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NONPARAMETRIC SURVIVAL ANALYSIS WITH TIME-DEPENDENT
COVARIATE EFFECTS: A PENALIZED PARTIAL
LIKELTHOOD APPROACH

By Davip M. ZUCKER! AND ALAN F. KARR?

The Johns Hopkins University

Techniques are developed for nonparametric analysis of data under a
Cox-regression-like model permitting time-dependent covariate effects deter-
mined by a regression function f,(t). Estimators resulting from maximization
of an appropriate penalized partial likelihood are shown to exist and a
computational approach is outlined. Weak uniform consistency (with a rate
of convergence) and pointwise asymptotic normality of the estimators are
established under regularity conditions. A consistent estimator of a common
baseline hazard function is presented and used to construct a consistent
estimator of the asymptotic variance of the estimator of the regression
function. Extensions to multiple covariates, general relative risk functions
and time-dependent covariates are discussed.

1. The model. In this paper we consider regression analysis of censored
survival data in a setting allowing for time-varying covariate influences, within
the context of a particular model for the covariate-specific hazard function
A(t|z). More precisely, we stipulate that conditional on the p-vector covariate
value z,

(1.1) A(tz) = Ao(¢)exp élﬁoj(t)zj ,

where By(¢) is an unknown function taking values in R? and A, is an unknown,
nonnegative function. Only smoothness assumptions are imposed on B, and A,.
Note that the covariates, albeit random, are independent of time (but see Section
10), while their effects on the hazard rate do depend on time.

Evidently (1.1) generalizes the now-famous Cox regression model [Cox (1972)];
however, a key feature of that model—proportionality of hazard functions for
individuals with different covariate values—is lost. Several authors have consid-
ered variable-influence covariates in models similar to (1.1), but only under
rather stringent assumptions on the functional form of ,. Cox (1972) and others
consider, for example, the case of polynomial B, Brown (1975), in an analogous
discrete-time model, takes B, to be a step function. These and related models are
in fact equivalent, via redefinition of the covariates, to a version of the ordinary
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Cox model with time-dependent covariates that may be random but are known
fully at time zero. For our model, no such equivalence obtains.

Aalen (1980) studied a model for nonparametric regression analysis of count-
ing processes that, when specialized to our setting (covariates fixed in time; at
most one failure per individual), yields the model

(1.2) A(tlz) = A (t) + ;,Boj(t)zj.

Aalen considered estimation of integrals of B;;, which are difficult to interpret
physically, and only sketched a derivation of asymptotic properties. McKeague
(1986) investigated (1.2) further, within the context of linear regression analysis
for semimartingales, and discussed properties of least-squares estimators of B,
constructed via the method of sieves [Grenander (1981)]. Both authors rely
heavily on linear structure present in (1.2) but absent from (1.1).

Before proceeding, we introduce notation, assumptions and stochastic pro-
cesses of interest. Associated with each individual i is a triplet (T}°, V,,Z,), in
which T)° is a nonnegative random variable representing that individual’s
(potential) failure time, V, is the (potential) censoring time and Z, is a random
p-vector of covariates. The observable data for individual i are T, = min{T}°, V;},
D, = (T, = T)°) and Z,. We assume throughout that

1. The (T, V,,Z,) are i.i.d. copies of a triplet (T'°, V,Z), in which T° and V are
conditionally independent given the covariate Z.

2. The distributions of T'? and V are absolutely continuous.

3. The covariate Z is bounded; without loss of generality we rescale Z so that
each component lies in the interval [0,1].

We denote by A(¢|z) the covariate-conditional hazard function of T'°,
1
Atlz) = lim —P{T° <t + A|T® > ¢,Z = z},
(tlz) = lim - P{ l z)

whose existence is presumed. Inference for A(¢|z) under the model (1.1) is the
principal subject of the paper.

We further define N,(¢) = 1(T; < t, D, = 1), the counting process of observed
failures—there is at most one—for individual i; Y,(¢) = 1(T; = t), the “at risk”
indicator process; A, (t) = A(HZ,)Y,(t), the stochastic intensity for the counting
process N;; M(¢) = N(¢) — JiA,(u) du, the innovation martingale. Also, let
Nty =qQ /N)LEN,(t), with M(¢t) defined .analogously.

The remainder of this paper is organized in the following manner. Our
emphasis is on estimation of B, Section 2 contains introductory discussion
concerning our estimators of B, which are obtained by maximization of a
penalized analogue of the partial likelihood function central to analysis of the
ordinary Cox model. Section 3 collects requisite notation, assumptions and
preliminaries. Existence, characterization and computation of estimators are
addressed in Section 4. In Section 5 we present a series of lemmas needed for our
treatment of asymptotics. Sections 6 and 7 treat consistency, with respect to the
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uniform norm and asymptotic normality, respectively, of our estimators. In
Section 8, we consider estimation of the baseline hazard function A,. Section 9
discusses estimation of the asymptotic variance of the estimator for B,. In these
sections, to simplify the presentation and notation, we assume that the covariate
is one-dimensional. Section 10 contains remarks on the multidimensional case
and extensions to the Prentice and Self (1983) generalization of the Cox model
and to time-dependent covariates.

The reader should note that, by comparison with the ordinary Cox model,
which provides a concise description of survival data, the model (1.1) attempts tc
provide more detailed information on covariate effects, but at the cost of added
complexity. As a consequence, whereas the Cox model can be applied effectively
to data sets of moderate size, the techniques described in this paper apply only
to large sample sizes.

2. Estimating the regression parameter function. The main problem of
interest is estimating the regression parameter function 8,, which we propose to
do by maximizing a “penalized” version of the partial likelihood used as the
basis for statistical inference for the ordinary Cox regression model. More
precisely, the proposed estimator—referred to as the maximum penalized partial
likelihood estimator (MPPLE)—is the maximizer of

o)z, oo| £ 1082 | - Sl 01,

j=1

(21) L(B) == LD,

Here, «, are positive numbers chosen by the statistician and, with m > 3 an
integer also chosen by the statistician,

(2.2) [Lﬂ=fﬁ%mwmw

for f and g belonging to the Sobolev space H™ = H™{0, 1] of piecewise m-times
differentiable functions f with [ f, f] < oco. The first term in (2.1) is (except for
the factor 1/n, added for convenience) exactly the logarithm of the Cox partial
likelihood. The second term in (2.1) is a penalty funtional designed to make the
estimator smooth and thereby reduce variance. Also, if n > 1 and for any
observed (D; =1) failure, either Z, = min{Z; Y(T°) =1} or Z;=max{Z;:
Y(T) = 1}, then (2.1) without the penalty has no maximizer: The unpenahzed
log likelihood can be made arbitrarily large by making |8(T.°)| large. For the
estimators to be consistent (Section 6), it is necessary that a, — 0, but at a
controlled rate, as n — oo.

The idea of maximizing a penalized likelihood to obtain a nonparametric
estimator goes back, in the context of estimating the probability density function
f associated with i.i.d. random variables X|,..., X,,, to Good and Gaskins (1971).
In this situation, the penalized log-likelihood is given by X7, log (X)) — «,@(f),
where ®(f) is a “flamboyance functional” and («,) is a sequence of positive
numbers converging to zero as n — co. Maximization is typically restricted to
nonnegative functions integrating to unity; for our problem, there are no corre-
sponding constraints.
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Silverman (1982) considered the case ®(f) = [log f,log-f], with [ f, g] de-
fined by (2.2), and for this estimator established existence, consistency in proba-
bility and asymptotic normality. Silverman’s key idea is to introduce a modified
version of the penalized log-likelihood depending on the unknown f; to show,
using orthonormal expansions and Hilbert space theory, that the maximizer of
the modified likelihood converges to the true log density; and finally to show
that the maximizer of the modified likelihood also converges to the maximizer of
the original likelihood. We rely heavily on this approach in establishing proper-
ties of our estimators.

3. Notation, assumptions and preliminaries.
Notation. We use the following notation, where x € R:

1 n
S,(x;8) = - Y Yi(s)ZpPe*%, p=0,...,3,
i=1

S,(x; s
A(x;s) = SoEx; s; ,
n)Lr Yi(s)[Z, — A(x; s)]%e™%
Vi s) = L) (S())([x;s) (33 9)]
_ Sy(x; 8) _ )2
- Sy(x; s) Alx;s)’,
n ELIY,- S i = x; 8 3ele
Clog o) = LEEHONZ Az,
sp(x; s) = E[Y(s)ZPe*?], p=0,...,3,
L slxs)
W58 = )
E|Y(s)(Z — a(x; s))%e*? s,(x;'s \
olxs) = [ X so(x;(s) - ] - SOEx;S; —a(x; s),
L E[Y(s)(Z - a(x; s))?’exz]
i) = o 9) ’

by = %ir:fv(ﬁo(s); S),
Vi(x; ) = max{V(x; s), v,},
v,(x; s) = max{o(x; s), vy},

w(s) = Ao(8)so(Bo(s); s)v(Bo(s); 5).



TIME-DEPENDENT COVARIATE EFFECTS 333

Here and throughout B, denotes the “true” value of the unknown parameter;
expectations above are taken under this value.

Recalling the assumptions that 0 < Z < 1, it is clear that 0 < A(x; s) < 1 and
0 < V(x; s) < 1. Also, by direct computation, (d/dx)A(x; s) = V(x; s),
(d/dx)V(x; s) = C(x; s) and |C(x; s)| < 1. Similarly, 0 < s,(x; s) < e®! for each
p, 0 <v(x;s) <1, and w(s) > 0. Moreover, (d/dx)s,(x; s) = Sp11(x; 8) for
p =0,1,2, (d/dx)a(x; s) = v(x; s) and (d/dx)v(x; s) = c(x; s); differentiation
within expectations is justified by the dominated convergence theorem.

We write S,(B,s) for S,(B(s); s), with similar abbreviations of the other
quantities defined above.

Assumptions. The following assumptions are in force for the remainder of
the paper.

AssUMPTION A. The parameters «, are deterministic.
AsSUMPTION B. w(s) = wj, for some positive constant w,
AssumpTION C. B, € H™

Note that Assumption A prevents data-dependent choice of the a,. Assump-
tion B is mild, and ensures that there is adequate “action” on the entire interval
[0,1], in terms of failures and covariate variability, for estimation of B, to be
meaningful.

Our proof of asymptotic normality requires an additional technical assump-
tion.

AssUMPTION D. w is (2m — 1) times continuously differentiable on [0, 1].

This assumption is satisfied if 8,, A, and s = P(V > s|Z = z} are 2m — 1)
times continuously differentiable.

Note that m is chosen by the statistician, who can tailor the choice to
whatever smoothness assumptions seem appropriate. Some smoothness, however,
is necessary in order that our results hold: We require m > 3 for consistency and
m > 4 for asymptotic normality. '

Finally, up to quantities not depending on B, the negative of the log penalized
likelihood is given by

z SO » 4
(1) H(B) = 3al8.8] + - £ g 2 7 - m] .

(Note: From this point on, dependence of a on n will generally be suppressed
from the notation.) Direct computation shows that the first- and second-order
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Gateaux differentials of H(B) are given for f, g € H™ by

1 n
(3:2) SH(B; f)=alB, f]+ - Y. D,[A(B.T) - Z] K(T),
i=1
1 n
(3.3) 8*H(B; [,8) =alf, 8]+ — Y. DV(B, T){(T;)8(T;).
i=1
4. Existence and characterization of MPPLE. Define, for f, g € H™,

CFrg)e = mz F9©200) + ['1(0)g™(6) .

Then (f, g)« is an inner product on H™ whose induced norm is equivalent to

the norm induced by the standard inner product on H™. Because point evalua-

tion is a continuous linear functional on H™, for each ¢ € [0,1] there exists a

Riesz representer function k, € H™ such that (k,, f ), = f(¢) for every f € H™.
With this background, the main result of the section is as follows.

THEOREM 1. (a) If L(B) has a maximizer, then there exists a maximizer
that lies in the finite-dimensional subspace of H™ spanned by the (m — 1)-degree
polynomials and the functzons {kr: D;=1}.

(b) There exists a maximizer of L( B) if (i) there exists a solution to the
problem of maximizing L(B) with B restricted to be an (m — 1)-degree polyno-
mial and (ii) for every pair B, h of (m — 1)-degree polynomials,

(4.1) jO‘V(B, s)h%(s)dN(s) > 0.

(c) With probability 1, the existence conditions in (b) are fulfilled for all
sufficiently large n.

PrOOF. Part (a) follows using the argument employed in O’Sullivan, Yandell
and Raynor (1986) to prove a corresponding result for a penalized maximum
likelihood estimator in the context of a generalized linear model [Nelder and
Wedderburn (1972)]; (b) follows by reasoning similar to that in Silverman
[(1982), Theorem 4.1]. It remains to prove (c).

To venfy that (b)(i) holds for n large, consider the (m — 1)-degree polynomial
B(s) = L",'b,s! (which satisfies [8, 8] = 0) and write

n

iy T)exp{< »'"ilbmf}r -

=0

L(B) =

y

To show that a maximizing (m — 1)-degree polynomial exists, it suffices to show
that for every unit vector 8, the function B(s) = v¥8,s! satisfies L( ,B ) -0 as
|y| = oo. This, in turn, holds if for each i w1th D, =1, (Z Z)ZS,T’ < 0 for
some j, and (Z, — Z, )Z8lTl > 0 for some j, such that T, < T and T, < T; and
in addition there exist i* for which the j,-inequality is strlct and i¥ “for whlch
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the j-inequality is strict. With probability 1, these conditions hold for n
sufficiently large.

To verify (b)(ii), note that for n large, there exist individuals i,, .. m With
distinct and actually observed failure times T,,...,T, and 1nd1v1duals ]l, s Im
(failed or censored) such that T, > T, and Z #* Z for each r. Evidently

V(B, T, ) > 0 for every B; (b)(ii) then follows because an (m — 1)-degree polyno-
mial can have at most m — 1 distinct roots. O

By standard variational arguments, for each ¢,

2m—1 ; ( _ 2+m—1
kt(s) = jgo cj(s - t) + _(2171,———1)—!’

where x , = max{x,0} and the ¢; are known constants. By this representation
and Theorem 1(a), the problem of computing the MPPLE reduces to a finite-
dimensional maximization.

5. Preliminary lemmas. This section contains preliminary lemmas needed
to develop asymptotic properties of the MPPLE f. The first results pertain to
asymptotic behavior of the quantities S (B0, 8), p=0,1,2, defined in Section 3.
Let D[0,1] denote the set of rlght-contlnuous left-limited functions on [0, 1];
weak convergence of stochastic processes taking values in D[0,1] is defined in
terms of the Skorohod topology [Billingsley (1968)].

LEMMA 1. For p = 0,1,2 there exists a continuous, mean-zero Gaussian
process G(t), with variance function that of the process (Y(1 — t)ZPePo1~HZ)
such that as n - oo,

(‘/r_l[Sp(BO’l - t) - sp(:BO’l o t)])Ostsl ~d Gp'

PROOF. Let W(¢) = Y(1 — t)ZPeho' 0% — 5 (B,1 — ¢t). Then W, € D[0,1]
and E[W,(t)] < oo for all t. We employ the central limit theorem of Hahn
[(1978), Theorem 2], for which we must show that:

(1) There are constants ¢,, > } and nondecreasing, continuous functions B,
such that E[(W (u) - W(t))2] < [B,,(#) — By, (t)]% for u > ¢.

(ii) There exist constants §, > 1 and nondecreasmg, continuous functions
B, , such that for s < t < u,

E|(Wy() = W) (W,(t) — Wy(5))] < [Buy(u) — Byy(s)] .

Straightforward manipulations show that these conditions are satisfied by
§,= 1§, =2and B,(u) = K, [u + P{1 — u < T < 1}]for suitable constants
Klp- D
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LEMMA 2. Asn — oo,

(5.1) sup|S,(Bo, 5) = 5,(Bo, 8)l = Op(n™'%),  p=0,1,2,
(5.2) sup|A(By, s) — a(Bo, s)| = Op(n™*?),
(5.3) sup|V(By, s) — v(By, 8)l = Op(n™12).

Proor. These follow directly from Lemma 1 and the continuous mapping
theorem [Billingsley (1968), Theorem 5.2]. O

The final preliminary lemma pertains to asymptotic behavior of N(2).
LeMMA 3. Asn — oo,

(5.9 sup | (2) = ['No(s)sol Ao s)ds‘ = 0(n12).

ProoF. Defining M(t) = N(t) — [{Ao(5)Sy( By, §) ds, we have
N() = [Nols)sol Boy 8) ds

sup
¢

=< (‘/;lko(s)ds)sgpISO(Bo, t) = so( By, t)| + sgplﬁ_l(t)L

The first term is Op(n~'/2) by Lemma 2; the second may be shown to be
Op(n~'/%) using the martingale central limit theorem of Rebolledo (1980), as in
Andersen and Gill (1982). O

6. Consistency of the MPPLE. In this section, the MPPLE B is shown to
converge to B, in probability with respect to the uniform norm on [0,1]; the
argument is patterned after Silverman (1982). Define

(61)  H(B) = $alB, 8]+ 4§ ['w(s)[B(s) — Ao(s)]" ds
~/m) ¥ ['12,~ Ak, )] B(s) ~ Als)] AN (o)

Then the idea of the proof is this:

1. Show that the minimizer 3, of H;(-) converges to 8, as n — co.
2. Show that for n sufficiently large, 8, is close to j.

The motivation for H, is as follows. Starting with (3.1) for H(B), a two-term
Taylor series expansion suggests the “approximation”

H(B) = 4ol B, B] + 1 [ V(Bo, 9)[B(s) = Aol )" dN(s)

~/m) ¥ [17 - Al 5)][A(s) = o)) dNs).
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The results in Section 5 further suggest replacing V(8,, s) by v(8,, s) and dN(s)
by Ay(s)so( By, 8) ds. This gives H(B) = Hy(B).

It may be poss1b1e to establish a faster rate of convergence for § using
developments in the smoothing spline literature; see Wahba (1985) and refer-
ences therein. Also, it may be possible to use these developments to construct
procedures for selecting the penalty weight a based on the observed data. These
possibilities are not explored here.

To begin the consistency argument, define, for f, g € H™,

(1 &)= [ ()a(s)u(s) ds,
(f:&un={f 80 +LF 8]

Then, by virtue of the assumption that 0 < w, < w(s) < ||w||,, and Sobolev
space theory [as in Silverman (1982)], there exist functions (¢,)*., in H™ and
numbers 1 = p, > p; > py > -+ >0 such that the sequence (¢,) is an or-
thonormal basis for LZ2[0,1] under the inner product { f, g),, and (p/%,) is an
orthonormal basis for H™ under the inner product ( f, g);=. In particular, with

p, = #”—1 -1,
<¢V’ ¢n>w = 81/-,':

(6.2) (&, Dpyum = 1, '8,
[¢V’ ¢ ] pv m*

Let (b,) and (b,,) be the coefficients in the expansions of 8 and f,, respectively,
in terms of (¢,). Then, using (6.2),

Hl(ﬁ) = %a Z pub1/2 + % Z (bv - bOv)2 - Z Xv(bv - bOV)’
v=0 v=0

where
©3) - £ [12- Ao 5)]5) V(o).

n;

Evidently H, may be minimized by minimizing each term in the y-summation
individually. The coefficients of the minimizer 8, are given by

X, + by,

. b, = .
(6 4) 1» 1+ ap,

The next lemma presents properties of the X,.

LEMMA 4. An alternative expression for X, is

©5) X,= % [12- 4B )]0 (s) M(o)
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Consequently, E{X,] = 0 and Var(X,) < 1/n.

PrROOF. Recall that dN(s) = dM,(s) + Ay(s)Yi(s)eP*®% ds; hence

_ }12 5 fol[Z,» — A(By, 5)] 9,(s)dM,(s)

i=1
fl
0

folA(Bo,S)( 5 ¥(s) eﬂo<s>2)¢<s>xo(s>ds

i=1

1
n;

+

||M=

¥ )Zeﬂo<s>2)¢<s>xo<s> s

The term in parentheses in the second integral is S;(,, s); that in parentheses in
the third integral is Sy(f,, s). Because A(B,, s) = Sy(B,, 5)/S( B, 8), the second
and third terms cancel, yielding (6.5). The remaining assertions follow from (6.5)
using martingale theory [Andersen and Gill (1982)]. O

The proposition below gives probability bounds for the distance between B,
and B, in the uniform and H' norms.

PROPOSITION 1. There exist constants CV, ¢ > 0, and CP, not depending
on n, such that

(6.6) E[IB, - BollZ] = CO[am/*(n /™ 4 ot 1/m)],
(6.7) E[||,B1 - ,80||§,x] < C(Z)[a‘l/Z'"(n‘la‘l/’" + al‘l/m)].

In each of these bounds, the first term represents variance and the second
term represents squared bias. They are proved using (6.4) and Lemma 4 in the
manner of Silverman (1982).

Before turning to the difference between 8, and ,é, some further preliminaries
are needed. Define, for arbitrary B,

Hy(8) = 3al .81+ [ [*V " Wi(x; ) dxdudN(s)
(6.8)

—(1/n) ‘=il j:[Zi - A(‘Bo, 3)] [B(s) - Bo(s)] dN,(s).

By direct calculation, the first- and second-order Gateaux differentials of H,, are
given, for f, g € H™ by
1 Bi(s) N7
Oy (B; 1) = alB, 11+ [[1(s) [ "Vi(x, ) dedN(s)
(6.9) 1 .
5 L [ 1)1~ Ao, )][A(s) = Bofs)] dN(s)
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and

5°H,(B; f,8) = ol 1,81 + [ f(s)g(s)Vi(B,5) dN(s)
(6.10) 0 1
= al f,8]+ v [ 1(5)g(s) dN(s).

Because 8, minimizes H,, for each f € H™,

0 = 8H,(By; f)

= o[ By, 11+ [w(s)[Bi(s) = Buls)] £(s) ds

12 4
—— Y ['12 — A(By, )] dNi(s).
ni;_17
In conjunction with (6.9), this implies that

8Hy(Bys £) = [ 1(s) [*“Vi(x; 5) dxdN(s)
(6.11) °© RO

1
= [ w(s)[B(5) = Bo()] £(5) d.
The next proposition gives a probability bound for 6H,(8;; f).

PRroPOSITION 2. For f € H™ and possibly random,

(6.12)  |8H,,(By; £)I = Op([11B, — BollZ + n Y218, = Boll gt 1 F 1 1),
where ||g|| i denotes the H'-norm.

Proor. By (6.11),

SHy(By; ) = folf(s)f::)[Vl(x; 5) — v,(x; 5)] dxdN(s)

(6.13) + /(;lf(s)/l‘i’:j)[ul(x; s) — v(By, s)] dx dN(s)

+ [1(5)[Bl5) = Buo()] 0(Bo, $)[dN(s) = 5ol Boy 5)Ao(s) ds].

These three terms will be treated in turn.

(i) For fixed s and for x between By(s) and B,(s), the mean value theorem
implies that
V(x;s) —o(x;8) =[V(By, s) —0(By, 8)] + [C(x*;8) —c(x*; 8)][x — Bo(s)]
for some x* between By(s) and B,(s). Now |C(x*; s) — c(x*; s)| < 2. Also, by
Lemma 2, sup,|V(B,, s) — v(B,, )| = Op(n"'/?) and therefore

[Vi(x; 8) — vi(x; 8)] < [V(a58) — o(x; 8)| < Op(n72) + 21|y = Boll.o-
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Consequently,

L1 [ Vi3 ) = 0i(x; )] dedN(s)

0 By(s)

= Op([118: = BollZ, + n= 218, = Bolloo ] 11 1 521)-

(i) Fix s €[0,1] and x between By(s) and B,(s). Then, by a mean value
theorem argument as in (i), [v(x; 8) — v(B,, s)| < ||B; — Boll.- Now

o(x;s) > v(By, s) — 181 = Bollw = 20, — |18, — Bolls

and so

[o,(x; 8) = v(x; s) <2-1(IB, - Bollo < 1) < 205 Y18, — Bollso-

Accordingly,

loy(x5 8) = o( By, s)| < (205 + 1)|1B) = Bollwos
so that

< (205" + 1)1IBy — Boll 2l f 1 2.

1) fﬁ ";:’[vl(x; 5) — o( By, 5)] dxdN(s)

(iii) The integrand in the third term in (6.13) is not predictable, so martingale
theory cannot be applied; an alternative argument is needed. By integration by
parts,

'_/:U(,Bo’ s)[:Bl(s) - :Bo(s)] [dﬁ(s) — 5o(Bo» $)Ao(s) ds] '

< 080 DIBLT) ~ AT = 5o s)hols) o
(6.14)

+ sup
t

N(¢) — fo‘so(go,s)xo(s)ds'

[ | o B = B 00|

By Lemma 3,

s1ip N(t) - fotso(,BO, s)Ay(s) ds' = Op(n~1%),

Thus the first summand in (6.14) is Op(n™"?|B8;, — BylIznll f || ). The second
summand in (6.14) is bounded by the product of a quantity that is Op(n~1/2)
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and

d
ES_[D('BO’ s)[B1(3) - Bo(s)] f(s)] ds

r

= [10(Bo )[Bils) — Bols)] £(5)|ds
+ ['1o(Boy $)1BiCs) — Bis)] £(5)) ds

= ['lo(B, $)(BLs) = Ao 1(s) | ds

< max{[|v'] o, 13181 = Bollarll £ 11 -
Combining (i), (i) and (iii) completes the proof. O

REMARK. By an integration-by-parts argument similar to that used to prove

(i),

/0 'g%(s) dN(s) - /0 '8%(5)54( By, $)No(8) ds| = Op(n~2|1g]12).

Consequently, for each 8,

8°Hy(B; 8,8) = 20,8, 8) + ol g, 8] — Op(n™12||g||%).
But, with g, = (g, 9,),

(&, 8) +a[g, gl = (20, + ap,)g?2

v~ %(20, + ap,)v’g?2

1098 108

o0
> Ca'/™ ¥ vigl > C%/™| g%,
v=0
for a suitable constant C° by Sobolev space theory. Here C > 0, as in Silverman
[(1982), equation (7.5)]; to see the inequality involving C, note that

My 1+ aw?™) = (1 + all/ZV'")Z/(al/va)Wm > 1.
Therefore,
(6.15) 8°Hy(B; g, 8) = C%/™|g|l3: — Op(n~2||g||2p).

The Op in (6.15) is uniform in g. Thus, if @ = O(n~%) with § < m /2, then the
probability that H,, is uniformly convex converges to 1 as n — co. When H,, is
uniformly convex, it has a unique minimizer [Tapia and Thompson (1978),
Appendix 1}, which we denote by 8,,.

By construction, H,(8) = H(B) if, for each s, V(x;s) = v, for every x
between B(s) and B(s). Define the (compact) interval I =[—1 — inf_By(s),
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1 + sup, By(s)]. Then by Theorem III.1 of Andersen and Gill (1982), applied with

Yi(s)e*% viewed as a random element of the space of left-continuous, right-
limited functions from [0, 1] to the set of continuous functions on I,

sup{|S,(x;5) — s,(x;s): s € [0,1],x € I} >0 as.forp=0,1,2.

Consequently, for all n sufficiently large (depending on the realization w),
V(x; 8) = v, for all x € I and s € [0,1].

Thus, provided ||8 — Byll, < 1, Hy(B) = H(B), and similar equalities obtain
for the first- and second-order Gateaux differentials, for all n sufficiently large.
Hence f will be equal to B, if |18y — Bll, < 1 and n is sufficiently large. Hence
an analysis of the difference between S,, and B provides information regarding
that between B and B,. This idea is implemented in the next proposition.

PROPOSITION 3. Let ¢ > 0 be given and suppose that a, = O(n~?%) with
0<8<2m/(4 + ¢). Then provided m > 3,

(6.16) HB — Billgr = Op(n~1+@+a/2ml | p-[1-(4+e)/2m]6 4 n—[1+(1—7/2m)]9/2)'

REMARK. By the Sobolev embedding theorem, the same rate holds for
1B = Bl

ProoF. Put g= B, — B Then, recalling that 8H,,(B,; f) =0 for all
f € H™, by Taylor’s theorem for functionals [Graves (1927)],

(6.17) 8Hy (By; ) = 8°Hy(By + 485 8, 8)
for some £ € [0,1]. From (6.11),

(6.18)  8°H,(By + £8; 8, 8) = CO% ™ gl|2: — Op(n~2lIgl12).

On the other hand, Proposition 2 gives

(6.19)  [8Hy(By; &) < Op([11B, — BollZ, + n™ V3|8, — Bollzn]llllsn)-

Putting (6.18) and (6.19) into (6.17) and cancelling a factor of ||g||; yields, under
the hypothesis regarding «,,,

(6.20) 1By — Bullar < &V "Op([IB, = BollZ, + 7727218, — Boll ).

Therefore, by Proposition 1 and the hypothesis on «,, and the Sobolev
embedding theorem, 18, — Byl =p 0, and for an appropriate constant c,
1By = Bullw < €llBy = Bullmn =p 0, and so [|By — Byll, =p 0. Accordingly,

P(By = B} - 1.
Substituting the rates in Proposition 1 into (6.20), which now holds with 8,

replaced by ,8 completes the proof. O

Finally, Propositions 1 and 3 combine to yield the main result of this section.
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THEOREM 2. Let ¢ > 0 be given and suppose that «, = O(n~%) with

2m
6.21 0<0< .
( ) 4+ ¢
Then
”B _ BO“ — Op(n—1+[(4+s)/2m]9 + n—1/2+[(2+£)/4m]0
(6.22) >

+n—[1+(1—7/2m)]0/2 + n—[l—(4+s)/2m]0 + n—[l—(2+s)/2m]0/2).

In this expression, the first two terms represent variability and the latter
three represent bias.

7. Asymptotic normality of the MPPLE. In this section we establish
pointwise asymptotic normality of the estimators B(¢). Our treatment of asymp-
totic distribution theory differs from that of Silverman (1982): for his density
estimators, he employed the theorem of Komlos, Major and Tusnady (1975) for
strong approximation of the empirical distribution functions associated with a
sequence of ii.d. random variables by a Gaussian process. This argument does
not carry over to our situation because there is no corresponding approximation
for the ii.d. sequence of martingales M (t) = [{[Z, — A(B,, s)] dM,(s). Conse-
quently, we were able to derive only a pointwise result.

We now introduce necessary notation:

X = 2 8 12 alB 9)]0(s) M (o),
P - L a0,
A0 = T aln),
- 00 - £ i)

R(5,0) = £ 1oa(s)al0)

oo

(s, t) = Y ———(s)a(0).

v0(1+ )

With this notation and the expression (6.4) for the coefficients bly of B, the
MPPLE B satisfies

B(t) — By(t) = [B(2) — B.(2)] + [Bi(t) — B*(2)]

(7.2)
+[But) — Bo(2)] + U(2)



344 D. M. ZUCKER AND A.F. KARR

In this section, Assumption D is presumed in force. The idea of the proof is to
show that U(t), suitably standardized, is asymptotically normal and to establish
appropriate bounds on the remaining terms on the right-hand side of (7.2). A
bound on || — Bill., was given in Proposition 3. The other steps of the proof of
asymptotic normality are contained in the following series of lemmas.

LEMMA 5. For each & > 0 there exists a constant C* such that
(7.3) E[|8, - B*I%] < Crn~%a”@rorm,

PrOOF. By martingale theory, E[(X, — X,*)?] < kn~? for some constant «.
Therefore, with b* = (B*, ¢,), Sobolev space theory [Silverman (1982)] implies
that

IA

E[I18, - B2 < ¥ A E[(by, - 52))
v=0

o g 7l - X
£y=0 (1 + app)2
0 V1+e

<Ckn %) ——
»go (1 + ap,)’

for appropriate constants C, and C* independent of n. O

< Ce*n—2 a—(2+e)/2m

LEMMA 6. For each ¢ > 0 there exists a constant C.* > 0 such that
182 = Bollz < Crat—t/m=e/2m,
Proor. This follows by a Sobolev space argument similar to that used to
prove Lemma 5. O
PROPOSITION 4. Provided that n*/%/*™ — o0, as n — oo,
U(t)

(.4) Var(0(0)

-, N(0,1).

Proor. Put

(7.5) W= [[Ruls, 0)[Z~ a(By, 5)] dM(s).

Then evidently U(t) = 1/n)X?_,W,; and the W,; are i.i.d. as { varies with n
fixed. Moreover, E[W,;] = 0 by martingale theory and (making use of orthonor-
mality of the ¢,)

(7.6) ox(t) = E[W2] =7, 1).

With ¢ fixed, because the ¢, are eigenfunctions of a differential operator
[Naimark (1967)], there exist positive constants r, and r; (depending on £) such
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that
(7.7) roa”V?m < 02 < ria”V/2m,

By Chow and Teicher [(1978), Corollary 12.2.2], to prove (7.4) it suffices to
show that for £ > 0, nP{|W,,| /0, > £n'/?} - 0as n > 0. By Markov’s inequal-
ity, for A > 0,

) E||W, >4
(7.8) nP{[VVnil/a,,>£n/2} < ?J:AIZA—/%ZJ—A.

The goal now is to show that the right-hand side of (7.8) converges to zero as
n— co.

As a preliminary, differential operator theory [Naimark (1967)] implies that
|9,(t)] is bounded uniformly in » and ¢, so that

(7.9) sup|R (s, t)| < C*xa~1/2m
s, ¢
for some constant C*.

Now recall that dM(s) = dN,(s) — Ay(s)Y;(s)ePo9)% ds. Hence, with d|M,(s)|
denoting the total variation of the signed measure dM,(s),

dM;(s)] < dN.(5) + ||\l e"Bol= ds.
Therefore

E[|W,***] < 22+AE[( fo R(s, t)] dNi(s))M}

2+4A
+(2||A0||we”"°”°°)2“( [R5, 1) ds)
0

Because the counting process N, has at most one point,

E[( [ 1RG5, ) dNi(s))M] e O ans)|

1
/0 IR (s, 1>+ 2No(8)s0( By, 5) ds
sup,, |R (s, t)[*
inf, v(B,, s)
< K,02a=8/2m

where K, 'is a constant and where we have applied (7.3) and (7.9). By similar
analysis, for a constant K,,

fOlR?,(s, t)w(s) ds

1 2+4
(f IR, (s, t)|ds) < Kyo2a2/2m,
0

Thus for a suitable constant «, E[|W,;|2**] < xo2a~2/2™ By this last inequal-
ity, the right-hand side of (7.8) is bounded by ¢~¢*+%k(n!/%,a'/2™)~4 and this
converges to zero as n — oo by (7.7) and the hypothesis on «,. O
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At this point, the groundwork is laid for the main result of this section.

THEOREM 3. Let ¢ > 0 be given and suppose that a, = O(n™?%) with

7.10 - [/ 2m
. << .
(7.10) 1-(1+¢)/2m T+e

Also, suppose that m > 4. Then, as n - o, for each fixed t € [0,1], with o?
defined in (7.6),

(7.11) yn/o [B(2) = Bo()] =4 N(0,1).

Proor. By Slutsky’s theorem, (7.2), and Proposition 4, it suffices to show
that (n/02)2[B(t) - B(D], (n/o2)/2[Bi(t) — B*(®)] and (n/o2)/*[B(t) -
Bo(¢)] converge in probability to zero as n — co. Under (7.10), these follow from
Proposition 1, Lemmas 5 and 6, and (7.7), respectively. O

Note that, by construction, choosing @ to satisfy (7.10) causes the squared bias
of A(t) to converge to zero faster than the variance. This choice seems the most
natural in terms of constructing confidence intervals for By(¢). On the other
hand, to minimize the mean squared error of A(t), one should choose # to
balance the squared bias and variance. With this choice, Theorem 3 no longer
applies; however, Proposition 4 remains valid for U(t), which is the dominant
term of those relating to variance.

8. Estimation of the baseline hazard function. The cumulative baseline
hazard function A(t) = [{A,(s) ds may be estimated by

A@) = f‘—f—— dN(s).
0 So(:B: S)

This estimator, essentially a martingale estimator, is the analogue for the model
(1.1) of the estimator commonly used to estimate the cumulative baseline hazard
function in the ordinary Cox model. It is stra1ghtforward to show that under the
conditions of Theorem 2, IA - Ayll,, converges in probability to zero with the
rate given for || B - Boll,, in (6.22).

To estimate A, itself, one can estimate A*(¢) = A (¢)sy(B,, t) and then divide
by SO(B t). That the functions S, have bounded derivatives and convergence of
B to B, ensure that this approach will work provided that A* is estimated
consistently. Several methods could be used to estimate A*. Probably the
simplest is the kernel method, along the lines of Ramlau-Hansen (1983) and
other authors. Alternatively, methods related to penalized likelihood could be
employed; cf. Karr (1987) for sieve estimation in the multiplicative intensity
model of Aalen (1980). The following theorem gives a formal result for the kernel
method; it is proved by arguments analogous to those in Ramlau-Hansen (1983).

THEOREM 4. Let Q be a function with bounded variation and support
[—1,1] such that [Q(t)dt =1 and [t’/Q(t)dt =0 forj=1,...,k — 1 for some
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integer k > 1. Let (y,) be a sequence of (nonrandom) positive constants with
v, = O(n""). Suppose that N* is k times continuously differentiable. Define the
estimator

ey Lo ft—s J(s) _—
(6.1 v - - o o ),
where J(s) = 1(Y,(s) = 1 for some i < n) and Y(s) = (1/n)L™ ,Y«(s). Then for
0<t <t <1,
(82) sup |R*(¢) = A*(£)] = Op(n =" + n=0-0)/2),

telt, t,]

Because of the choice of @, the estimator (8.1) may assume negative values;
however, it may be modified slightly in order to be made positive without
affecting the rate of convergence in (8.2).

In estimating the asymptotic variance ¢2(¢) of B(t) (Section 9), it is necessary
to estimate w(s) = A*(s)v(pB,, s), which may be done via

(8.3) w(s) = A (s)V(B, s).

From Theorem 4, Theorem 2, and differentiability of V, the following result
obtains.

PRrROPOSITION 5. For i given by (83) and 0 <t <, <1,
(8.4) sup |@(t) — w(¢t) —p0,

telt, 5]

at the slower of the rate given in (6.22) and that given in (8.2).

In particular, if £ >[m/2] and p = 1/(2k + 1), then (8.4) holds at the rate
given for ||8 — Byll,, in (6.22).

9. Estimation of the asymptotic variance. To apply Theorem 3, it is
necessary to estimate the variance ¢%(¢) given by (7.6). That equation involves
the quantity R (s, t), defined at the beginning of Section 7, which is also the
reproducing kernel (R.K.) for the Hilbert space H™ under the inner product

(9.1) (fr8um = ol 1,81 + [Tf(s)8(s)u(s) .

It is natural to estimate o2(¢) by substituting the estimator @ of (8.3) for w in

(9.1), computing the corresponding reproducing kernel IAB,, and then substituting

R, for R, in (7.6). We show in this section that the resultant estimator 62(¢) is,

on a pointwise basis, consistent in the sense that as n — oo,

2(¢) — a3(t)

N
0. (2)

Additionally, an approach to computation of 2(¢) is outlined.

(9.2) »0.
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The following result on reproducing kernels is the first step in demonstrating
(9.2), as well as the basis of computational considerations.

PROPOSITION 6. Suppose that o > 0 is fixed and that f,, f, € H™ are given.
Define R; (i = 1,2) to be the R.K. for H™ under the inner product

1
Chy hoday = alhy, by] + /(;hl(s)hZ(s)fi(s) ds.
Then the following integral equation holds:

(93)  Ry(s, ) = Ry(s,0) + [ [ 7u) = fo(w)] Ri(s, w)Ry(t, ) du.

ProOOF. One simply calculates as follows:
Ri(s,t) = (R(s,"), Ryt, ')>(2)

= alRy(s, ), Roft, )] + [ 'fo(w)Ry(s, u)Ry(t, u) du

MRK&-LRAL~H+thQORK&u)RJLuﬁm

+ [ 11(w) = )] Ri(s, w)Ry(t, u) du
= (Ri(s, ), Rolt, Dy + [ 1) = ()] R, w) Ry, w) d
=Rg&t)+£Wh@)—hun34&uuguﬂomh

which verifies (9.3). O

COROLLARY 1. Let ¢, = sup, ,|R(s, t)| and assume c\||f, — |, < 1. Then
allfe — fille c
1-ellfy = fill

Proor. By Proposition 6, R(-, ) = (I + )R-, t), where & is the opera-
tor defined by

(9.4) sup|R,(s, t) — Ry(s, t)| <
s, ¢

#h(s) = [ h(w) ~ ()] Bi(s, u)h(w) da.

In view of the property that ||#| < ¢)||f, — fill, < 1, operator theory implies
that (I + %) ! exists and satisfies |[(I + )7 Y|| < 1/(1 — ||%||), from which (9.4)
follows by routine computations. O

COROLLARY 2. Suppose that the conditions of Proposition 6 and Corollary 1
hold and define

(s, ) = ['Ru(s, w)Ry(u, ) (1) .
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Then

sup|r,(s, t) — r2(s, t)' =< CfH fo— fillo + (I fillw + 11 fo — f1”oo)

s, t

(9.5) [ 2y — fill cill f = hll%
L-cllfe=flla 1 —cllfo— fill) |

Consistency of 67(¢) is shown by applying the development above with f, = w
and f, = @, resulting in the following theorem.

THEOREM 5. Under the conditions of Theorem 2 and the sentence following
Proposition 5, and the additional stipulations that m > 4 and 0 <6 <2m/
(6 + €), where £ > 0, then (9.2) holds for each fixed t.

Note that in this case, Theorem 4 holds with o2(¢) replaced by 62(¢), so that
one may thereby construct hypothesis tests and confidence intervals for B,(¢)
based on the normal distribution.

For computation of 62(¢), the main idea is to use Proposition 6 with f, = a
and f, = @, and to solve (9.3) numerically. With f, = a, R, = a”'R*, where R*
is the R.K. for H™ under the standard inner product [A,, ;] + [k h,, and
must be determined (algebraically or numerically) only once. For fixed ¢, R*(s, t)
= ho(s)1(s < ) + h(s)1(s > t), where h and A, are linear combinations of the
functions exp[ wil/m] (m odd) or exp[ 7il/2m] (m even), with coeflicients deter-
mined by a system of linear equations resulting from the conditions A{’(0) =
A1) =0, j=m+1,...,2m, AJNt)=ht), j=0,...,m —1 and
JR*(s, t)ds = 1.

With R, determined, (9.3) may be solved for R.(s, t) using the Nystrom
method [Delves and Mohamed (1985), Chapter 4], which involves approximating
the integral by a sum calculated by standard numerical quadrature methods and
based on partition points 1, This leads to a system of linear equations for

Ry(u;,t), which may be solvejd by matrix methods. Finally, the integral

82(t) = ['RY(u, t) du
0

may be approximated using the same partition and the values R,(u,, t) substi-
tuted into the sum. When « is small, these procedures may have to be modified
to account for machine precision.

10. Remarks on extensions. In this section we discuss briefly several
extensions of our basic model.

The multivariate case. In the case that the covariate is a p-vector, the
penalized log-likelihood is given by (2.1) with B(T})Z; replaced by B(T,)'Z; (the
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superscript T denotes transpose) and [ f, g] defined for f, g € H™[0,1]” by
L 1
[1.81= X a;[ [™(0)gf™(t)dk,
j=1

where the a; are fixed, positive constants. The definitions and assumptions of
Section 3 must then be modified accordingly, e.g., Assumption B is modified to
require that there exist w, > 0 such that the minimum eigenvalue of the matrix
w(s) is not less than wj for every s.

Theorem 1 on existence holds with the following modifications:

(a) There exists a maximizer for which each component is a linear combination
of an (m — 1)-degree polynomial and the functions k.

(b) (1) This becomes the condition that there exists a maximizer of L(B) with
B restricted such that each component is an (m — 1)-degree polynomial. (i) This
becomes the condition that (4.1) hold for all B and h whose components are
(m — 1)-degree polynomials, with h(s)"V(B, s)h(s) in the integrand.

There is essentially no change in the proof.

The argument relating to consistency of the estimator B proceeds along the
lines of that for the one-dimensional case, with only modest modifications. The
major novel points are extending Lemmas 5.1 and 5.2 of Silverman (1982) in a
suitable way and modifying the definition of H,, to

Hy(B) = [ [ [*[B(s) = Bo()] Val(Bols) + wx [B(s) + Bo(s)]; )
[B(s) = Bo(s)] dudvdN(s)

T [12- AR [B(6) - Bl aNi().

Other modifications consist of changes in notation and minor manipulations.
The result is as follows.

THEOREM 6. Suppose a, = O(n~%) with 0 satisfying (6.21). Then
(10-1) max Squj(t) - Boj'(t)| -p0
l<j<p
at the rate given in (6.22).

A substantive difficulty arises in extending Theorem 3—on asymptotic nor-
mality—to the multivariate case: Although most of the argument goes through
with only minor modifications, we have been unable to extend the inequality
(7.7). Its derivation depends on an approximation to the eigenfunctions (¢,), as
described in Naimark (1967). Although Naimark conjectures that the approxima-
tion extends to the multivariate case, we have not been able either to locate or to
provide a proof.
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Prentice-Self model. Prentice and Self (1983) generalize the ordinary Cox
regression model by replacing the relative risk function e#? by a more general
form r(BZ), where r is a function satisfying smoothness and positivity condi-
tions; the motivating example [cf. (1.2)] is the linear function r(y) =1+ y.
They establish consistency and asymptotic normality of maximum partial likeli-
hood estimators. Our model and results extend to this setting as well. Here we
describe briefly what is involved.

The covariate-specific hazard function of (1.1) becomes

(10.2) A(t|z) = }‘o(t)r( é B()j(t)zj),

where r is a function fulfilling assumptions stated below. The associated log-
likelihood function [compare (2.1)] is thus

(103) L(g) = (1/m) T Di[log r(B(T)2,) - 1og( y n(nw(ﬁ(wj))

_éan[ﬁ, :8]

The function H of (3.1) then, of course, changes correspondingly. The definitions
(Section 3) of the S, and the s, must be altered as in Prentice and Self (1983),
changes in A, V, C, a, v and ¢ are engendered as well. The function 1, of (6.1)
becomes

H(8) = 5alB,B1 + 5 ['o(By, $)sulBos N5 B(s) — Buls)]*ds

10.4 ,
. S ALLLANE GO
=170 ' r(Bo(s)Z,) So(Bos s) s
In the definitions of the X, of (6.3), the function H,, of (6.8), the X,* of (7.1) and
the W, of (7.5), Z, must be multiplied by r'(By(s)Z,)/r(B«s)Z,) [the ratio is 1
for r(y) =e”].

In addition to Assumptions A-D in Section 3, we require the following
condition on the function r.

S

AssuMPTION E. There exists ¢ > 0 such that

(10.5) inf  inf r(B(s)z) > 0.
1B~ Bolle <& 5, 2

Given these definitional and notational changes, our results and their proofs
carry over in the following manner.

1. While part (a) of Theorem 1 (regarding existence and computation of the
MPPLE), whose proof does not depend on the form of r, remains valid as
stated, neither (b) nor (c) seems to extend without senselessly restrictive
conditions on r. It is possible, of course, that for specific choices of r, effective
ad hoc computational methods may be developed.
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2. Although (6.5) changes to reflect the altered definition of X, the conclusions
of Lemma 4, i.e, that E[X,] = 0 and Var(X,) < 1/n, hold as stated; the
proof is unaltered. ‘

Proposition 1 holds with the same proof.

4. Given Assumption E, Proposition 2 remains true, with no changes to the
argument.

Proposition 3 and its antecedents continue to hold.

Consequently, Theorem 2 extends.

7. Lemmas 5 and 6, as well as Proposition 4, remain valid with no alterations
(other than notational) to their proofs.

Thus, Theorem 3 holds as stated.

9. The additional results in Sections 8 and 9, therefore, also extend.

w

S

bad

Time-dependent covariates. In many applications [cf. Andersen and Gill
(1982)] it is desirable to allow covariates that vary over time. In our context this
would correspond to a model in which the stochastic intensity A; for the
counting process N, is given by A, (2) = A()Y(£)eP® %O, where Z, is a pre-
dictable stochastic process. Subject to conditions on Z, our results extend with
little change. The main restriction is that there must not exist a fixed time point
t at which there is positive probability that Z will jump; this restriction is
necessary in order to ensure continuity of v(B,, ¢). Additional implicit restric-
tions on Z are engendered by differentiability conditions on w required for
asymptotic normality. Also, moment conditions on Z are needed for Lemmas 1
and 2.
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