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Abstract

Hand pose estimation is more challenging than body

pose estimation due to severe articulation, self-occlusion

and high dexterity of the hand. Current approaches of-

ten rely on a popular body pose algorithm, such as the

Convolutional Pose Machine (CPM), to learn 2D keypoint

features. These algorithms cannot adequately address the

unique challenges of hand pose estimation, because they are

trained solely based on keypoint positions without seeking

to explicitly model structural relationship between them. We

propose a novel Nonparametric Structure Regularization

Machine (NSRM) for 2D hand pose estimation, adopting a

cascade multi-task architecture to learn hand structure and

keypoint representations jointly. The structure learning is

guided by synthetic hand mask representations, which are

directly computed from keypoint positions, and is further

strengthened by a novel probabilistic representation of hand

limbs and an anatomically inspired composition strategy of

mask synthesis. We conduct extensive studies on two public

datasets - OneHand 10k and CMU Panoptic Hand. Exper-

imental results demonstrate that explicitly enforcing struc-

ture learning consistently improves pose estimation accu-

racy of CPM baseline models, by 1.17% on the first dataset

and 4.01% on the second one. The implementation and ex-

periment code is freely available online1. Our proposal of

incorporating structural learning to hand pose estimation

requires no additional training information, and can be a

generic add-on module to other pose estimation models.

1. Introduction

Hand pose understanding is an important task for many

real world AI applications, such as human-computer in-

∗These authors contribute equally to this work.
†These authors are co-corresponding authors of this work.
1https://github.com/HowieMa/NSRMhand

teraction, augmented reality and virtual reality. However,

hand pose estimation remains challenging because the hand

is highly articulated and dexterous, and suffers severely

from self-occlusion. Recently a significant amount of ef-

forts have been dedicated to improving the accuracy of hand

pose estimation from different perspectives, including 1)

multi-view RGB systems [23, 11], 2) depth-based solutions

[7, 28, 32], and 3) monocular RGB solutions [35, 19, 2].

Although some of these efforts focus on 3D hand pose or

shape estimation, 2D hand pose estimation remains an es-

sential component as it often constitutes a sub-module of

3D estimation problems and as such directly impacts the

performance of downstream 3D pose or shape estimation.

Meanwhile, human pose estimation has advanced signif-

icantly since the advent of Deep Convolutional Neural Net-

work (DCNN). Successful DCNN architectures typically

have large receptive fields and strong representation power,

such as the Convolutional Pose Machine (CPM) [30], the

Stacked Hourglass (SHG) [18], and the Residual Network

[10]. They are deployed by popular human pose estimation

systems [3, 6, 9] to implicitly capture structure information

of body parts. They are also utilized by many hand pose

estimation algorithms to perform the 2D pose estimation

subtask [23, 35, 2, 19, 28]. However, DCNNs only cap-

ture structure information implicitly and may not be ade-

quately equipped to capture complex structure relationship

between hand keypoints to handle severe articulation and

self-occlusion of the hand [12, 14].

Recently, there is a trend to unify pose estimation and in-

stance segmentation in a multi-task learning paradigm, and

it is observed that the latter helps to improve the perfor-

mance of the former [9, 29]. Unfortunately, this direction

requires a large amount of manually labelled segmentation

masks, which is costly to obtain. Hand mask datasets are

even rarer than body mask datasets, making the multi-task

approach less applicable to hand pose estimation.

In this paper, we propose the Nonparametric Structure

Regularization Machine (NSRM) for 2D hand pose esti-
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mation from a monocular RGB image. NSRM incorpo-

rates a nonparametric structure model and a pose model

in a cascade multi-task framework. The structure learn-

ing is supervised by synthetic hand mask representations

directly computed from keypoint positions, and is strength-

ened by a probabilistic representation of hand limbs and an

anatomically inspired composition strategy of mask synthe-

sis. The pose model utilizes the composite structure rep-

resentation to learn robust hand pose representation. We

comprehensively evaluate the performance of NSRM on

two public datasets, i.e., OneHand 10k [29], and the more

challenging CMU Panoptic Hand [11]. Quantitative re-

sults demonstrate that NSRM consistently improves the

prediction accuracy of the CPM baseline, by 1.17% on

the first dataset and 4.01% on the second one, and that

NSRM renders competitive performance compared to uti-

lizing manually-labeled masks. Qualitative results show

that NSRM effectively reinforces structure consistency to

predicted hand pose especially when severe occlusion ex-

ists, and the learned structure representations highly resem-

ble real segmentation masks.

The main contributions of this paper are as follows:

• We propose a novel cascade structure regularization

methodology for 2D hand pose estimation, which uti-

lizes synthetic hand masks to guide keypoints struc-

ture learning. The synthetic masks are derived directly

from keypoint positions requiring no extra data anno-

tations, making the method applicable to any existing

pose estimation model.

• We propose a novel probabilistic representation of

hand limbs and an anatomically inspired composition

strategy for hand mask synthesis.

• We carry out extensive experiments on two public

datasets, and demonstrate that NSRM consistently out-

performs baseline models.

2. Related work

2.1. Human pose estimation

DCNN has been massively applied to 2D human pose

estimation since the seminal work of DeepPose [27]. As

the human body naturally manifests an articulated graph

structure, researchers have explored the combination of

DCNN and graphical models (GM) for pose estimation

[26, 4, 31, 25]. However, the GM component often suffers

from two practical limitations: 1) the pairwise term typi-

cally takes some parametric form, which may not be true

in reality; 2) belief propagation inference is performed fre-

quently during training and computational intensive. As a

result, mainstream algorithms [3, 6, 9] still rely on delicate

DCNN architectures, such as CPM [30], SHG [18], and the

Residual Network [10] to implicitly capture structure infor-

mation, deploying their large receptive fields and strong rep-

resentation power. To further improve the effect of structure

regularization, some approaches attempt to modify the out-

put of DCNN, for example, to introduce extra branches of

the offset field [20] or the structural-aware loss [12]. Un-

fortunately, they still cannot fully characterize the structure

conditions of limbs, especially their poses and interactions,

resulting in very limited effect.

Meanwhile, 3D human pose estimation from monocu-

lar RGB, a challenger problem due to depth ambiguity, also

advances significantly. Some researches explicitly infer 3D

coordinates from the 2D pose [1, 15, 22, 21], while others

incorporate 2D pose estimation networks into the whole ar-

chitecture [16, 17, 33]. In both cases, DCNN-based 2D pose

estimators are intensively utilized, such as the Mask RCNN

[9] and SHG. To enforce structure constraints in 3D, a kine-

matic layer can be added on top of the network [34]. But

this relies on known bone length and may suffer from the

optimization difficulty, which limit its practical application.

2.2. Hand pose estimation

Hand pose estimation is more difficult than body pose

estimation, as the hand is highly articulated, dexterous, and

suffers severely from self-occlusion. Although multi-view

camera systems can solve the task reliably [23, 11], it is usu-

ally very costly to build such a system, involving numerous

optical devices and complicated configuration. Therefore,

their applications are mostly restricted to the laboratory sce-

narios. To circumvent this limitation, researchers also de-

vote much effort to depth-based solutions [7, 28, 32]. How-

ever, depth devices have limited resolution and range, and

are sensitive to lighting conditions [17]. And after all, they

are still less ubiquitous than RGB cameras.

Due to the drawbacks of multi-view and depth-based

solutions, monocular RGB approaches are drawing much

more attention in recent years. Like in the case of 3D hu-

man pose estimation, many algorithms adopt a two-stage

framework, i.e., first performing 2D hand pose estimation

and then lifting from 2D to 3D [35, 19, 2]. The 2D subtasks

commonly utilize prevalent 2D human pose algorithms, in

particular CPM and SHG, which are also frequently used

in the multi-view or depth-based solutions [23, 28]. Given

the critical role of 2D hand pose algorithms in solving the

complete 3D task, we focus on imposing novel structure

regularization to 2D hand pose estimation in this paper.

3. The model

Nonparametric Structure Regularization Machine

(NSRM) learns the hand’s structure and keypoint represen-

tations in a cascade multi-task framework. A high-level

illustration of the hand representation and our overall

architecture is shown in Figure 1. The hand is modeled as
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(a) the hand model (b) the high-level architecture of NSRM

Figure 1: Illustration of the problem setting and our proposed framework. The hand is modeled as 21 keypoints, and 20 limbs

that interconnect them anatomically. NSRM features a hierarchical multi-task architecture that learns structure representation

and keypoint representation sequentially, which is generic for multi-stage pose estimation models such as CPM [30] and SHG

[18]. Structure learning is guided by our novel synthetic hand mask representations (see 3.1, 3.2 for details).

21 keypoints and 20 limbs. The former are interconnected

via the latter anatomically. First, the backbone module,

usually a DCNN, e.g., the VGG [24], processes an input

image and generates a set of feature maps. Second, the

structure module takes in image feature maps to learn the

mask representation of the hand. Third, the pose module

takes in both the mask representation and the feature maps

to learn the pose representation of the hand, i.e., keypoint

confidence maps (KCM). Both the structure and the pose

modules are multi-stage convolutional neural networks.

3.1. Limb mask representation

Consider any particular limb L between Keypoint i and

j as defined in Figure 1a. We define our basic mask repre-

sentation as follows,

Limb Deterministic Mask (LDM). Pixels that belong

to L are defined as those which fall inside a fixed-width

rectangle centering around line segment pipj , i.e.,
{

0 ≤ (p− pj)
T
(pi − pj) ≤ ‖pi − pj‖

2

2
,

∣

∣

∣
(p− pj)

T
u
⊥
∣

∣

∣
≤ σLDM

(1)

where u⊥ is a unit vector perpendicular to pipj , and σLDM

is a hyper parameter to control the width of the limb. The

ground truth of LDM is a simple 0/1-mask defined out-

side/inside the rectangle, i.e.,

SLDM (p|L) =

{

1 if p ∈ L

0 otherwise
(2)

where p ∈ I is an arbitrary pixel in the image. See Figure

2a for an illustration.

Limb Probabilistic Mask (LPM). LDM assigns 0/1

value to each pixel, depending on its belong to the rectan-

gular mask. This crude treatment may not be optimal in

practice. We further propose the novel LPM representation.

Each pixel belongs to L with a Gaussian-alike confidence

value as defined bellow,

SLPM (p|L) = exp

(

−
D(p, pipj)

2σ2

LPM

)

(3)

where D(p, pipj) is the distance between the pixel p and

the line segment pipj , and σLPM is a hyper parameter to

control the spread of the Gaussian. See Figure 2b for an

illustration. LPM is a smoothed expansion of LDM.

(a) LDM (b) LPM

Figure 2: Two limb mask representations (taking the index

finger tip as an example). LDM: Limb Deterministic Mask

(Equation 2); LPM, Limb Probabilistic Mask (Equation 3).
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3.2. Limb composition

Given mask representations of single limbs, we further

coalesce them into anatomically legitimate groups. Our ba-

sic strategy is to coalesce all the 20 limbs together, which

renders one single mask representing the whole hand (de-

noted as G1). Alternatively, we also consider coalescing

limbs separately into six groups, one representing each fin-

ger and one representing the palm (denoted as G6). G1

captures the overall structure of the hand, while G6 con-

cerns more about detailed structure regarding local areas of

the hand. See Figure 3 and 4 for an illustration. Formally,

consider any particular limb group g containing |g| limbs,

{L1, L2, ..., L|g|}. Using limb composition, the coalesced

mask is defined as,

S∗ (p|g) = max
(

S(p|L1), S(p|L2), ..., S(p|L|g|)
)

(4)

where S(p|L) is computed using the basic representation of

SLDM (Equation 2) or SLPM (Equation 3).

In practice, we mainly focus on utilizing G1 and G1&6

(the combination of G1 and G6). We note that although G1

resembles the hand segmentation mask, it is much more ef-

ficient because it is readily obtained from keypoins without

the extra work of mask annotation. In Section 4, we will

compare the performance of utilizing our LDM/LPM repre-

sentations against the real segmentation mask.

(a) LDM-G1 (b) LPM-G1

Figure 3: The G1 composition strategy: coalescing all the

20 limbs together to get one single mask representing the

whole hand.

3.3. Loss function and training

Intermediate supervision is applied to each stage of the

structure module and the pose module. Following the com-

mon practice of instance segmentation [9], we apply cross-

entropy loss to the output of our structure module, i.e.,

LS =

TS
∑

t=1

∑

g∈G

∑

p∈I

S∗(p|g) log Ŝt(p|g) (5)

+(1− S∗(p|g)) log
(

1− Ŝt(p|g)
)

Figure 4: The G6 composition strategy (using LPM repre-

sentation, e.g., LPM-G6): coalescing the 20 limbs into 6

groups, representing five fingers and the palm separately.

where TS is the number of stages of structure learning, and

Ŝt(p|g) is the prediction of the structure module at Pixel p,

Group g of Stage t.

Following the common practice of pose estimation [18,

3], we define the ground truth KCM of Keypoint k as a 2D

Gaussian centering around the labelled keypoint with stan-

dard deviation σKCM , i.e.,

C∗(p|k) = exp

{

−
‖p− p∗k‖

2

2

2σ2

KCM

}

(6)

We apply the sum-of-squared-error loss to the output of our

pose module, i.e.,

LK =

TK
∑

t=1

K
∑

k=1

∑

p∈I

∥

∥

∥
C∗(p|k)− Ĉt(p|k)

∥

∥

∥

2

2

(7)

where TK is the number of stages of pose learning, and

Ĉt(p|k) is the prediction of the pose module at Pixel p, Key-

point k of Stage t.

The overall loss function is thus a weighted sum of the

structure loss and the pose loss, i.e.,

L =

{

LK + λ1L
G1

S , for G1

LK + λ1L
G1

S + λ2L
G6

S , for G1&6
(8)

where λ1, λ2 are hyper-parameters to control the relative

weight of the structural regularization. The whole system is

trained end-to-end.

4. Experiments

4.1. Datasets

We evaluate NSRM on two public hand pose datasets:

the OneHand 10k dataset [29] (OneHand 10k), and the
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CMU Panoptic Hand dataset [11] (Panoptic). Their over-

all statistics are summarized in Table 1. More descriptions

are as follows.

OneHand 10k contains 11,703 in-the-wild hand images

annotated with both segmentation masks and keypoints. Be-

ing collected online, the images often have cluttered back-

ground and cover various hand poses. Invisible keypoints

are often left unannotated. Ground truth limb representa-

tions related to these missing keypoints are set to zero maps.

We don’t do any hand cropping, as most of the images are

occupied by one hand. The dataset is already partitioned

into training and testing subsets by Wang et al. [29].

Panoptic contains 14,817 images of persons from the

Panoptic Studio, each with 21 annotated keypoints of the

right hand. Since we focus on hand pose estimation instead

of hand detection, we directly crop hands based upon their

ground truth keypoints. Specifically, we crop a square patch

of size 2.2B, where B is the maximum dimension of the

tightest bounding box enclosing all hand keypoints. Then

the cropped hand dataset is randomly divided into three sub-

sets for training (80%), validation (10%) and testing (10%).

Table 1: Overall statistics of datasets used in this paper.

dataset training validation testing

OneHand 10k 10,000 - 1,703

Panoptic 11,853 1,482 1,482

4.2. Experimental settings

Implementation details

We implement NSRM in Pytorch. To be compatible

with and comparable to the CPM hand pose model [23],

we adopt VGG-19 [24] (up to Conv 4 4) as our backbone

network, which is pretrained on ImageNet [5] and generates

128-channel feature maps. The following architecture has

6 stages, each of which contains 5 convolution layers with

7x7 kernel and 2 convolution layers with 1x1 kernel (ex-

cept the first stage). The first 3 stages are allocated to learn

composite mask representations, and the last 3 stages are

for pose representation learning. All hand image patches

are resized to 368×368 before fed into our model, yielding

46×46 representation maps for both LDM/LPM and KCM.

The detail network architecture is shown in Figure 5.

Learning configuration

We use Adam [13] to train our model. The initial learn-

ing rate is set to 1e-4, and other parameters are set to default

values. For G1, we set λ1 = 1 for LDM, and λ1 = 0.5 for

LPM. For G1&6, we set λ1 = 0.2, λ2 = 0.04 for LDM, and

λ1 = 0.1, λ2 = 0.02 for LPM. These configurations empir-

ically make the structure loss and the pose loss on the same

scale at the beginning of training. Further more, as struc-

ture learning is an auxiliary task and our ultimate goal is

hand pose estimation, we propose to utilize a decayed loss

training schedule. Specifically, we let λ1 and λ2 decay by a

ratio of 0.1 every 20 epochs, so as to let training focus more

on KCM in later iterations.

Evaluation metric

We adopt Probability of Correct Keypoint within a Nor-

malized Distance Threshold [23] (shortly referred to as

PCK) to perform model selection and evaluation. However,

as the hand/head sizes are not explicitly provided by the

datasets used in this paper, we resort to normalization with

respect to the dimension of the tightest hand bounding box.

The normalization threshold σPCK ranges from 0 to 1.

4.3. Quantitative results

OneHand 10k

As this dataset has a lot of missing values, G6 compo-

sition tends to generate incomplete masks. Therefore, we

only consider about G1 composition. We retrain the Mask-

pose Cascaded CNN [29], which utilize real segmentation

masks (denoted as “Real Mask”). We also train the model

with our proposed decayed loss training schedule (denoted

as “Real Mask ++”). Figure 6a shows the performance

comparison. Table 2 summarizes detailed numerical results.

Our observations are as follows:

i) NSRM consistently improves the predictive accuracy

of CPM, regardless of the choice of basic representation

(LDM or LPM), and the value of the evaluation threshold

σPCK . In particular, LPM-G1 achieves 0.0102 absolute im-

provement in average PCK, corresponding to 1.17% relative

improvement.

ii) LPM-G1 outperforms LDM-G1, and does slightly

better than Real Mask. This result demonstrates the effec-

tiveness of our proposed probabilistic mask, comparing to

both the manually labeled mask and our proposed determin-

istic mask.

iii) Our proposed decayed loss training schedule, in com-

bination with utilizing real masks, achieves the best perfor-

mance (Real Mask ++).

To summarize, our proposed NSRM (along with its

learning schedule) is both efficient and effective, as it avoids

the overhead of mask labeling but still maintains competi-

tive performance.

Panoptic

Figure 6b shows the performance of NSRM and the

CPM baseline. Table 3 summarizes detailed numerical re-

sults. Our observations are as follows:

i) Like in the case of OneHand 10k, NSRM consistently

outperforms the CPM baseline. In particular, the fully-

fledged LPM-G1&6 achieves 0.0309 absolute improvement

in average PCK, corresponding to 4.01% relative improve-

ment. The results suggest a systematic and significant ben-
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Figure 5: Detailed architecture of NSRM using G1&6 composition implemented based upon CPM. Each stage consists of a

series of fully convolutional layers, whose kernel size is denoted as k× k. The number of input feature maps and the number

of output feature maps are shown lower insider each rectangle. The output of Structure Stage 3 is fed to each keypoint stage.

Table 2: Detailed numerical results of PCK (in %) evaluated at different thresholds on the OneHand 10k testing data. “ave”

means the average PCK, whose absolute and relative improvement are shown in the right most column. The best improvement

is highlighted in boldface.

σPCK 0.1 0.15 0.2 0.25 0.3 ave improvement

CPM 78.48 84.73 88.54 90.89 92.64 87.06 -

LDM-G1 78.50 85.35 89.31 91.72 93.35 87.64 +0.59 (+0.67%)

LPM-G1 79.32 86.10 89.60 91.91 93.43 88.07 +1.02 (+1.17%)

Real Mask [29] 78.95 85.93 89.78 92.04 93.55 88.05 +0.99 (+1.14%)

Real Mask ++ 79.62 86.38 90.05 92.34 93.92 88.46 +1.41 (+1.62%)

efit of utilizing our proposed structure regularization for 2D

hand pose estimation.

ii) Like in the case of OneHand 10k, LPM consistently

outperforms LDM, under both composition strategies (G1

and G1&6). The absolute improvement in average PCK is

0.64 under G1 and 0.71 under G1&6. This phenomenon

consolidates that the probabilistic treatment in mask repre-

sentation indeed benefits the performance of NSRM.

iii) Comparing the proposed composition strategies, we

find that G1&6 moderately improves the performance of

G1. We interpret this result from an anatomical perspective.

As an overall representation, G1 covers important global

structure information of the hand. However it cannot fully

characterize local details, such as the shape of each finger,

which are highly flexible and hard to distinguish due to self-

occlusion. G6 is designed to cope with this problem. By

combining G1 and G6, NSRM gets a representation that can

cover both global and local structure information.

iv) The combination of centralized & distributed com-

position and the probabilistic representation (LPM-G1&6)

renders the optimal performance, which correspond to 0.89

absolute improvement in average PCK, comparing to the

basic version (LDM-G1).

v) Although being consistent on both datasets, the im-

provement seems much more significant on Panoptic than

on OneHand 10k. There are two potential reasons. First,

Panoptic is much more challenging, with abundant hand

gestures shot from different perspectives and complicated

hand-hand & hand-object interactions. Second, OneHand

10K contains a lot of unlabelled keypoints, and therefore

tends to make the mask learning signal too fragmented and

noisy. Both factors suggest that Panoptic could benefit more

from structure learning than OneHand 10k.

4.4. Qualitative results

Figure 7 visualizes the predictive results of CPM and

NSRM on sample images from the Panoptic test data. We

can clearly see that NSRM effectively reinforces structure
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Table 3: Detailed numerical results of PCK (in %) evaluated at different thresholds on the Panoptic testing data. “ave” means

the average PCK, whose absolute and relative improvement are shown in the right most column. The best improvement is

highlighted in boldface.

σPCK 0.04 0.06 0.08 0.10 0.12 ave improvement

CPM 55.25 73.23 81.45 85.97 88.80 76.94 -

LDM-G1 59.20 75.98 83.45 87.28 89.81 79.14 +2.20 (+2.86%)

LDM-G1&6 59.16 76.32 83.63 87.46 90.03 79.32 +2.38 (+3.09%)

LPM-G1 59.81 76.82 84.16 87.86 90.26 79.78 +2.84 (+3.69%)

LPM-G1&6 59.73 76.86 84.43 88.23 90.87 80.03 +3.09 (+4.01%)

(a) (b)

Figure 6: PCK curves on testing data of a) OneHand 10k, and b) Panoptic. Best viewed in color.

consistency and reduces inference ambiguity. Even during

severe occlusion, LPM-G1&6 still makes anatomically le-

gitimate prediction while CPM cannot. Moreover, Figure 8

visualizes the learned structure representations on sample

images. We can see that they highly resemble hand seg-

mentation masks. This indicates that our NSRM framework

could be potentially applied to multi-task learning of both

hand pose estimation and instance segmentation.

4.5. Discussion

NSRM learns compositional structure representation of

the hand, and utilizes it to regularize the learning process

of KCM in a nonparametric fashion. This implicit hier-

archical treatment is fundamentally different to graphical-

model-involved approaches [4, 31, 25, 14], and those which

introduce simple keypoint-induced output/loss [20, 12] or

kinematic constraints [34].

Our basic LDM representation takes a rectangular shape,

similar to the Part Affinity Field (PAF) [3]. However,

NSRM goes significantly beyond PAF in three core aspects.

First, our segmentation-inspired representation and its prob-

abilistic expansion are completely different from the vector

field representation of PAF. Second, we propose structure

composition to coalescing limbs into anatomically inspired

groups, a key feature not considered by PAF. Last but not

least, PAF is an auxiliary representation proposed for differ-

entiating multiple human instances, not intended for hand

structure regularization as in our case.

Previous researches have explored simultaneous pose es-

timation and instance segmentation [9, 29], but all require

mask annotation. Our structure representation is automati-

cally constructed from keypoints, avoiding laborious anno-
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Figure 7: Visualization of predicted hand pose of samples from the Panoptic test data. For each pair of images, the left shows

CPM’s prediction and the right shows LPM-G1&6’s prediction. Best viewed in color.

Figure 8: Visualization of the learned structure representation of samples from the Panoptic test data. For each pair of images,

the left shows the original image and the right shows the learned mask representation of LPM-G1, i.e., the output of Structure

Stage 3 (see Figure 5 for an illustration).

tation. Our experiments demonstrate that NSRM achieves

comparable pose estimation performance to models trained

with real masks [29]. More over, our learned structure rep-

resentations highly resemble real masks, which indicates

potential applications to hand instance segmentation.

5. Conclusion

In this paper, we have proposed a novel Nonparametric

Structure Regularization Machine for 2D hand pose estima-

tion. NSRM is a cascade architecture of structure learning

and pose learning. The structure learning is guided by self-

organized hand mask representations, and strengthened by

a novel probabilistic representation of hand limbs and an

anatomically inspired composition strategy of mask synthe-

sis. The pose module utilizes the structure representation

to learn robust hand pose representation. We comprehen-

sively evaluate NSRM on two public datasets. Experimental

results demonstrate that, 1) NSRM consistently improves

the prediction accuracy of the baseline model; 2) NSRM

renders comparable performance to utilizing manually la-

beled masks; 3) NSRM effectively reinforces structure con-

sistency to predicted hand poses, especially during severe

occlusion. We should note that although we used CPM as

our baseline pose estimation model, the proposed method is

generic, independent of any particular choice of the base-

line. The structure learning module can be readily added to

other prevalent models [18, 8] to improve pose estimation

performance, which we intend to explore in future work.
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