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Abstract—While there has been a lot of recent work on object recognition and image understanding, the focus has been on carefully

establishing mathematical models for images, scenes, and objects. In this paper, we propose a novel, nonparametric approach for

object recognition and scene parsing using a new technology we name label transfer. For an input image, our system first retrieves its

nearest neighbors from a large database containing fully annotated images. Then, the system establishes dense correspondences

between the input image and each of the nearest neighbors using the dense SIFT flow algorithm [28], which aligns two images based

on local image structures. Finally, based on the dense scene correspondences obtained from SIFT flow, our system warps the existing

annotations and integrates multiple cues in a Markov random field framework to segment and recognize the query image. Promising

experimental results have been achieved by our nonparametric scene parsing system on challenging databases. Compared to existing

object recognition approaches that require training classifiers or appearance models for each object category, our system is easy to

implement, has few parameters, and embeds contextual information naturally in the retrieval/alignment procedure.

Index Terms—Object recognition, scene parsing, label transfer, SIFT flow, Markov random fields.
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1 INTRODUCTION

SCENEparsing, or recognizing and segmenting objects in an
image, is one of the core problems of computer vision.

Traditional approaches to object recognition begin by
specifying an object model, such as template matching [8],
[49], constellations [13], [15], bags of features [19], [24], [44],
[45], or shape models [2], [3], [14], etc. These approaches
typically work with a fixed number of object categories and
require training generative or discriminativemodels for each
category from training data. In the parsing stage, these
systems try to align the learned models to the input image
and associate object category labels with pixels, windows,
edges, or other image representations. Recently, context
information has also been carefully modeled to capture the
relationship between objects at the semantic level [20], [22].
Encouraging progress has been made by these models on a
variety of object recognition and scene parsing tasks.

However, these learning-based methods do not, in
general, scale well with the number of object categories. For
example, to include more object categories in an existing
system, we need to train new models for the new categories
and, typically, adjust system parameters. Training can be a
tedious job if we want to include thousands of object
categories in a scene parsing system. In addition, the

complexity of contextual relationships among objects also
increases rapidly as the quantity of object categories expands.

Recently, the emergence of large databases of images has
opened the door to a new family of methods in computer
vision. Large database-driven approaches have shown the
potential for nonparametric methods in several applications.
Instead of training sophisticated parametric models, these
methods try to reduce the inference problem for an unknown
image to that of matching to an existing set of annotated
images. In [41], the authors estimate the pose of a human,
relying on0.5million training examples. In [21], the proposed
algorithm can fill holes on an input image by introducing
elements that are likely to be semantically correct through
searchinga large imagedatabase. In [38], a system isdesigned
to infer the possible object categories that may appear in an
image by retrieving similar images in a large database [39].
Moreover, the authors in [47] showed that with a database of
80 million images, even simple SSD match can give
semantically meaningful parsing for 32� 32 images.

In this paper, we propose a novel, nonparametric scene
parsing system to transfer the labels from existing samples in
a large database to annotate an image, as illustrated in Fig. 1.
For a query image (Fig. 1a), our system first retrieves the top
matches in a large, annotated image database using a
combination of GIST matching [34] and SIFT flow [29]. Since
these top matches are labeled, we transfer the annotation
(Fig. 1c) of the topmatches to the query image and obtain the
scene parsing result in (Fig. 1d). For comparison, the ground-
truth user annotation of the query is displayed in (Fig. 1e).
Our system is able to generate promising scene parsing
results if images from the same scene type as the query are
retrieved in the annotated database.

However, it is nontrivial to build an efficient and reliable
scene parsing system using dense scene alignment. To
account for the multiple annotation suggestions from the
top matches, a Markov random field model is used to
merge multiple cues (e.g., likelihood, prior, and spatial
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smoothness) into a robust annotation. Promising experi-
mental results are achieved on images from the LabelMe
database [39].

Our goal is to explore the performance of scene parsing
through the transfer of labels fromexisting annotated images,
rather than building a comprehensive object recognition
system. We show, however, that the performance of our
system outperforms existing approaches [8], [43] on our
databases. Our code and databases can be downloaded at
http://people.csail.mit.edu/celiu/LabelTransfer/.

This paper is organized as follows: In Section 2, we briefly
survey the object recognition and detection literature. After
giving a system overview in Section 3, we describe, in detail,
each component of our system in Section 4. Thorough
experiments are conducted in Section 5 for evaluation, and
in-depth discussion is provided in Section 6. We conclude
our paper in Section 7.

2 RELATED WORK

Object recognition is an area of research that has greatly
evolved over the last decade. Many works focusing on
single-class modeling, such as faces [11], [48], [49], digits,
characters, and pedestrians [2], [8], [25], have been proven
successful and, in some cases, the problems have been
mostly deemed as solved. Recent efforts have turned to
mainly focusing in the area of multiclass object recognition.
In creating an object detection system, there are many basic
building blocks to take into account; feature description and
extraction is the first stepping stone. Examples of descrip-
tors include gradient-based features such as SIFT [30] and
HOG [8], shape context [2], and patch statistics [42].
Consequently, selected feature descriptors can be further
applied to images in either a sparse [2], [16], [19] manner by
selecting the top key points containing the highest response
from the feature descriptor, or densely by observing feature
statistics across the image [40], [51].

Sparse key point representations are often matched
among pairs of images. Since the generic problem of
matching two sets of key points is NP-hard, approximation
algorithms have been developed to efficiently compute key
point matches minimizing error rates (e.g., the pyramid
match kernel [19] and vocabulary trees [32], [33]). On the

other hand, dense representations have been handled by
modeling distributions of the visual features over neighbor-
hoods in the image or in the image as a whole [24], [40], [51].
We chose the dense representation in the paper due to
recent advances in dense image matching [28], [29].

At a higher level, we can also distinguish two types of
object recognition approaches: parametric approaches that
consist of learning generative/discriminative models, and
nonparametric approaches that rely on image retrieval and
matching. In the parametric family we can find numerous
template-matching methods, where classifiers are trained to
discriminate between an image window containing an object
or a background [8]. However, these methods assume that
objects are mostly rigid and are susceptible to little or no
deformation. To account for articulated objects, constellation
models have been designed to model objects as ensembles of
parts [13], [14], [15], [50], considering spatial information [7],
depth ordering information [53], and multiresolution modes
[35]. Recently, a new idea of integrating humans in the loop
via crowd sourcing for visual recognition of specialized
classes such as plants and animal species has emerged [5];
this method integrates the description of an object in less
than 20 discriminative questions that humans can answer
after visually inspecting the image.

In the realm of nonparametric methods we find systems
such as Video Google [44], a system that allows users to
specify a visual query of an object in a video and subse-
quently retrieve instances of the sameobject across themovie.
Another nonparametric system is the one in [38], where a
previously unknown query image is matched against a
densely labeled image database; the nearest neighbors are
used to build a label probability map for the query, which is
further used to prune out object detectors of classes that are
unlikely to take place in the image. Nonparametric methods
have also been widely used in web data to retrieve similar
images. For example, in [17], a customized distance function
is used at a retrieval stage to compute the distance between a
query image and images in the training set, which subse-
quently cast votes to infer the object class of the query. In the
same spirit, our nonparametric label transfer system avoids
modelingobject appearances explicitly as our systemparses a
query image using the annotation of similar images in a
training database and dense image correspondences.

Recently, several works have also considered contextual
information in object detections to clean and reinforce
individual results. Among contextual cues that have been
used are object-level co-occurrences, spatial relationships
[6], [9], [18], [31], [36], and 3D scene layout [23]. For a more
detailed and comprehensive study and benchmark of
contextual works, we refer to [10]. Instead of explicitly
modeling context, our model incorporates context implicitly
as object co-occurrences and spatial relationships are
retained in label transfer.

An earlier version of our work appeared at [27]; in this
paper, we will explore the label-transfer framework in-
depth with more thorough experiments and insights. Other
recent papers have also introduced similar ideas. For
instance, in [46], oversegmentation is performed to the
query image and segment-based classifiers trained on the
nearest neighbors are applied to recognize each segment. In
[37], scene boundaries are discovered by the common edges
shared by nearest neighbors.

LIU ET AL.: NONPARAMETRIC SCENE PARSING VIA LABEL TRANSFER 2369

Fig. 1. For a query image (a), our system finds the top matches (b) (three
are shown here) using scene retrieval and a SIFT flow matching
algorithm [28], [29]. The annotations of the top matches (c) are
transferred and integrated to parse the input image, as shown in (d).
For comparison, the ground-truth user annotation of (a) is shown in (e).



3 SYSTEM OVERVIEW

The core idea of our nonparametric scene parsing system is

recognition-by-matching. To parse an input image, we

match the visual objects in the input image to the images in

a database. If images in the database are annotated with

object category labels and if the matching is semantically

meaningful, i.e., building corresponds to building, window to

window, person to person, then we can simply transfer the

labels of the images in the database to parse the input.

Nevertheless, we need to deal with many practical issues in

order to build a reliable system.
Fig. 2 shows the pipeline of our system, which consists of

the following three algorithmic modules:

. Scene retrieval: Given a query image, use scene
retrieval techniques to find a set of nearest neighbors
that share similar scene configuration (including
objects and their relationships) with the query.

. Dense scene alignment: Establish dense scene corre-
spondence between the query image and each of the
retrieved nearest neighbors. Choose the nearest
neighbors with the top matching scores as voting
candidates.

. Label transfer: Warp the annotations from the
voting candidates to the query image according to
estimated dense correspondence. Reconcile multiple
labeling and impose spatial smoothness under a
Markov random field (MRF) model.

Although we are going to choose concrete algorithms for

each module in this paper, any algorithm that fits to the

module can be plugged into our nonparametric scene

parsing system. For example, we use SIFT flow for dense

scene alignment, but it would also suffice to use sparse

feature matching and then propagate sparse correspon-

dences to produce dense counterparts.
A key component of our system is a large, dense, and

annotated image database.1 In this paper, we use two sets of

databases, both annotated using the LabelMe online

annotation tool [39], to build and evaluate our system.

The first is the LabelMe Outdoor (LMO) database [27],

containing 2,688 fully annotated images, most of which are

outdoor scenes including street, beach, mountains, fields,

and buildings. The second is the SUN database [52],

containing 9,566 fully annotated images, covering both

indoor and outdoor scenes; in fact, LMO is a subset of SUN.

We use the LMO database to explore our system in-depth,
and also report the results on the SUN database.

Before jumping into the details of our system, it is helpful
to look at the statistics of the LMO database. The 2,688
images in LMO are randomly split into 2,488 for training
and 200 for testing. We chose the top 33 object categories
with the most labeled pixels. The pixels that are not labeled,
or labeled as other object categories, are treated as the
34th category: “unlabeled.” The per pixel frequency count
of these object categories in the training set is shown at the
top of Fig. 3. The color of each bar is the average RGB value
of the corresponding object category from the training data
with saturation and brightness boosted for visualization
purposes. The top 10 object categories are sky, building,
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1. Other scene parsing and image understanding systems also require
such a database. We do not require more than others.

Fig. 2. System pipeline. There are three key algorithmic components (rectangles) in our system: scene retrieval, dense scene alignment, and label
transfer. The ovals denote data representations.

Fig. 3. Top: The per-pixel frequency counts of the object categories in
our data set (sorted in descending order). The color of each bar is the
average RGB value of each object category from the training data with
saturation and brightness boosted for visualization. Bottom: The spatial
priors of the object categories in the database. White means zero and
the saturated color means high probability.



mountain, tree, unlabeled, road, sea, field, grass, and river. The
spatial priors of these object categories are displayed at the
bottom of Fig. 3, where white denotes zero probability and
the saturation of color is directly proportional to its
probability. Note that, consistent with common knowledge,
sky occupies the upper part of the image grid and field
occupies the lower part. Furthermore, there are only limited
samples for the sun, cow, bird, and moon classes.

4 SYSTEM DESIGN

In this section, we will describe each module of our
nonparametric scene parsing system.

4.1 Scene Retrieval

The objective of scene retrieval is to retrieve a set of nearest
neighbors in the database for a given query image. There
exist several ways for defining a nearest neighbor set. The
most common definition consists of taking the K closest
points to the query (K-NN). Another model, �-NN, widely
used in texture synthesis [12], [26], considers all of the
neighbors within ð1þ �Þ times the minimum distance from
the query. We generalize these two types to hK; �i-NN, and
define it as

NðxÞ ¼ fyi j distðx; yiÞ � ð1þ �Þdistðx; y1Þ;

y1 ¼ argmin distðx; yiÞ; i � Kg:
ð1Þ

As �! 1, hK;1i-NN is reduced to K-NN. As K ! 1,
h1; �i-NN is reduced to �-NN. However, hK; �i-NN
representation gives us the flexibility to deal with the
density variation of the graph, as shown in Fig. 5. We will
show how K affects the performance in the experimental
section. In practice, we found that � ¼ 5 is a good parameter
and we will use it through our experiments. Nevertheless,
dramatic improvement of hK; �i-NN over K-NN is not
expected as sparse samples are few in our databases.

We have not yet defined the distance function distð�; �Þ
between two images. Measuring image similarities/dis-
tances is still an active research area; a systematic study of
image features for scene recognition can be found in [52]. In
this paper, three distances are used: euclidean distance of
GIST [34], spatial pyramid histogram intersection of HOG
visual words [24], and spatial pyramid histogram intersec-
tion of the ground-truth annotation. For the HOG distance,
we use the standard pipeline of computing HOG features on
a dense grid and quantizing features to visual words over a
set of images using k-means clustering. The ground truth-
based distance metric is used to estimate an upper bound of
our system for evaluation purposes. Both the HOG and the
ground truth distances are computed in the same manner.
The ground truth distance is computed by building histo-
grams of pixel-wise labels. To include spatial information,
the histograms are computed by dividing an image into 2� 2

windows and concatenating the four histograms into a single
vector. Histogram intersection is used to compute the
ground truth distance. We obtain the HOG distance by
replacing pixel-wise labels with HOG visual words.

In Fig. 4, we show the importance of the distancemetric as
it defines the neighborhood structure of the large image
database. We randomly selected 200 images from the LMO

database and computed pair-wise image distances using
GIST (top) and the ground-truth annotation (bottom). Then,
we use multidimensional scaling (MDS) [4] to map these
images to points on a 2D grid for visualization. Although the
GIST descriptor is able to form a reasonably meaningful
image spacewhere semantically similar images are clustered,
the image space defined by the ground-truth annotation truly
reveals the underlying structures of the image database. This
will be further examined in the experimental section.

4.2 SIFT Flow for Dense Scene Alignment

As our goal is to transfer the labels of existing samples to
parse an input image, it is essential to find the dense
correspondence for images across scenes. In our previous
work [29], we have demonstrated that SIFT flow is capable
of establishing semantically meaningful correspondences
among two images by matching local SIFT descriptors. We
further extended SIFT flow into a hierarchical computa-
tional framework to improve the performance [27]. In this
section, we will provide a brief explanation of the
algorithm; for a detailed description, we refer to [28].

Similarly to optical flow, the task of SIFT flow is to find
dense correspondence between two images. Let p ¼ ðx; yÞ
contain the spatial coordinate of a pixel, and wðpÞ ¼
ðuðpÞ; vðpÞÞ be the flow vector at p. Denote s1 and s2 as the
per-pixel SIFT descriptor [30] for two images,2 and " contains
all the spatial neighborhood (a four-neighbor system is
used). The energy function for SIFT flow is defined as:

EðwÞ ¼
X

p

minðks1ðpÞ � s2ðpþwðpÞÞk1; tÞ þ ð2Þ

X

p

�ðjuðpÞj þ jvðpÞjÞ þ ð3Þ

X

ðp;qÞ2"

minð�juðpÞ � uðqÞj; dÞþ

minð�jvðpÞ � vðqÞj; dÞ;

ð4Þ

which contains a data term, small displacement term, and
smoothness term (a.k.a. spatial regularization). The data term
in (2) constrains the SIFT descriptors to be matched along
with the flow vector wðpÞ. The small displacement term in (3)
constrains the flow vectors to be as small as possible when
no other information is available. The smoothness term in (4)
constrains the flow vectors of adjacent pixels to be similar.
In this objective function, truncated L1 norms are used in
both the data term and the smoothness term to account for
matching outliers and flow discontinuities, with t and d as
the threshold, respectively.

While SIFT flow has demonstrated the potential for
aligning images across scenes [29], the original implementa-
tion scales poorlywith respect to the image size. In SIFT flow,
a pixel in one image can literally match to any other pixel in
another image. Suppose the image has h2 pixels, then the
time and space complexity of the belief propagation
algorithm to estimate the SIFT flow is Oðh4Þ. As reported
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2. SIFT descriptors are computed at each pixel using a 16� 16 window.
The window is divided into 4� 4 cells, and image gradients within each cell
are quantized into a 8-bin histogram. Therefore, the pixel-wise SIFT feature
is a 128D vector.



in [29], the computation time for 145� 105 images with an
80� 80 searching neighborhood is 50 seconds. The original
implementation of SIFT flow would require more than
2 hours to process a pair of 256� 256 images in our database
with a memory usage of 16 GB to store the data term. To
address the performance drawback, a coarse-to-fine SIFT
flow matching scheme was designed to significantly

improve the performance. As illustrated in Fig. 6, the

basic idea consists of estimating the flow at a coarse level of

image grid, and then gradually propagating and refining

the flow from coarse to fine; please refer to [28] for details.

As a result, the complexity of this coarse-to-fine algorithm is

Oðh2 loghÞ, a significant speed up compared to Oðh4Þ. The

matching between two 256� 256 images take 31 seconds on

a workstation with two quad-core 2.67 GHz Intel Xeon

CPUs and 32 GB memory, in a C++ implementation. We

also discovered that the coarse-to-fine scheme not only runs
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Fig. 4. The structure of a database depends on image distance metric. Top: The hK; �i-NN graph of the LabelMe Outdoor database visualized by
scaled MDS using GIST feature as distance. Bottom: The hK; �i-NN graph of the same database visualized using the pyramid histogram intersection
of ground-truth annotation as distance. Left: RGB images; right: annotation images. Notice how the ground-truth annotation emphasizes the
underlying structure of the database. In (c) and (d), we see that the image content changes from urban, streets (right), to highways (middle), and to
nature scenes (left) as we pan from right to left. Eight hundred images are randomly selected from LMO for this visualization.

Fig. 6. An illustration of our coarse-to-fine pyramid SIFT flow matching.
The green square denotes the searching window for pk at each pyramid
level k. For simplicity, only one image is shown here, where pk is on
image s1 and ck and wðpkÞ are on image s2. The details of the algorithm
can be found in [28].

Fig. 5. An image database can be nonuniform as illustrated by some
random 2D points. The green node (A) is surrounded densely by
neighbors, whereas the red node (B) resides in a sparse area. If we use
K-NN (K ¼ 5), then some samples (orange nodes) far away from the
query (B) can be chosen as neighbors. If, instead, we use �-NN and
choose the radius as shown in the picture, then there can be too many
neighbors for a sample such as (A). The combination, hK; �i-NN, shown
as gray-edges, provides a good balance for these two criteria.



significantly faster, but also achieves lower energies most of

the time compared to the ordinary matching algorithm.
Some SIFT flow examples are shown in Fig. 8, where

dense SIFT flow fields (Fig. 8f) are obtained between the

query images (Fig. 8a) and the nearest neighbors (Fig. 8c). It

is trial to verify that the warped SIFT images (Fig. 8h) based

on the SIFT flows (Fig. 8f) look very similar to the SIFT images

(Fig. 8b) of the inputs (Fig. 8a), and that the SIFT flow fields

(Fig. 8f) are piecewise smooth. The essence of SIFT flow is

manifested in Fig. 8g, where the same flow field is applied to

warp the RGB image of the nearest neighbor to the query.

SIFT flow is trying to hallucinate the structure of the query

image by smoothly shuffling the pixels of the nearest

neighbors. Because of the intrinsic similarities within each

object categories, it is not surprising that, through aligning

image structures, objects of the same categories are often

matched. In addition, it is worth noting that one object in the

nearest neighbor can correspond to multiple objects in the

query since the flow is asymmetric. This allows reuse of labels

to parse multiple object instances.

4.3 Scene Parsing through Label Transfer

Now that we have a large database of annotated images and

a technique for establishing dense correspondences across

scenes, we can transfer the existing annotations to parse a

query image through dense scene alignment. For a given

query image, we retrieve a set of hK; �i-nearest neighbors in
our database using GIST matching [34]. We then compute

the SIFT flow from the query to each nearest neighbor, and

use the achieved minimum energy (defined in (4)) to rerank

the hK; �i-nearest neighbors. We further select the top

M reranked retrievals (M � K) to create our voting

candidate set. This voting set will be used to transfer its

contained annotations into the query image. This procedure

is illustrated in Fig. 7.
Under this setup, scene parsing can be formulated as the

following label transfer problem: For a query image I with

its corresponding SIFT image s, we have a set of voting

candidates fsi; ci;wigi¼1:M , where si, ci, and wi are the SIFT

image, annotation, and SIFT flow field (from s to si) of the

ith voting candidate, respectively. ci is an integer image

where ciðpÞ 2 f1; . . . ; Lg is the index of object category for

pixel p. We want to obtain the annotation c for the query

image by transferring ci to the query image according to the

dense correspondence wi.

We build a probabilistic Markov random field model to
integrate multiple labels, prior information of object
category, and spatial smoothness of the annotation to parse
image I. Similarly to that of [43], the posterior probability is
defined as:

� logP
�

cjI; s; fsi; ci;wig
�

¼
X

p

 
�

cðpÞ; s; fs0ig
�

þ �
X

p

�
�

cðpÞ
�

þ �
X

fp;qg2"

�
�

cðpÞ; cðqÞ; I
�

þ logZ;
ð5Þ

where Z is the normalization constant of the probability.
This posterior contains three components, i.e., likelihood,
prior, and spatial smoothness.

The likelihood term is defined as

 
�

cðpÞ ¼ l
�

¼
min
i2�p;l

ksðpÞ � siðpþwðpÞÞk; �p;l 6¼ ;;

� ; �p;l ¼ ;;

(

ð6Þ

where �p;l ¼ fi; ciðpþwðpÞÞ ¼ lg, l ¼ 1; . . . ; L, is the index
set of the voting candidates whose label is l after being
warped to pixel p. � is set to be the value of the maximum
difference of SIFT feature: � ¼ maxs1;s2;pks1ðpÞ � s2ðpÞk.

The prior term �ðcðpÞ ¼ lÞ indicates the prior probability
that object category l appears at pixel p. This is obtained
from counting the occurrence of each object category at each
location in the training set:

�
�

cðpÞ ¼ l
�

¼ � log histlðpÞ; ð7Þ

where histlðpÞ is the spatial histogram of object category l.
The smoothness term is defined to bias the neighboring

pixels into having the same label in the event that no other
information is available, and the probability depends on the
edge of the image: The stronger luminance edge, the more
likely it is that the neighboring pixels may have different
labels:

�
�

cðpÞ; cðqÞ
�

¼ 	½cðpÞ 6¼ cðqÞ�

 þ e��kIðpÞ�IðqÞk

2


 þ 1

 !

; ð8Þ

where � ¼ ð2 < kIðpÞ � IðqÞk2 >Þ�1 [43].
Notice that the energy function is controlled by four

parameters, K and M that decide the mode of the model
and � and � that control the influence of spatial prior and
smoothness. Once the parameters are fixed, we again use
the BP-S algorithm to minimize the energy. The algorithm
converges in two seconds on a workstation with two quad-
core 2.67 GHz Intel Xeon CPUs.

A significant difference between our model and that in
[43] is that we have fewer parameters because of the
nonparametric nature of our approach, whereas classifiers
were trained in [43]. In addition, color information is not
included in our model at the present as the color distribution
for each object category is diverse in our databases.

5 EXPERIMENTS

Extensive experiments were conducted to evaluate our
system. We shall first report the results on a small scale
database which we will refer to as the LabelMe Outdoor
(LMD) database in Section 5.1; this database will aid us for
an in-depth exploration of our model. Furthermore, we will
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Fig. 7. For a query image, we first find a hK; �i-nearest neighbor set in
the database using GIST matching [34]. The nearest neighbors are
reranked using SIFT flow matching scores, and form a top M-voting
candidate set. The annotations are transferred from the voting
candidates to parse the query image.



report results on the SUN database, a larger and more
challenging data set in Section 5.2.

5.1 LabelMe Outdoor Database

As mentioned in Section 3, the LMO database consists of
2,688 outdoor images, which have been randomly split into

2,466 training and 200 test images. The images are densely
labeled with 33 object categories using the LabelMe online
annotation tool. Our scene parsing system is illustrated in

Fig. 8. The system retrieves a hK; �i-nearest neighbor set for
the query image (Fig. 8a), and further selects M voting
candidates containing minimum SIFT matching scores. For

illustration purposes, we set M ¼ 3 here. The original RGB
image, SIFT image, and annotation of the voting candidates

are shown in Figs. 8c, 8d, and 8e, respectively. The SIFT
flow field is visualized in Fig. 8f using the same visualiza-
tion scheme as in [29], where hue indicates orientation and

saturation indicates magnitude. After we warp the voting
candidates into the query with respect to the flow field, the
warped RGB (Fig. 8g) and SIFT image (Fig. 8h) are very

close to the query Fig. 8a and Fig. 8b, respectively.
Combining the warped annotations in Fig. 8i, the system

outputs the parsing of the query in Fig. 8j, which is close to
the ground-truth annotation in Fig. 8k.

5.1.1 Evaluation Criterion

We use average pixel-wise recognition rate �r (similar to

precision or true positive) to evaluate the performance of
our system, computed as

�r ¼
1

P

imi

X

i

X

p2�i

1ðoðpÞ ¼ aðpÞ; aðpÞ > 0Þ; ð9Þ

where, for pixel p in image i, the ground-truth annotation is

aðpÞ and system output is oðpÞ; for unlabeled pixels,

aðpÞ ¼ 0. Notation �i is the image lattice for test image i,

and mi ¼
P

p2�i
1ðaðpÞ > 0Þ is the number of labeled pixels

for image i (some pixels are unlabeled). We also compute

the per-class average rate rl as

rl ¼

P

i

P

p2�i
1ðoðpÞ ¼ aðpÞ; aðpÞ ¼ lÞ

P

i

P

p2�i
1ðaðpÞ ¼ lÞ

; l ¼ 1; . . . ; L: ð10Þ

5.1.2 Results and Comparisons

Some label transfer results are shown in Fig. 10. The input

image from the test set is displayed in Fig. 10a. We show the

best match, its corresponding annotation, and the warped

best match in Figs. 10b, 10c, and 10d, respectively. While the

final labeling constitutes the integration of the top

M matches, the best match can provide the reader an

intuition of the process and final result. Notice how the

warped image (Fig. 10d) looks similar to the input

(Fig. 10a), indicating that SIFT flow successfully matches

image structures. The scene parsing results output by our

system are listed in Fig. 10e with parameter setting

K ¼ 85;M ¼ 9; � ¼ 0:06; � ¼ 20. The ground-truth user

annotation is listed in Fig. 10f. Notice that the gray pixels

in Fig. 10f are “unlabeled,” but our system does not

generate “unlabeled” output. For samples 1, 5, 6, 8, and 9,
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Fig. 8. System overview. For a query image, our system uses scene retrieval techniques such as [34] to find hK; �i-nearest neighbors in our
database. We apply coarse-to-fine SIFT flow to align the query image to the nearest neighbors, and obtain top M as voting candidates (M ¼ 3
here). (c), (d), (e): The RGB image, SIFT image and user annotation of the voting candidates. (f): The inferred SIFT flow field, visualized using the
color scheme shown on the left (hue: orientation; saturation: magnitude). (g), (h), and (i) are the warped version of (c), (d), (e) with respect to the
SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system combines the voting from multiple candidates and generates
scene parsing in (j) by optimizing the posterior. (k): The ground-truth annotation of (a).



our system generates reasonable predictions for the pixels
annotated as “unlabeled.” The average pixel-wise recogni-
tion rate of our system is 76.67 percent by excluding the
“unlabeled” class [43]. Some failure examples from our
system are shown in Fig. 11 when the system fails to
retrieve images with similar object categories to the query,
or when the annotation is ambiguous.

Overall, our system is able to predict the right object
categories in the input imagewith a segmentation fit to image
boundary, even though the best match may look different
from the input, e.g., 2, 11, 12, and 17. If we divide the object
categories into stuff (e.g., sky,mountains, tree, sea, and field) and
things (e.g., cars, sign, boat, and bus) [1], [22], our system
generates much better results for stuff than for things. The
recognition rate for the top seven object categories (all are
“stuff”) is 82.72 percent. This is because in our current
system,weonly allowone labeling for eachpixel, and smaller
objects tend to be overwhelmed by the labeling of larger
objects. We plan to build a recursive system in our future
work to further retrieve things based on the inferred stuff.

For comparison purposes, we downloaded and executed
the texton-boost code from [43] using the same training and
test data with the Markov random field turned off. The
overall pixel-wise recognition rate of their systemonour data
set is 51.67 percent, and the per-class rates are displayed in
Fig. 12c. For fairness we also turned off the Markov random
field model as well as spatial priors in our framework by
setting � ¼ � ¼ 0, and plotted the corresponding results in
Fig. 12f. Clearly, our systemoutperforms [43] in terms of both
overall andper-class recognition rate. Similar performance to
texton-boost is achieved by matching color instead of
matching dense SIFT descriptors in our system, as shown
in Fig. 12b. The recognition rate of the class grass and sand
dramatically increases throughmatching color because color
is the salient feature for these categories. However, the
performance drops for other color-variant categories. This
result supports the importance of matching appearance-
invariant features in our label transfer system.

We also compared the performance of our system with a
classifier-based system [8]. We downloaded their code and

trained a classifier for each object category using the same
training data. We converted our system into a binary object
detector for each class by only using the per-class likelihood
term. The per-class ROC curves of our system (red) and
theirs (blue) are plotted in Fig. 9. Except for five object
categories, grass, plant, boat, person, streetlight, and bus, our
system outperforms or equals theirs.

5.1.3 Parameter Selection

Since the SIFT flowmodule is essential to our system,we first
test spatial smoothness coefficient � in (4), which determines
matching results. We compute the average pixel-wise
recognition rate as a function of �, shown in Fig. 13a. We
first turn off the MRF model in the label transfer module by
setting � ¼ � ¼ 0, and find that when � ¼ 0:7, the maximal
recognition rate is achieved. Then, we turn on the MRF
model by setting � ¼ 0:1; � ¼ 60, and find that � ¼ 0:7 leads
to a good performance as well. Therefore, we fix � ¼ 0:7

throughout our experiments.
We investigated the performance of our system by

varying the parameters K, M, �, and �. We have found
that the influence of � is smaller than that of K when � is set
such that most samples have K nearest neighbors. We vary
M ¼ 1; 3; 5; 7; 9 and K ¼ 1; 5; 10; . . . ; 100. For each combina-
tion of K and M (M � K), coordinate descend is used to
find the optimal parameter of � and � by maximizing the
recognition rate. We plot the recognition rate as a function
of K for a variety ofMs in Fig. 13b. Overall, the recognition
rate increases as more nearest neighbors are retrieved (K " )
and more voting candidates are used (M " ) since,
obviously, multiple candidates are needed to transfer labels
to the query. However, the recognition rate drops as K and
M continue to increase as more candidates may introduce
noise to the label transfer process. In particular, the
recognition rate drops when K increases, suggesting that
scene retrieval does not only serve as a way to obtain
neighbors for SIFT flow, but also rule out some bad images
that SIFT flow would otherwise choose. The maximum
performance is obtained when K ¼ 85 and M ¼ 9.
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Fig. 9. The ROC curve of each individual pixel-wise binary classifier. Red curve: Our system after being converted to binary classifiers; blue curve:
the system in [8]. We used the convex hull to make the ROC curves strictly concave. The number ðn;mÞ underneath the name of each plot is the
quantity of the object instances in the test and training set, respectively. For example, (170, 2,124) under “sky” means that there are 170 test images
containing sky, and 2,124 training images containing sky (there are in total 2,488 training images and 200 test images). Our system obtains
reasonable performance for objects with sufficient samples in both training and test sets, e.g., sky, building, mountain, and tree. We observe
truncation in the ROC curves where there are not enough test samples, e.g., field, sea, river, grass, plant, car, and sand. The performance is poor for
objects without enough training samples, e.g., crosswalk, sign, boat, pole, sun, and bird. The ROC does not exist for objects without any test
samples, e.g., desert, cow, and moon. In comparison, our system outperforms or equals [8] for all object categories except for grass, plant, boat,
person, and bus. The performance of [8] on our database is low because the objects have drastically different poses and appearances.



Because the regularity of the database is the key to the

success, we remove the SIFT flow matching, i.e., set the

flow vector to be zero for every pixel, and obtain an

average recognition rate of 61.23 percent without MRF and

67.96 percent with MRF, shown in Figs. 12d and 12f,

respectively. This result is significant because SIFT flow is

the bottleneck of the system in terms of speed. A fast

implementation of our system consists of removing the

dense scene alignment module, and simply performing a

grid-to-grid label transfer (the likelihood term in the label

transfer module still comes from SIFT descriptor distance).

Howwould different scene retrieval techniques affect our

system? Other than the GIST distance used for retrieving

nearest neighbors for the results in Fig. 12, we also use the

spatial pyramid histogram intersection of HOG visual words

and of the ground-truth annotation, with the corresponding

per-class recognition rate displayed in Figs. 12g and 12h,

respectively. For this database, GIST performs slightly better

than HOG visual words. We also explore an upper bound of

the label transfer framework in the ideal scenario of having

access to perfect scene matching. In particular, we retrieve

the nearest neighbors for each image using their ground
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Fig. 11. Some typical failures. Our system fails when no good matches can be retrieved in the database. In (2), for example, since the best matches
do not contain river, the input image is mistakenly parsed as a scene of grass, tree, and mountain in (e). The ground-truth annotation is in (f). The
failure may also come from ambiguous annotations, for instance in (3), where the system outputs field for the bottom part, whereas the ground-truth
annotation is mountain.

Fig. 10. Some scene parsing results output from our system. (a): Query image, (b): the best match from nearest neighbors, (c): the annotation of the
best match, (d): the warped version of (b) according to the SIFT flow field, (e): the inferred per-pixel parsing after combining multiple voting
candidates, (f): the ground truth annotation of (a). The dark gray pixels in (f) are “unlabeled.” Notice how our system generates a reasonable parsing
even for these “unlabeled” pixels.



truth annotations; please refer to Section 4.1 for the details.
This upper bound is an 83.79 percent recognition rate.

To further understand our data-driven system, we
evaluated the performance of the system as a function of
the ratio of training samples while fixing the test set. For
each fixed ratio, we formed a small training database
randomly drawing samples from the original database and
evaluated the performance of the system under this
database. This experiment was performed 15 times for each
ratio to obtain a mean and standard deviation of its
performance, shown in Fig. 13c. Clearly, the recognition
rate depends on the size of the training database. Using the
last 10 data points for extrapolation, we found that if we
increase the training data by 10 times (corresponding to 1
on the horizontal axis), the recognition rate may increase to
84.16 percent.3 Note, however, that this linear extrapolation

does not consider potential saturation issues as it can be
observed when more than 10 percent of training samples
were used. This indicates that the training quantity is
reasonable for this database.

Another aspect we evaluated is the capacity to detect good
and bad parsing results. For this purpose, we rerank the test
image using three metrics: recognition rate (the ideal metric;
evaluatedwith respect to ground truth), the parsing objective
in (5) after energyminimization, and the averageGIST-based
distance to the nearest neighbors. After ranking, we
computed the accumulated average recognition rate as a
function of the ratio of testing samples, as shown in Fig. 13b.
If we use the parsing objective as a metric, for example, then
the average recognition rate can be greater than 80 percent
when only the top 75 percent parsing results are picked. The
system can reject the rest 25 percent with low scores.

5.2 SUN Database

We further evaluated the performance of our system on the
SUN database [52], which contains 9,556 images of both
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Fig. 12. We study the performance of our system in depth. (a) Our system with the parameters optimized for pixel-wise recognition rate. (b) Our
system, matching RGB instead of matching dense SIFT descriptors. (c) The performance of [43] with the Markov random field component turned off,
trained and tested on the same data sets as (a). In (d), (e), (f), we show the importance of SIFT flow matching and the MRF for label transfer by
turning them on and off. In (g) and (h), we show the system performance affected by other scene retrieval methods. The performance in (h) shows
the upper limit of our system, by adopting ideal scene retrieval using ground-truth annotation (of course, the ground-truth annotation is not available
in practice). See text for more details.

Fig. 13. (a): Recognition rate as a function of the spatial smoothness coefficient � under two settings for � and �. (b): Recognition rate as a function
of number of nearest neighbors K and the number of voting candidatesM. Clearly, prior and spatial smoothness help improve the recognition rate.
The fact that the curve drops down as we further increase K indicates that SIFT flow matching cannot replace scene retrieval. (c): Recognition rate
as a function of the log training ratio while the test set is fixed. A subset of training samples are randomly drawn from the entire training set according
to the training ratio to test how the performance depends on the size of the database. (d): Recognition rate as a function of the proportion of the top
ranked test images according to metrics including GIST, the parsing objective in (5), and the recognition rate (with ground-truth annotation). The
black, dashed curve with recognition rate as sorting metric is the ideal case, and the parsing objective is better than GIST. These curves suggests
the system is somewhat capable of distinguishing good parsing results from bad ones.

3. This extrapolation is different from moving to a larger database in
Section 5.2, where indoor scenes are included. This number is anticipated
only when images similar to the LMO database are added.



indoor and outdoor scenes. This database contains a total of
515 object categories; the pixel frequency counts for the top
100 categories are displayed in Fig. 15a. The data corpus is
randomly split into 8,556 images for training and 1,000 for
testing. The structure of the database is visualized in Fig. 14

using the same technique to plot Fig. 5, where the image
distance is measured by the ground-truth annotation.
Notice the clear separation of indoor (left) and outdoor
(right) scenes in this database. Moreover, the images are not
evenly distributed in the space; they tend to reside around a
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Fig. 14. Visualization of the SUN database [52] using 1,200 random images. Notice that the SUN database is larger but not necessarily denser than
the LMO database. We use the spatial pyramid histogram intersection distance of the ground-truth annotation to measure the distance between the
images and project them to a 2D space using scaled multidimensional scaling. Clearly, the images are clustered to indoor (left) and outdoor (right)
scenes, and there is smooth transition in between. In the outdoor cluster, we observe the change from garden, street, to mountain and valley as we
move from top to bottom. Please visit http://people.csail.mit.edu/celiu/LabelTransfer/ to see the full resolution of the graphs.



few clusters. This phenomenon is consistent with human
perception, drawing a clear separation between outdoor
and indoor images.

Some scene parsing results are displayed in Fig. 16 in the
same format as Fig. 10. Since the SUN database is a superset
of the LabelMe Outdoor database, the selection of results is
slightly biased toward indoor and activity scenes. Overall,
our system performs reasonably well in parsing these
challenging images.

We also plot the per-class performance in Fig. 15. In
Fig. 15a, we show the pixel-wise frequency count of the top
100object categories. Similarly toLMO, thisprior distribution
is heavily biased toward stuff-like classes, e.g., wall, sky,
building, floor, and tree. In Fig. 15b, the performance is
achievedwhen the ground-truth annotation is used for scene
retrieval. Again, the average 64.45 percent recognition rate
reveals the upper limit and the potential of our system in the
idealized case of perfect nearest neighbor retrieval. In
Figs. 15c and 15d, the performance using HOG and GIST
features for scene retrieval is plotted, suggesting that the
HOG visual words features outperform GIST for this larger
database. This is consistent with the discovery that the HOG
feature is the best among a set of features, including GIST, in
scene recognition in the SUN database [52].

Overall, the recognition rate on the SUNdatabase is lower
than that on the LMO database. A possible explanation for
this phenomenon is that indoor scenes contain less regularity
compared to outdoor ones, and there are 515 object categories
in SUN, whereas there are only 33 categories in LMO.

6 DISCUSSION

6.1 Label Transfer: An Open, Database-Driven
Framework for Image Understanding

A unique characteristics of our nonparametric scene parsing
system is its openness: To support more object categories,
one can simply add more images of the new categories into
the database without requiring additional training. This is
an advantage over classical learning-based systems where
all of the classifiers have to be retrained when new object
categories are inserted into the database.

Although there is no parametric model (probabilistic
distributions or classifiers) of object appearances in our

system, the ability to recognize objects depends on reliable
image matching across different scenes. When good
matches are established between objects in the query and
objects in the nearest neighbors in the annotated database,
the known annotation naturally explains the query image as
well. We chose SIFT flow [28] to establish a semantically
meaningful correspondence between two different images.
Nonetheless, this module can easily be substituted by other
or better scene correspondence methods.

Although context is not explicitly modeled in our system,
our label transfer-based scene parsing system naturally
embeds contextually-coherent label sets. The nearest neigh-
bors retrieved in the database and reranked by SIFT flow
scores mostly belong to the same type of scene category,
implicitly ensuring contextual coherence. Using Fig. 16 (9)
as an example, we can see that even though the reflection of
the mountain has been misclassified to field, ground, tree,
and plant, the parsing result is context-coherent.

6.2 The Role of Scene Retrieval

Our nonparametric scene parsing system largely depends
on the scene retrieval technique through which the nearest
neighbors of the query image in the large database are
obtained. We have tried two popular techniques, GIST and
HOG visual words, and have found that GIST-based
retrieval yields higher performance in the LMO database,
whereas HOG visual words tend to retrieve better
neighbors in the SUN database. We also show the upper
bound performance of our system by using the ground-
truth annotation for scene retrieval. This upper bound
provides an intuition of the efficacy of our system given an
ideal scene retrieval system. The recent advances in this
area by combining multiple kernels [52] point out promis-
ing directions for scene retrieval.

6.3 Better Evaluation Criterion

Presently, we use a simple criterion, pixel-wise recognition
rate to measure the performance of our scene parsing
system. A pixel is correctly recognized only when the
parsing result is exactly the same as the ground-truth
annotation. However, human annotation can be ambiguous.
For instance, in the parsing example depicted in Fig. 16 (9),
the pixel-wise recognition rate is low because the mountain
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Fig. 15. The per-class recognition rate of running our system on the SUN database. (a) Pixel-wise frequency histogram of the top 100 object
categories. (b): The per-class recognition rate when the ground-truth annotation is used for scene retrieval. This is the upper limit performance that
can be achieved by our system. (c) and (d): Per-class recognition rate using HOG and GIST for scene retrieval, respectively. The HOG visual words
features generate better results for this larger database.



is recognized as tree and the water is recognized as river.
While, in our current evaluation framework, these pixels are
considered misclassified, this parsing would be considered
accurate when evaluated by a human. A more precise
evaluation criterion would take synonyms into account.
Another example is shown in Fig. 16 (12), where the
windows are not present in the parsing result. Therefore,
the window pixels are labeled wrong because they are
classified as building, which is a more favorable label than,
for example, car, as windows tend to appear on top of
buildings. A superior evaluation criterion should also
consider co-occurrence and occlusion relationships. We
leave these items as future work.

6.4 Nonparametric versus Parametric Approaches

In this paper, we have demonstrated promising results of
our nonparametric scene parsing system using label
transfer by showing how it outperforms existing recogni-
tion-based approaches. However, we do not believe that
our system alone is the ultimate answer to image under-
standing since it does not work well for small objects such
as person, window, bus, etc., which can be better handled
using detectors. Moreover, pixel-wise classifiers such as
textonboost can also be useful when good matching cannot
be established or good nearest neighbors can hardly be
retrieved. Therefore, a natural future step is to combine
these methods for scene parsing and image understanding.

7 CONCLUSION

We have presented a novel, nonparametric scene parsing
system to integrate and transfer the annotations from a
large database to an input image via dense scene alignment.
A coarse-to-fine SIFT flow matching scheme is proposed to
reliably and efficiently establish dense correspondences

between images across scenes. Using the dense scene

correspondences, we warp the pixel labels of the existing

samples to the query. Furthermore, we integrate multiple

cues to segment and recognize the query image into the

object categories in the database. Promising results have

been achieved by our scene alignment and parsing system

on challenging databases. Compared to existing approaches

that require training for each object category, our nonpara-

metric scene parsing system is easy to implement, has only

a few parameters, and embeds contextual information

naturally in the retrieval/alignment procedure.
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