ζ, this

is unnecessary because improving the efficiency in estimation of the parameters ζ does not help

improve the efficiency in estimation of the nonparametric function θ(z). This is in accordance to

estimation of parametric regression models for E (Y |Z), where it is well known that the efficiency

of two-stage weighted least squares is unaffected by the choice of
√

n− consistent estimator of

var (Y |Z) at the first stage. In fact, Theorem 3 in Section 4 asserts that the efficiency with which

θ(z) is estimated is unaltered even if the working model for var (Y |Z) is incorrectly specified. This

is in contrast to parametric regression models where incorrect modeling of var (Y |Z) results in

inefficient estimators of the regression parameters. The reason is that nonparametric regression is

local and variability in a diminishing neighbor of z is constant asymptotically.

4 ASYMPTOTIC PROPERTIES

4.1 Asymptotic properties of the proposed estimators

In this section, we investigate the asymptotic properties of the AIPW local linear kernel estimator

introduced in the preceding section and compare it with the naive and IPW nonparametric esti-

mators. In our developments we make the following assumptions: I) n →∞, h → 0, and nh →∞;

II) z is in the interior of the support of Z; and III) The regularity conditions (i) and (ii) stated at
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the beginning of the web Appendix hold.

Denote by θ̃naive(z), θ̃IPW (z), θ̃AIPW (z) the asymptotic limits of θ̂naive(z), θ̂IPW (z), θ̂AIPW (z).

The AIPW kernel estimator θ̂AIPW (z) solves (4). The IPW kernel estimator θ̂IPW (z) solves
∑n

i=1 UIPW,i(α) = 0, where UIPW,i(α) is defined in (5). The naive estimator θ̂naive(z) is the

standard kernel estimator using only the complete data and solves a kernel estimating equation

similar to the IPW kernel estimating equation
∑n

i=1 UIPW,i(α) = 0 except that π̂i is set to be 1 for

all units. Standard arguments on the convergence of solutions to kernel estimating equations imply

that under assumptions I)-III) there should exist a sequence of solutions (α̂0,naive, α̂1,naive) of the

naive kernel estimating equations at z such that as the sample size n →∞, the sequence converges

in probability to a vector (α̃0,naive, α̃1,naive) with the first component α̃0,naive, throughout denoted

as θ̃naive (z), satisfying

E
[
Rµ(1){θ̃naive (z)}V −1{θ̃naive (z) ;ζ̃}

[
Y − µ{θ̃naive (z)}

]
|Z = z

]
= 0 (7)

where ζ̃ is the probability limit of ζ̂.

Likewise, the IPW kernel estimating equations should have a sequence of solutions (α̂0,IPW , α̂1,IPW )

that converge in probability to a vector (α̃0,IPW , α̃1,IPW ) with the first component α̃0,IPW ,

throughout denoted as θ̃IPW (z), satisfying

E

[
R

π̃
µ(1){θ̃IPW (z)}V −1{θ̃IPW (z) ;ζ̃}

[
Y − µ{θ̃IPW (z)}

]
|Z = z

]
= 0, (8)

where π̃ = π(Z,U ; τ̃ ) , and τ̃ is the probability limit of τ̂ .

Similarly, the AIPW kernel estimating equations (4) should have a sequence of solutions

(α̂0,AIPW , α̂1,AIPW ) that converge in probability to a vector (α̃0,AIPW , α̃1,AIPW ) with the first

component α̃0,AIPW , throughout denoted as θ̃AIPW (z), satisfying

E

[
R

π̃
µ(1){θ̃AIPW (z)}V −1{θ̃AIPW (z) ;ζ̃}

[
Y − µ{θ̃AIPW (z)}

]
|Z = z

]
+ E

{(
R

π̃
− 1

)

×µ(1){θ̃AIPW (z)}V −1{θ̃AIPW (z) ;ζ̃}
[
δ̃(Z,U)− µ{θ̃AIPW (z)}

]
|Z = z

}
= 0 (9)

where δ̃(Z,U) = δ (Z,U ; η̃), and η̃ is the probability limit of η̂.

Throughout we assume that such sequences exist. Theorem 1 exploits the form of (7), (8), and

(9) to derive concise expressions for the probability limits of θ̂naive (z) , θ̂IPW (z) , and θ̂AIPW (z)

under MAR.

THEOREM 1 Under the MAR assumption (2), the following results hold:

8
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(I) The probability limit θ̃naive (z) of the naive kernel estimator defined in (7) satisfies θ̃naive (z) =

µ−1 [µ{θ(z)}+ cov (R, Y |Z = z) /E (R|Z = z)] ;

(II) The probability limit θ̃IPW (z) of the IPW kernel estimator defined in (8) satisfies θ̃IPW (z) =

θ(z) when π̂i is either computed under a correctly specified model (3) or is replaced by the true πi0

in the IPW kernel estimating function (5);

(III) The probability limit θ̃AIPW (z) of the AIPW kernel estimator defined in (9) satisfies

θ̃AIPW (z) = θ(z) when the AIPW kernel estimating equations (4) use either i) the true πi0 or

π̂i computed under a correctly specified model (3); or ii) δ(Z, U) = E(Y |Z, U), or δ(Z,U) =

δ(Z,U ;η̂) with η̂ calculated under a correctly specified model (6).

The proof of Theorem 1 is given in web Appendix A.1. It follows from Theorem 1 that θ̂naive(z)

is generally inconsistent for θ(z) except when R and Y are conditionally uncorrelated given Z. In

particular, this implies that when missingness depends on variables U other than Z which further

predict Y , θ̂naive(z) is inconsistent. However, if either of the following two conditions hold, then

cov (R, Y |Z = z) = 0 and therefore θ̂naive(z) is consistent for θ(z). Specifically,

Condition a: The missing indicator R depends on the covariate Z but given Z it is conditionally

independent of auxiliary variables U .

Condition b: The conditional mean of Y given Z and U depends only on Z.

Theorem 1, part (III) shows that the AIPW kernel estimator θ̂AIPW (z) has the remarkable

double-robustness property alluded to in the preceding section: its consistency requires the correct

specification of either a model for πi0 or a model for E (Y |Z, U), but not necessarily both.

In what follows, we study the asymptotic distributions of the proposed estimators. Theorem 2

and Theorem 3 provide the asymptotic bias and variance of θ̂IPW (z) and θ̂AIPW (z) respectively

under MAR. Corollaries following these theorems show that in the class of AIPW kernel estimating

equations that use either the true πi0 or a consistent estimate of πi0, the optimal AIPW kernel

estimating equation that yields a solution with the smallest asymptotic variance is obtained by

setting δ(Zi, U i) = E(Yi|Zi, U i) or δ(Zi, U i) = E(Yi|Zi, U i; η̂) with η̂ a
√

n− consistent estimator

of η computed under a correctly specified model (6). In addition, the solution of the optimal

AIPW kernel estimating equations is at least as efficient as that of the IPW kernel estimating

equations. A sketch of the proofs of Theorems 2 and 3 is given in web Appendix A.2 and web

Appendix A.3 respectively. In what follows, fZ(·) stands for the density function of Z, bK (z) ≡
∫

K2(s)ds/[µ(1){θ(z)}]2fZ(z), c2(K) ≡ ∫
s2K(s)ds, and π0(Z,U) denotes the true probability of

R = 1 given (Z, U).

9
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THEOREM 2 Suppose π̂i is computed under a correctly specified model (3) or is replaced by

its true value. Suppose Pr (R = 1|Z, U) > c > 0 for some constant c with probability 1 in a

neighborhood of Z = z. Then, under the MAR assumption (2) and assumptions I)-III) above, we

have that
√

nh

{
θ̂IPW (z)− θ(z)− 1

2
h2θ′′(z)c2(K) + o(h2)

}
→ N {0,WIPW (z)} (10)

where

WIPW (z) ≡ bK (z)E

[[
R

π0(Z, U)
(Y − µ{θ(Z)})

]2
∣∣∣∣∣Z = z

]

= bK (z)E

[
var(Y |Z, U) + [E(Y |Z, U)− µ{θ(Z)}]2

π0(Z,U)

∣∣∣∣Z = z

]
.

Theorem 2 shows that the asymptotic bias of θ̂IPW (z) is of order O(h2), and the variance of

θ̂IPW (z) is of order O(1/nh) and does not depend on the working variance V (·) in the IPW kernel

estimating equations. This result indicates that, in contrast to parametric regression estimation,

misspecification of the working variance V (·) of Y |Z does not affect the asymptotic variance of

θ̂IPW (z). Theorem 2 also shows that to this order the bias and variance do not depend on whether

the selection probabilities are known or estimated parametrically.

THEOREM 3 Suppose that in the AIPW kernel estimating equations (4), (a) π̂i is computed

under a model (3) or it is replaced by fixed probabilities π∗i ≡ π∗ (Zi, U i) and (b) δ(Z, U) is a

fixed and known function or it is replaced by the function δ (Z,U ; η̂) with η̂, a method of moments

estimator of η under model (6) based on units with observed outcomes. Suppose Pr (R = 1|Z, U) >

c > 0 for some constant c with probability 1 in a neighborhood of Z = z, and the MAR assumption

(2 ) and assumptions I)-III) above hold. Consider additional conditions:

i) model (3) is correct or, π∗ (Z, U) = π0 (Z,U) when π∗i is used instead of π̂i in (4), or

ii) model (6) is correct when δ (Z,U ; η̂) replaces δ(Z,U) in (4) or δ(Z, U) is equal to the true

conditional expectation E (Y |Z, U) otherwise.

If either i) or ii) (but not necessarily both) hold, then

√
nh

{
θ̂AIPW (z)− θ(z)− 1

2
h2θ′′(z)c2(K) + o(h2)

}
→ N {0,WAIPW (z)} (11)

where

WAIPW (z) = bK (z) E

[[
R

π̃(Z,U)
(Y − µ{θ(Z)})−

(
R

π̃(Z, U)
− 1

)(
δ̃(Z,U)− µ{θ(Z)}

)]2
∣∣∣∣∣Z = z

]

(12)

10
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π̃(Z,U) denotes π∗ (Z, U) if π∗i is used, or it denotes the probability limit of π̂(Z,U) if π̂i is used,

and δ̃(Z, U) denotes δ(Z,U) if δ(Z,U) is used, or the probability limit of δ (Z, U ; η̂) if δ (Z,U ; η̂)

is used.

Theorem 3 shows that the leading term of the asymptotic bias of θ̂AIPW (z) is the same as that

of θ̂IPW (z) when the model for the selection probability is correctly specified. Furthermore, it

remains the same even when the model for the selection probability is wrong, as long as the model

for the conditional mean of the outcome given covariates and auxiliaries is correctly specified.

Display (12) provides the general form of the asymptotic variance of θ̂AIPW (z) when either model

(3) or model (6) is correctly specified. If model (6) is correctly specified, then (12) simplifies to

bK (z) E
[
π0(Z,U)/π̃2(Z,U)var(Y |Z, U) + [E(Y |Z, U)− µ{θ(Z)}]2 |Z = z

]
.

On the other hand, if model (3) for the selection probability is correctly specified, the following

corollary explores the properties of WAIPW (z) and it establishes that among the AIPW kernel

estimating equations, the one that uses δ (Zi, U i) = δ (Zi, U i; η̂) with η̂ estimated under a correctly

specified model (6) has a solution with the smallest asymptotic variance.

COROLLARY 1 Under the assumptions of Theorem 3, if the selection probability model (3) is

correctly specified, then

WAIPW (z) =bK (z)E

[
1

π0(Z,U)
var(Y |Z, U) + [E(Y |Z, U)− µ{θ(Z)}]2 (13)

+
(

1
π0(Z,U)

− 1
) {

E(Y |Z, U)− δ̃(Z,U)
}2

∣∣∣∣Z = z

]
.

WAIPW (z) is minimized at δ̃(Z,U) = E(Y |Z, U). Consequently, when model (3) is correct, the es-

timator θ̂AIPW (z) that uses δ(Z,U) = δ (Z,U ; η̂) from a correctly specified model for E(Y |Z, U),

throughout denoted as θ̂opt,AIPW (z), has the smallest asymptotic variance among all AIPW esti-

mators θ̂AIPW (z). The asymptotic variance of θ̂opt,AIPW (z) is equal to

Wopt,AIPW (z) = bK (z) E

{
var(Y |Z, U)

π0(Z,U)
+ [E(Y |Z, U)− µ{θ(Z)}]2

∣∣∣∣Z = z

}
.

Note that it follows from (13) that WAIPW (z) agrees with WIPW (z) when δ̃(Z,U) = µ{θ(Z)}.
This implies that, under correct specification of the selection probability model, the AIPW es-

timators that use δ(Z,U) equal to the fitted value δ(Z; ω̂) from a parametric model δ(Z;ω) for

E (Y |Z), rather than the fitted value from a parametric model for E (Y |Z, U), are asymptotically

equivalent to IPW estimators.
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A direct comparison of the asymptotic variance of θ̂opt,AIPW (z) to that of θ̂IPW (z) in Theorem

2 immediately gives that the optimal AIPW kernel estimator is always at least as efficient as the

IPW kernel estimator when indeed model (6) is correctly specified, as the next corollary establishes.

COROLLARY 2 Suppose that θ̂opt,AIPW (z) and θ̂IPW (z) solve respectively the optimal AIPW

and IPW kernel estimating equations that use the true πi0 or π̂i estimated under a correctly specified

model (3). Then θ̂opt,AIPW (z) is at least as efficient as θ̂IPW (z) asymptotically, and the reduction

in the asymptotic variance conferred by θ̂opt,AIPW (z) is

WIPW (z)−Wopt,AIPW (z) = bK (z) E

[(
1

π0(Z,U)
− 1

)
[E(Y |Z, U)− µ{θ(Z)}]2

∣∣∣∣Z = z

]
.

When Pr [π0(Z, U) < 1] > 0, the difference WIPW (z)−Wopt,AIPW (z) is 0 only when E(Y |Z =

z, U) − E(Y |Z = z) = 0, i.e. when U does not predict Y in addition to Z. When U predicts Y

above and beyond Z, as is expected for covariates U usually recorded in epidemiological studies,

WIPW (z) − Wopt,AIPW (z) is strictly positive. Thus θ̂opt,AIPW (z) is usually more efficient than

θ̂IPW (z).

4.2 An improved Estimator

A warning is appropriate at this stage. Our results show that using the optimal augmentation

term we improve upon the efficiency of the IPW estimator. However, it is not guaranteed that

any augmentation term in the AIPW kernel estimating equation leads to efficiency gains over the

IPW method. In practice, one often does not know whether model (6) is correct, and hence is

uncertain that θ̂AIPW (z) is more efficient than θ̂IPW (z). Nevertheless we can follow a strategy

proposed by Tan (2006) for estimation of the marginal mean of an outcome and remedy this

problem. Specifically, the following simple modification results in an AIPW kernel estimating

function that yields double-robust estimators guaranteed to be at least as efficient as the IPW

estimator θ̂IPW (z) and as the optimal AIPW estimator θ̂opt,AIPW (z) when model (3) holds for

the selection probability. Let M1i(α) = Riπ̂
−1
i V −1

i Kh(Zi − z)[Yi − µ{G(Zi − z)T α}], M2i(α) =

(Riπ̂
−1
i − 1)V −1

i Kh(Zi − z)[δ(Zi,U i)− µ{G(Zi − z)T α}], M3i(α) = Riπ̂
−1
i (π̂−1

i − 1)V −2
i Kh(Zi −

z)2[δ(Zi, U i)−µ{G(Zi−z)T α}]2 and κ̂ (α) = {∑n
i=1 M1i(α)M2i(α)} / {∑n

i=1 M3i(α)}. Let α̂mod =

{α̂mod,0, α̂mod,1} solve
n∑

i=1

{
Ri

π̂i
Kh(Zi − z)µ(1)

i V −1
i G(Zi − z)

[
Yi − µ{G(Zi − z)T α}] (14)

−κ̂ (α)
(

Ri

π̂i
− 1

)
Kh(Zi − z)µ(1)

i V −1
i G(Zi − z)

[
δ(Zi, U i)− µ{G(Zi − z)T α}]

}
= 0,

12
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where V −1
i is evaluated at ζ̂ . The proposed modified estimator is θ̂mod (z) = α̂mod,0. Note that

(14) is just like the AIPW equation (4) except that the contribution to the augmentation term

of each subject is multiplied by the factor κ̂ (α). Remarkably, this modification ensures that the

new estimator θ̂mod (z) is at least as efficient as the IPW estimator θ̂IPW (z) and as the optimal

AIPW estimator θ̂opt,AIPW (z) when model (3) holds and at the same time is double-robust. To

see this, first note that multiplication by the factor κ̂ (α) in the augmentation term implies that

the solution θ̂mod (z) to the modified AIPW estimating equations converges in probability to the

solution of a population equation just like (9) except that the second term in the left hand side of

that equation is multiplied by

κ =
E

[
R

π̃(Z,U) (Y − µ{θ(Z)})
(

R
π̃(Z,U) − 1

)(
δ̃(Z,U)− µ{θ(Z)}

)
|Z = z

]

E

[
R

π̃(Z,U)

(
1

π̃(Z,U) − 1
)(

δ̃(Z, U)− µ{θ(Z)}
)2
|Z = z

]

When model (3) is correct, then π̃(Z,U) = π0(Z, U) and the second term of the left hand side of

(9) is zero, regardless of whether it is evaluated at the true θ (z) or not and regardless whether or

not it is multiplied by the constant κ while the first term is unaffected by the modification and

remains equal to zero when evaluated at θ (z). Thus θ̂mod (z) is consistent for θ (z) when model (3)

is correctly specified. On the other hand, when model (6) is correct, then δ̃(Z,U) = E (Y |Z, U)

and a straightforward calculation shows that κ = 1 regardless of whether or not π̃(Z,U) is equal

to P (R = 1|Z,U) , thus implying that θ̂mod (z) is consistent for θ (z) since, as we argued earlier,

θ (z) solves equation (9). This shows that θ̂mod (z) is double-robust. To show that θ̂mod (z) is at

least as efficient as θ̂opt,AIPW (z) and as θ̂IPW (z) when model (3) is correctly specified, we can

argue as in the proof of Theorem 3 and show that θ̂mod (z) has the same limiting distribution as

θ̂AIPW (z), except that the asymptotic variance WAIPW (z) is replaced by

Wmod(z) = bK (z) E

[{
R

π0(Z, U)
[Y − µ{θ(Z)}]− κ×

(
R

π0(Z,U)
− 1

) [
δ̃(Z,U)− µ{θ(Z)}

]}2
∣∣∣∣∣Z = z

]

A straightforward calculation yields that the denominator of κ is equal to

E

[{
R

π0(Z,U)
− 1

}2 [
δ̃(Z,U)− µ{θ(Z)}

]2
|Z = z

]
.

Thus, Wmod(z) is equal to bK (z) times the residual variance from the population regression of

Y ∗ = R [Y − µ{θ(Z)}] /π0(Z,U) on X∗ = {R/π0(Z,U)− 1}
[
δ̃(Z, U)− µ{θ(Z)}

]
. Since the

residual variance E
[
(Y ∗ − κX∗)2

]
minimizes the mean squared error E

[
(Y ∗ − aX∗)2

]
over

all a ∈ R, then we conclude that Wmod(z) = bK (z) E
[
(Y ∗ − κX∗)2

]
is less than or equal

13
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to WIPW (z) = bK (z) E
[
Y ∗2] and to Wopt,AIPW (z) = bK (z) E

[
(Y ∗ −X∗)2

]
, where δ̃(Z,U) =

E (Y |Z, U). Consequently, θ̂mod (z) is at least as efficient as θ̂IPW (z) and as θ̂opt,AIPW (z) when

π̂i is computed under a correctly specified model for the selection probabilities.

4.3 Bandwidth Selection

Choosing an appropriate bandwidth parameter h is important in nonparametric regression. From

Theorems 2 and 3, the asymptotic optimal bandwidths hIPW,opt and hAIPW,opt can be chosen by

minimizing the corresponding asymptotic weighted mean integrated squared errors, respectively.

Specifically, the asymptotically optimal bandwidth for estimating θ̂IPW (z) is given by hIPW,opt =
[{

4
∫

WIPW (z)dz
}

/
{
c2(K)

∫
θ′′(z)dz

}] 1
5 n−

1
5 and the asymptotically optimal bandwidth for es-

timating θ̂AIPW (z) is given by hAIPW,opt =
[{

4
∫

WAIPW (z)dz
}

/
{
c2(K)

∫
θ′′(z)dz

}] 1
5 n−

1
5 .

To choose h in practice, we can easily generalize the empirical bias bandwidth selection (EBBS)

method of Ruppert (1997) to derive a data-driven bandwidth selection approach for nonparamet-

ric regression with missing data. Specifically, one calculates the empirical mean squared errors

EMSE {z;h (z)} of θ̂ (z), where EMSE {z; h (z)} = b̂ias
{

θ̂ (z)
}2

+ v̂ar
{

θ̂ (z)
}

, at a series of z

and h (z) and chooses h (z) to minimize EMSE {z; h (z)}. Note h (z) is choosen to vary with z,

and thus is local. Here b̂ias
{

θ̂ (z)
}

is the empirical bias, and v̂ar
{

θ̂ (z)
}

is the Sandwich variance

estimator. For example, the Sandwich variance estimator of the IPW kernel estimator θ̂IPW (z)

can be calculated as the (1,1) element of the matrix (AIPW )−1BIPW (AIPW )−1, where

BIPW =
1
n

n∑

i=1

{
Ri

π̂i
Kh(Zi − z)µ(1)

i V −1
i

[
Yi − µ{G(Zi − z)T α}]

}2

G(Zi − z)G(Zi − z)T

and

AIPW =
1
n

n∑

i=1

Ri

π̂i
Kh(Zi − z)

{
µ

(1)
i

}2
V −1

i G(Zi − z)G(Zi − z)T .

The Sandwich variance estimator of the naive kernel estimator θ̂naive(z), and of the AIPW kernel

estimator θ̂AIPW (z) can be constructed in a similar way.

5 SIMULATIONS

In this section, we conduct simulation studies to evaluate the finite-sample performance of the

AIPW kernel estimator θ̂AIPW (z), and compare it with the naive kernel estimator θ̂naive(z) and

the IPW kernel estimator θ̂IPW (z). Our simulation mimics the observed data generating process

of a two stage study design, in which U and Z are measured at the first stage on all study subjects,

14

Hosted by The Berkeley Electronic Press



but Y is measured at the second stage only on a subset of the study participants. The second-

stage validation subset is selected with selection probabilities that may depend on the first stage

variables. We consider two situations, where the outcome Y is either normal or binary respectively.

We generate a random sample of size n of (Z, U, Y, R) for each replication. Z is generated from

a uniform(0, 1) distribution, U is generated from a uniform(0, 6) independently of Z, and the

mean of the outcome Y has the general form

g {E (Y |Z, U)} = m(Z) + β1U, (15)

In case one, g (x) = x and the outcome Y is generated from a normal distribution with mean

E (Y |Z,U) and variance σ2 = 3, where β1 = 1.3, m(x) = 2 · F8,8(x) and Fp,q(x) = Γ(p +

q){Γ(p)Γ(q)}−1xp−1(1−x)q−1, a unimodal function. In case two, g (x) =logit(x) where logit(x) =

log {x/ (1 + x)} and the outcome Y is generated from a Bernoulli distribution with mean E (Y |Z,U),

where β1 = 0.32, and m(x) = 1.2 · Φ(8× x− 4) + 0.4. In both situations, We generate R, the

selection indicator, according to the probability model

logit{π(Zi, Ui)} = τ0 + τ1 · (Ui − a1)I(a1 < Ui ≤ a2) + τ1 · (a2 − a1)I(Ui > a2) (16)

where π(Zi, Ui) = P (Ri = 1|Zi, Ui) is the probability that subject i is selected to the second stage,

a1 = 0.5 and a2 = 6. τ0 and τ1 are selected so that the Monte Carlo median missing percentage

of the outcome Y is around 50% for the normal case and about 30% for the bernoulli case. Since

the selection probability depends on U only, the missing is at random.

Our primary interest lies in estimating the marginal mean curve of the outcome Y given the

scalar covariate Z, i.e., µ {θ(z)}, which is E(Y |Z) = E [E(Y |Z, U)|Z]. We generated 500 datasets

with sample size n = 500 or 300. For each simulated dataset, we computed the naive, IPW and

AIPW estimates of θ(z), in the first case under the model µi = θ(Zi) and in the second case under

model logit(µi) = θ(Zi). We use the generalized EBBS method as described in section 4.3 to

choose the optimal local bandwidth.

The empirical average of the estimated nonparametric curves θ̂(·) over the 500 replications,

using the naive, IPW and AIPW estimators are displayed in Figure 1. The plot in the left panel

shows the estimators of θ(z) in case 1 (identity link) and the plot in the right panel shows the

estimators in case 2 (logit link). The same trend was observed for both plots. The IPW and

AIPW kernel estimates are close to the true curve θ(·), while the naive approach yields a biased

estimate. Figure 2 illustrates the empirical point-wise variances of θ̂IPW (·) and θ̂AIPW (·) when
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n = 500, the top panel for the identity link case and the bottom panel for the logit link case. The

figure shows that the AIPW estimator has a smaller point-wise variance than the IPW estimator.

Table 1 summarizes the performance of each nonparametric estimate using the integrated

relative bias, the integrated empirical standard error (S.E.), the integrated estimated S.E., and the

integrated empirical mean integrated squared error (MISE), over the support of Z. As predicted

by theory, the naive kernel estimate has a much larger relative bias than the IPW and AIPW kernel

estimates. Furthermore, the corresponding AIPW kernel estimate has a smaller variance and a

smaller MISE than the IPW kernel estimate. For example in the identity link case, the AIPW

kernel estimate has about 52% gain in MISE efficiency compared to the IPW kernel estimate when

n = 500. In the logit link case, the MISE efficiency gain is about 7%. The increased efficiency

gain of AIPW over IPW in case 1 (identity link) compared to case 2 (logit link) can be explained

by the fact that in case 1 the auxiliary variable U is highly correlated with the outcome Y while

in case 2, the correlation between U and Y is much lower.

To check the double-robustness property of the AIPW estimator, we computed θ̂AIPW (·) using

i) estimates of πi0’s under an incorrectly specified model with Ui replaced by U∗
i = exp(Ui) in the

right hand side of (16) but with δi0’s computed under a correctly specified model (15), ii) δi0’s

computed under an incorrectly specified model with Ui replaced by U∗
i in the right hand side of

(15) but with estimates of πi0’s under the correctly specified model (16), and iii) both π̂i and δi

computed under incorrectly specified models, with Ui replaced by U∗
i in the right hand side of (16)

and (15) respectively. The simulation results in Table 2 and Figure 3 show that the AIPW kernel

estimate is still close to the true θ(z) when either the model of π(Z, U) or the model of E(Y |Z, U)

is correctly specified. In contrast, the IPW estimate with a misspecified model of π(Z,U) is further

away from the true θ(z), as well as the AIPW estimate when both the model of π(Z, U) and the

model of E(Y |Z,U) are not correctly specified.

6 APPLICATION TO ACSUS DATA

We applied the IPW kernel estimating equation and the AIPW kernel estimating equation, as well

as the naive kernel estimating equation, to analyze the ACSUS data described in Section 1. In

this illustrative example, our main interest is to investigate the effect of the baseline CD4 counts

on the risk of hospitalization during the first year since enrollment into the study. Since the risk of

hospitalization depends on various covariates, such as HIV status, treatments, race, and gender,

but we only consider a marginal nonparametric mean model of the risk of hospital admission on
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baseline CD4 counts, we restricted our analysis to a subset of homogeneous subjects for illustrative

purpose. Specifically, we limited our analysis to 219 white patients, who were between 25 and 45

years old at entry. They were HIV infected or had AIDS and were treated with antiretroviral drugs

but not admitted to hospital at entry. The CD4 counts ranged from 4 to 1716 among this study

cohort, with median equal to 186, and inter-quartile-range (70, 315). Health care records were

used to determine hospitalization during the first year after study enrollment. Although lower

CD4 counts are expected to be associated with a higher risk of hospitalization, the functional

form of this association is unknown and might be nonlinear. As discussed in Section 1, about 40%

of the patients did not have the first year hospital admission data available. If missing outcomes

induced selection bias, the patients who have the first year hospitalization information may not

represent the original study cohort and may lead to biased estimation.

Because the distribution of CD4 counts is highly skewed, we took a log transformation and

define Z = log( baseline CD4 count). The missing data model was fit using a logistic regression

with Z as well as the other covariates in Table 3, which are binary. The coefficient estimates and

their SEs are shown in Table 3. Having insurance and help with transportation enhance the chance

of remaining in the study, while use of other medical practitioners, psychological counseling, having

help at home and lower CD4 count are significantly associated with a higher chance of dropping

out.

We fit the generalized nonparametric model (1) using logit(µi) = θ(Zi) to investigate the

dependence pattern of the first-year risk of hospitalization on baseline CD4 counts. The bandwidth

was selected using the generalized EBBS method described in section 4.3. The estimates of the

curve θ(z) using the naive kernel estimating equations, the IPW kernel estimating equations and

the AIPW kernel estimating equations are shown in Figure 4. Point-wise Wald CIs centered at the

naive, IPW and AIPW kernel estimates and with standard error estimated using the Sandwich

formulae described in section 4.3, are also presented. For computing the AIPW estimate, we

fit parametric models for δ. Exploration of the data shows that the regression function with a

quadratic term in logcd4 and the other covariates in Table 3 fits the data well. Residual plot shows

no patterns.

Since only very few patients had log CD4 count lower than 3, the kernel estimates are not

stable when log CD4 count is less than 3. We focus our discuss on the estimates of the curve

when log CD4 count is greater than 3. The IPW and AIPW estimates are similar, while the naive

one underestimates the risk of hospitalization for most of the range of CD4 in our study cohort.
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Since patients having help at home are more likely to drop out and these patients are likely to

be sicker patients, the patients who have the first-year hospital admission information available

are actually a biased sample of the whole study population. Therefore, the naive approach using

the complete cases directly leads to a biased estimate of the nonparametric function θ(z) and

underestimates the risk of hospitalization. Our analysis using the IPW and the AIPW kernel

estimating equations indicates that the risk of hospitalization decreases nonlinearly as CD4 count

increases with a change point. Specifically, when CD4 count is relatively low (CD4 count < 90),

the risk of being admitted to hospitals remains fairly stable at about 25%. As the CD4 count

exceeds this threshold, the risk of hospitalization decreases quickly as CD4 count goes up.

7 DISCUSSION

In this paper we proposed local polynomial kernel estimation methods for nonparametric regres-

sion when outcomes are missing at random. We showed that the naive local polynomial kernel

estimator is generally inconsistent except for special cases. We proposed IPW and AIPW kernel

estimating equations to correct for potential selection bias, with the ultimate goal of maximally

exploiting the information in the observed data. Unlike parametric regression, the augmentation

term in the AIPW kernel estimating equations incorporates a kernel function. We showed that

both the IPW and AIPW kernel estimators are consistent when the selection probabilities are

known by design or consistently estimated. When the model for the selection probabilities is mis-

specified, the IPW kernel estimating equation fails to yield a consistent estimator. However, the

AIPW kernel estimator still yields consistent estimators of the regression function if a model for

E(Y |Z, U) is correctly specified. This double robustness property of the AIPW approach provides

the investigators two chances to make a valid inference. The AIPW kernel estimating equation also

has the potential to enhance the efficiency with which we estimate the nonparametric regression

function. We have shown that within the AIPW estimating equation family, the optimal estimator

is obtained by using the true selection probability or its consistent estimates and the augmentation

term estimated from a correctly specified model for E(Y |Z, U). It is of future research interest

to study whether this estimator is optimal in a bigger class of estimators. Another interesting

topic of future investigation is the possibility of enhancing the efficiency of the IPW estimator via

estimation of the missingness probabilities at non-parametric rates, for example, under generalized

additive models rather than under parametric models.

The IPW and AIPW kernel estimating equations provide consistent estimators when the se-
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lection probability model π is correctly specified and is bounded away from 0. In finite samples,

when some π’s are close to 0, the IPW and AIPW estimators might not perform well. This is

not surprising, as very large weights associated with these very small π’s dramatically inflate a

few observations especially when the sample size is moderate, and cause results unstable. Spe-

cial caution is hence needed when applying the proposed methods to studies when the selection

probability is very small for some sample units.

We have focused in this paper on nonparametric regression on a single scalar covariate when

the outcome is missing at random. The proposed method can be extended to semiparametric

regression, where some covariates are modeled parametrically and some covariates are modeled

nonparametrically. The proposed methods can also be easily generalized to higher order local

polynomial kernel regression and nonparametric regression with multiple covariates, e.g., using

generalized additive models. Extension of our work to these settings will be reported in a separate

paper.

8 Supplemental Materials

Technical Proofs: Regularity conditions and proofs for Theorems 1, 2, and 3 in Section 4.
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Table 1: Simulation results of relative biases, S.E.s and MISEs of the naive, IPW and AIPW
estimates of θ(z) based on 500 replications. (In parenthesis are the Monte Carlo S.E.s)

n = 500 n = 300
Relative EMP EST EMP Relative EMP EST EMP

bias1 S.E.2 S.E.3 MISE4 bias S.E. S.E. MISE
Normal Case (Identity Link)

no missing 0.017 0.336 0.326 0.130 0.017 0.434 0.431 0.207
(0.002) (0.011) (0.001) (0.008) (0.004) (0.005) (0.003) (0.011)

naive 0.234 0.437 0.431 1.713 0.233 0.578 0.573 1.843
(0.003) (0.014) (0.003) (0.032) (0.006) (0.020) (0.002) (0.079)

IPW 0.034 0.645 0.642 0.451 0.044 0.843 0.839 0.770
(0.004) (0.013) (0.002) (0.020) (0.012) (0.017) (0.006) (0.043)

AIPW 0.018 0.443 0.438 0.215 0.019 0.579 0.567 0.356
(0.003) (0.012) (0.004) (0.012) (0.005) (0.012) (0.005) (0.013)

Logistic Case (Logit Link)
no missing 0.048 0.220 0.213 0.049 0.074 0.254 0.249 0.067

(0.024) (0.005) (0.001) (0.002) (0.016) (0.013) (0.001) (0.006)
naive 0.662 0.229 0.223 0.075 0.667 0.267 0.260 0.099

(0.048) (0.007) (0.001) (0.004) (0.051) (0.011) (0.001) (0.008)
IPW 0.058 0.239 0.234 0.058 0.095 0.283 0.278 0.084

(0.021) (0.007) (0.001) (0.003) (0.022) (0.009) (0.001) (0.006)
AIPW 0.054 0.234 0.231 0.054 0.099 0.276 0.270 0.080

(0.016) (0.096) (0.001) (0.003) (0.025) (0.007) (0.001) (0.005)

1. Relative bias is defined as
∫ |b̂ias{θ̂(z)}/θ(z)|dF (z).

2. EMP S.E. is the empirical S.E., defined as
∫

ŜEEMP {θ̂(z)}dF (z), where ŜEEMP {θ̂(z)} is
the sampling S.E. of the replicated θ̂(z).

3. EST S.E. is the estimated S.E., defined as
∫

ŜEEST {θ̂(z)}dF (z), where ŜEEST {θ̂(z)} is
the sampling average of the replicated sandwich estimates ŜE{θ̂(z)}.

4. EMP MISE is the empirical MISE, defined as
∫ {θ̂(z)− θ(z)}2dF (z)

Zhang, D., Lin, X., and Sowers, M. (2000), “Semiparametric regression for periodic longitudinal
hormone data from multiple menstrual cycles,” Biometrics, 56, 31–39.
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Table 2: Simulation results of the relative biases, S.E.s and MISEs of the IPW and AIPW estimates
of θ(·) using π̂ inconsistent for π0 and/or δ = Ê(Y |Z, U) inconsistent for E(Y |Z, U), based on
500 replications. (In parenthesis are the Monte Carlo S.E.s)

n=500 n=300
Relative EMP EST EMP Relative EMP EST EMP

bias1 S.E.2 S.E.3 MISE4 bias S.E. S.E. MISE
Normal Case:

AIPW (π wrong) 0.017 0.481 0.475 0.251 0.018 0.635 0.629 0.423
(0.004) (0.016) (0.002) (0.017) (0.005) (0.020) (0.008) (0.028)

AIPW (E[Y |Z, U ] wrong) 0.023 0.640 0.636 0.442 0.021 0.832 0.825 0.728
(0.004) (0.018) (0.007) (0.021) (0.010) (0.034) (0.019) (0.042)

AIPW (both wrong) 0.068 0.641 0.638 0.835 0.066 0.841 0.837 1.125
(0.003) (0.012) (0.004) (0.019) (0.004) (0.022) (0.011) (0.065)

IPW (π wrong) 0.105 0.471 0.462 0.522 0.108 0.632 0.629 0.723
(0.004) (0.011) (0.003) (0.027) (0.006) (0.021) (0.003) (0.044)

Logistic Case:
AIPW (π wrong) 0.052 0.254 0.251 0.066 0.102 0.295 0.289 0.092

(0.021) (0.007) (0.001) (0.003) (0.026) (0.012) (0.001) (0.008)
AIPW (E[Y |Z, U ] wrong) 0.056 0.236 0.233 0.057 0.095 0.276 0.271 0.080

(0.022) (0.006) (0.001) (0.003) (0.027) (0.007) (0.001) (0.005)
AIPW (both wrong) 0.975 0.249 0.250 0.111 0.978 0.286 0.281 0.136

(0.058) (0.008) (0.001) (0.005) (0.064) (0.010) (0.001) (0.008)
IPW (π wrong) 0.662 0.229 0.223 0.075 0.667 0.267 0.263 0.099

(0.047) (0.007) (0.001) (0.004) (0.051) (0.011) (0.001) (0.008)

1. Relative bias is defined as
∫ |b̂ias{θ̂(z)}/θ(z)|dF (z).

2. EMP S.E. is the empirical S.E., defined as
∫

ŜEEMP {θ̂(z)}dF (z), where ŜEEMP {θ̂(z)} is
the sampling S.E. of the replicated θ̂(z).

3. EST S.E. is the estimated S.E., defined as
∫

ŜEEST {θ̂(z)}dF (z), where ŜEEST {θ̂(z)} is
the sampling average of the replicated sandwich estimates ŜE{θ̂(z)}.

4. EMP MISE is the empirical MISE, defined as
∫ {θ̂(z)− θ(z)}2dF (z)

Table 3: Estimates of the logistic regression coefficients of the probability of being observed by
the end of the first year in the ACSUS data

Covariates Estimate S.E. P-Value
Intercept -2.62 0.85 0.002
Has help at home -0.65 0.36 0.063
Has private health insurance only 0.53 0.45 0.241
Has both private and public health insurance 2.13 0.83 0.010
Has public health insurance only -0.11 0.47 0.819
Use other medical practitioners -0.95 0.49 0.053
Use psychological counseling -0.80 0.35 0.022
Log CD4 count 0.64 0.14 <0.001
Has help with transportation 2.39 0.94 0.011
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Figure 1: Simulation results of the estimated nonparametric functions using naive, IPW and AIPW
kernel methods based on 500 replications with sample size n = 500. The left panel is for case 1
(identity link), while the right panel is for case 2 (logit link): —— true θ(z), – · – · the naive
kernel estimator, · · · · the IPW kernel estimator, and – – – the AIPW kernel estimator.
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Figure 2: Empirical point-wise variances of the IPW and AIPW estimates of θ(·), based on 500
replications with sample size n = 500. The top panel is for case 1 (identity link), while the bottom
panel is for case 2 (logit link): —— the IPW kernel estimate, – – – the AIPW kernel estimate,
and · · · · · the kernel estimate when there is no missing data.
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Figure 3: Simulation results of the IPW and AIPW estimates of θ(·) using an incorrectly specified
π model and/or an incorrectly specified δ = E(Y |Z, U) model, based on 500 replications with
sample size n = 500. The left panel is for case 1 (identity link) and the right panel is for case
2 (logit link): —— the true θ(z), – – – the AIPW kernel estimator when the model for π(Z, U)
is misspecified, – · – · the AIPW kernel estimator when the model for E[Y |Z, U ] is misspecified,
- - - the AIPW kernel estimator when both models are misspecified, and · · · · the IPW kernel
estimator when the model for π(Z, U) is misspecified.
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Figure 4: The naive, IPW and AIPW estimates of θ(log CD4 counts) on the log odds of one-year
hospitalization in the ACSUS study. The upper left panel displays three estimates: – – – the naive
kernel estimate, · · · · the IPW kernel estimate, —— the AIPW kernel estimate. Each vertical
ticker along the x-axis stands for one observation. The other three panels display each estimate
separately together with point-wise CIs.
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Appendix

Throughout the appendix, we assume that h = h (n) is a sequence such that as n → ∞, h → 0,

and nh → ∞. We also assume that z is an interior point of the support of Z. We assume the

following regularity conditions:

i) θ(·) and fZ(·) satisfy the smoothness assumptions of Fan, et. al. (1995);

ii) The estimating functions in the right hand side of naive kernel estimating equations,

IPW kernel estimating equations, and AIPW kernel estimating equations are twice continuously

differentiable with respect to α at a target point z, and the second derivatives are uniformly

bounded.

A.1 Sketch of the Proof of Theorem 1

If µ(1){θ̃naive (z)} ̸= 0, simple calculations show that the solution of equation (7) for θ̃naive(z) is

µ{θ̃naive(z)} = E (RY |Z = z) /E (R|Z = z) , which is equal to cov (R, Y |Z = z) /E (R|Z = z) +

µ{θ (z)}. This gives the expression for θ̃naive (z) stated in the theorem.

Next study the expression of θ̃IPW (z). The left hand side of (8) is equal to

E

[
E(R|Y, Z,U)

π̃
µ(1){θ̃IPW (z)}V −1{θ̃IPW (z) ;ζ̃}

[
Y − µ{θ̃IPW (z)}

]∣∣∣∣Z = z

]
by taking a double expectation given Y, Z and U. If model (3) of π is correctly specified, then

π̃ = E(R|Z,U). Also under MAR, E(R|Y, Z,U) = E(R|Z,U). Therefore the above quantity

equals to E[µ(1){θ̃IPW (z)}×V −1{θ̃IPW (z) ; ζ̃}[Y −µ{θ̃IPW (z)}]|Z = z]. If µ(1){θ̃IPW (z)} ̸= 0,

solving for θ̃IPW (z) yields µ{θ̃IPW (z)} = E[Y |Z = z] = µ{θ(z)}. Therefore, θ̂IPW (z) is a

consistent estimator of θ(z) when model (3) of π is correctly specified or π0 is known by design.

Now study the expression of θ̃AIPW (z) from (9). Under the MAR assumption (2), the left

hand side of (9) can be rewritten as

E
[
µ(1){θ̃AIPW (z)}V −1{θ̃AIPW (z) ;ζ̃}

[
Y − µ{θ̃AIPW (z)}

]
|Z = z

]
+ E

[(
R

π̃
− 1

)
µ(1){θ̃AIPW (z)}V −1{θ̃AIPW (z) ;ζ̃}

[
Y − δ̃(Z,U)}

]
|Z = z

]
= 0. (A.1)

If model (3) for π is correctly specified, i.e., π̃ = E(R|Z,U), or model (6) for δ(·) is correctly

specified, i.e., δ̃(Z,U) = E(Y |Z,U), one can easily see that the second term of (A.1) is 0. Hence

(A.1) is equal to

E
[
µ(1){θ̃AIPW (z)}V −1{θ̃AIPW (z) ;ζ̃}

[
Y − µ{θ̃AIPW (z)}

]
|Z = z

]
= 0.

It follows that if µ(1){θ̃AIPW (z)} ̸= 0, we have θ̃AIPW (z) = θ(z), i.e., θ̂AIPW (z) is a consistent

estimator of θ(z).

1
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A.2 Proof of Theorem 2: Asymptotic Bias and Variance of the IPW Estimator

We first assume that π0 is known by design and prove that the asymptotic distribution of

θ̂IPW (z) is given in (10). We also assume that the variance parameter ζ in the working variance

V is known. We will then extend the results when π and ζ are estimated. For any interior

point z, reparameterize α as
{
θ (z) , hθ′ (z)

}T
and denote by θ0(z) the true value of θ(z), α0 =

{θ0(z), hθ′0(z)}T and α̂IPW (z) the solution of the local linear IPW kernel estimating equations.

A Taylor expansion of the local linear IPW kernel estimating equations gives

√
nh{αIPW (z)−α0} = −

√
nh {Γn(α∗)}−1Λn(α0),

where α∗ is between α̂IPW (z) and α0, and

Λn(α) = n−1
n∑

i=1

Riπ
−1
i0 (Zi,U i)Kh(Zi − z)µ

(1)
i (z,α)V −1

i (z,α)G(Zi − z)[Yi − µ{G(Zi − z)Tα}],

where µ
(1)
i (z,α) = µ(1){G(Zi − z)Tα} and Vi(z,α) = V [µ{G(Zi − z)Tα}; ζ0] , Γn(α) =

∂Λn(α)/∂αT .

Using the results in Appendix A.1, we have α̂IPW (z) → α0 in probability. Therefore,

α∗
P→ α0. Under the MAR assumption (2), simple calculations show that

Γn(α∗) = −E

[
Kh(Z − z)

{
µ(1)(z,α0)

}2
V −1(z,α0)G(Z − z)G(Z − z)T

]
+ op(1)

= −fZ(z)
(
µ(1){θ(z)}

)2
V −1{θ(z)}D(K) + op(1)

where D (K) is a 2 × 2 matrix with the (j, k)th element cj+k−2(K) × h(j+k−2), and cr(K) =∫
srK(s)ds. It follows that

√
nh{α̂IPW (z)−α0} =

{
fZ(z)

[
µ(1){θ(z)}

]2
V −1{θ(z)}D(K)

}−1√
nhΛn(α0) + op(1). (A.2)

Now write Λn(α0) = Λ1n(α0) +Λ2n(α0), where

Λ1n(α0) = n−1
n∑

i=1

Riπ
−1
i0 (Zi,U i)Kh(Zi − z)µ

(1)
i (z,α0)V

−1
i (z,α0)G(Zi − z)[Yi − µ{θ(Zi)}]

Λ2n(α0) = n−1
n∑

i=1

Riπ
−1
i0 (Zi,U i)Kh(Zi − z)µ

(1)
i (z,α0)V

−1
i (z,α0)G(Zi − z)[µ{θ(Zi)} − µ{G(Zi − z)Tα0}].

One can easily show that Λ1n (α0) is asymptotically normal with mean zero and asymptotic

variance

var{Λ1n(α0)} =
1

n
E

[
K2

h(Z − z)
{
µ(1)(z,α0)

}2
V −2(z,α0)

(
R [Y − µ {θ(Z)}]

π0(Z,U)

)2

G(Z − z)G(Z − z)T

]

=
1

nh
fZ(z)

(
µ(1){θ(z)}

)2
V −2{θ(z)}E

[(
R [Y − µ {θ(Z)}]

π0(Z,U)

)2
∣∣∣∣∣Z = z

]
D(K2) + o(

1

nh
),

2
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where D(K2) is defined similarly to D(K) with K replaced by K2.

Now study Λ2n, which contributes to the leading bias term. One can easily show under

MAR, we have

bias {Λ2n(α0)} = E
{
Kh(Z − z)µ(1)(z,α0)V

−1(z,α0)
[
µ {θ(Z)} − µ

{
G(Z − z)Tα0

}]
G(Z − z)

}
+ op(1)

=
1

2
θ′′(z)

[
µ(1){θ(z)}

]2
V −1{θ(z)}fZ(z)H(K) + o(h2), (A.3)

where H(K) is a 2× 1 vector with the kth element ck+1(K)×h(k+1). Note that the asymptotic

variance of Λ2n is of order o(1/nh) and is asymptotically negligible compared to Λ1n, and the

asymptotic covariance of Λ1n and Λ2n is 0. Applying these results to (A.2), simple calculations

show that the asymptotic distribution of the IPW estimator θ̂IPW (z;π), the first element of

α̂IPW , is given in (10).

We next study the distribution of θ̂IPW {z;π(τ̂ )} when π0 is estimated consistently at the
√
n-rate, i.e.

√
n(τ̂−τ 0) = Op(1), where τ 0 is the true value of τ . Suppose under some regularity

conditions, ∂θ̂IPW {z;π(τ )}/∂τT is bounded in the neighborhood of the τ 0, i.e.,

∂θ̂IPW {z;π(τ )}/∂τT |τ∈N (τ0) = Op(1),

where N (τ 0)⊃{τ : ||τ − τ 0|| < ||τ̂ − τ 0||}. We have

√
nh[θ̂IPW {z;π(τ̂ )} − θ(z)]

=
√
nh[θ̂IPW {z;π(τ̂ )} − θ̂IPW {z;π(τ0)}] +

√
nh[θ̂IPW {z;π(τ0)} − θ(z)]

=
√
h

[
∂θ̂IPW {z;π(τ )}

∂τT
|τ∗

]
√
n(τ̂ − τ 0) +

√
nh[θ̂IPW {z;π(τ0)} − θ(z)] (A.4)

for some τ ∗ ∈ {τ : ||τ−τ 0|| < ||τ̂−τ 0||}. Note
√
n(τ̂−τ 0) = Op(1), ∂θ̂IPW {z;π(τ )} /∂τT |τ∗ =

Op(1), and h → 0 as n → ∞, the first term in (A.4) is op(1). Therefore, the asymptotic

distribution of θ̂IPW {z;π(τ̂ )} when τ is estimated consistently at
√
n-rate is the same as that

of θ̂IPW (z;π0) when π0 is known. Similar argument shows that the asymptotic distribution of

θ̂IPW {z} remains the same if ζ is estimated at the
√
n-rate.

A.3 Proof of Theorem 3: Asymptotic Bias and Asymptotic Variance of AIPW
estimator

Following similar arguments as those in Appendix A.2, the asymptotic results hold when the

parameters (τ ,η) in π and δ are estimated at the
√
n-rate, or the probability limit of (τ̂ , η̂)

is used in the AIPW kernel estimating equations (4). Denote by (τ̃ , η̃) the probability limit

of (τ̂ , η̂), and let π̃(Zi,U i) = π(Zi,U i; τ̃ ) , δ̃ (Zi,U i) = δ (Zi,U i; η̃). We focus our proof on

assuming that (τ̃ , η̃) are known. By a linear Taylor expansion of the AIPW estimating function

(4) about α0, the AIPW kernel estimator satisfies

√
nh{α̂AIPW (z)−α0} = −

√
nh {Γn,δ(α∗)}−1Λn,δ(α0),

3
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where α∗ is between α̂AIPW (z) and α0,

Λn,δ(α) = n−1
n∑

i=1

{
Riπ̃

−1(Zi,U i)Kh(Zi − z)µ
(1)
i (z,α)V −1

i (z,α)G(Zi − z)
[
Yi − µ

{
G(Zi − z)Tα

}]
−

{
Riπ̃

−1(Zi,U i)− 1
}
Kh(Zi − z)µ

(1)
i (z,α)V −1

i (z,α)G(Zi − z)
[
δ̃(Zi,U i)− µ

{
G(Zi − z)Tα

}]}
,

and Γn,δ(α) = ∂Λn,δ(α)/∂αT .

We consider the following two situations:

(1) When model (3) for the selection probability πi0 is correctly specified, i.e. π̃(Zi,U i) =

πi0 (Zi,U i);

(2) When model (6) for E(Y |Z,U) is correctly specified, i.e. δ̃(Zi,U i) = E(Yi|Zi,U i).

As shown in Appendix A.1, α̂AIPW (z) converges to α0 when either of the above conditions

holds. Therefore, α∗
P−→ α0. We first show that under either of the above situations, we have

Γn,δ(α∗)
P−→ −fZ(z)

[
µ(1){θ(z)}

]2
V −1{θ(z)}D(K). (A.5)

First consider situation (1), i.e., when π̃(Zi,U i) = πi0 (Zi,U i). The second term of Λn,δ(α),

i.e. the augmentation term, has mean 0 under MAR . It follows that Λn,δ(α∗) = Λn(α0)+op(1),

where Λn is defined in Appendix A.2. Hence Γn,δ(α∗) = Γn(α0) + op(1). Therefore Γn,δ(α∗)

has the same probability limit as Γn(α∗). As shown in Appendix A.2, the probability of limit

of Γn(α∗) is exactly the right hand side of (A.5), and thus (A.5) holds for Γn,δ(α∗) as well.

Next consider situation (2), i.e., when δ̃(Zi,U i) = E(Yi|Zi,U i). Rewrite Λn,δ(α) as

Λn,δ(α) = n−1
n∑

i=1

{
Riπ̃

−1(Zi,U i)Kh(Zi − z)µ
(1)
i (z,α)V −1

i (z,α)G(Zi − z)
[
Yi − δ̃(Zi,U i)

]
+ Kh(Zi − z)µ

(1)
i (z,α)V −1

i (z,α)G(Zi − z)
[
δ̃(Zi,U i)− µ

{
G(Zi − z)Tα

}]}
.

One can easily see the first term on the right hand side has mean 0. It follows that

Λn,δ(α∗) = n−1
n∑

i=1

Kh(Zi−z)µ
(1)
i (z,α0)V

−1
i (z,α)G(Zi−z)

[
E (Yi|Zi,U i)− µ

{
G(Zi − z)Tα0

}]
+op(1).

Differentiating it with respect to α shows that Γn,δ(α∗) = Γn(α0) + op(1). Therefore, (A.5)

still holds in this situation.

Therefore, when either the π or δ model is correctly specified, we have

√
nh{α̂AIPW (z)−α0} =

{
fZ(z)

[
µ(1){θ(z)}

]2
V −1{θ(z)}D(K)

}−1√
nhΛn,δ(α0) + op(1).

(A.6)

Write Λn,δ(α0) = Λ1n,δ(α0)−Λ2n,δ(α0) +Λ3n,δ(α0), where

Λ1n,δ (α0) = n−1
n∑

i=1

Riπ̃
−1(Zi,U i)Kh(Zi − z)µ

(1)
i (z,α0)V

−1
i (z,α0) [Yi − µ{θ(Zi)}]G(Zi − z),

4
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Λ2n,δ (α0) = n−1
n∑

i=1

{Riπ̃
−1(Zi,U i)−1}Kh(Zi−z)µ

(1)
i (z,α0)V

−1
i (z,α0)

[
δ̃(Zi,U i)− µ{θ(Zi)}

]
G(Zi−z),

and

Λ3n,δ (α0) = n−1
n∑

i=1

Kh(Zi−z)µ
(1)
i (z,α0)V

−1
i (z,α0)

[
µ{θ(Zi)} − µ{G(Zi − z)Tα0}

]
G(Zi−z).

One can easily see that Λ1n,δ(α0) and Λ2n,δ(α0) have mean 0 when either π or δ is correctly

specified. The third term Λ3n,δ(α0) is the leading bias term. When πi or δi is correctly specified,

simple calculations show that E [Λ3n,δ(α0)] is equal to (A.3). It follows that

bias{α̂AIPW (z)} =
1

2
h2θ′′(z)c2(K) + o(h2).

Now study Λ1n,δ−Λ2n,δ, which contributes to the leading variance and asymptotic normality.

Note that the variance ofΛ3n,δ (α0) is of order o(1/nh), and hence can be ignored asymptotically.

Under MAR, we have E[R|Y, Z,U ] = E[R|Z,U ] = π0(Z,U), the true conditional mean of

[R|Z,U ]. It follows that when either π or δ is correctly specified, Λ1n,δ(α0) − Λ2n,δ(α0) is

asymptotically normal with mean 0 and variance

var {Λ1n,δ(α0)−Λ2n,δ(α0)} =
1

n
[var {Λ1,2,δ(α0)}] ,

where

Λ1,2,δ(α0) = Kh(Z − z)µ(1)(z,α0)V
−1(z,α0)G(Z − z)

×
(

R

π̃(Z,U)
[Y − µ{θ(Z)}]−

{
R

π̃(Z,U)
− 1

}[
δ̃(Z,U)− µ{θ(Z)}

])
Further calculations show that

1

n
var {Λ1,2,δ(α0)} =

1

n
E

[
K2

h(Z − z)
{
µ(1)(z,α0)

}2
V −2(z,α0)G(Z − z)G(Z − z)T

×
(

R

π̃(Z,U)
[Y − µ{θ(Z)}]−

{
R

π̃(Z,U)
− 1

}[
δ̃(Z,U)− µ{θ(Z)}

])2
]

=
1

nh
fZ(z)

[
µ(1){θ(z)}

]2
V −2{θ(z)}E

[(
R

π̃(Z,U)
[Y − µ{θ(Z)}]

−
{

R

π̃(Z,U)
− 1

}[
δ̃(Z,U)− µ{θ(Z)}

])2

|Z = z

]
D(K2) + o(

1

nh
)

Applying these results to (A.6) and Theorem 3 follows.
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