NONPARAMETRIC TESTS FOR TRENDS IN WATER-QUALITY DATA USING THE STATISTICAL ANALYSIS SYSTEM

by Charles G. Crawford, James R. Slack, and Robert M. Hirsch

U.S. GEOLOGICAL SURVEY

Open-File Report 83-550

U.S. DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary
GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:
Chief Hydrologist
U.S. Geological Survey, WRD

410 National Center
Restion, Virginia 22092

Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch
U.S. Geological Survey Box 25425 , Federal Center Lakewood, Colorado 80225
(Telephone: [303] 234-5888)

TABLE OF CONTENTS

Page
Abstract 1
Introduction 1
Retrieving data from the WATSTORE daily values and water quality files. 2
Determining the relationship between water-quality constituents and streamflow. 10
Plotting water-quality data as a time series 44
Statistical procedures to test for trends in water-quality time series 49
Appendix A. PROC SEASKEN user's guide with examples 56
Appendix B. PROC SEASRS user's guide with examples 69
Appendix C. Source code for SAS procedures 82
References 101
ILLUSTRATIONS
Figure 1.--Example input for WATSTORE retrieval of water-quality data by the QWRETR and QWSAS procedures 4
2.--Example input for WATSTORE retrieval of streamflow data by the DVRETR and DVINPUT procedures 6
3.--Example input and output of a SAS procedure to do flow adjust- ment regressions-abbreviated version 14-21
4.--Example input and output of a SAS procedure to do flow adjust- ment regressions-extended version. 23-42
5.--Example input and output of SAS statements t plot water-quality data and regression residuals as time series 45-48
6.--Example input and output of SAS statements to do the Seasonal Kendall test and slope estimator procedure on a water-quality data time series 51-52
7.--Example input and output of SAS statements to do the Seasonal Mann-Whitney-Wilcoxon rank sum test and slope estimator pro- cedure on a water-quality data time series 54-55
Figure Al.--Example input and output using PROC SEASKEN to test for a trend in annual mean streamflow. 63-64
A2.--Example input and output using PROC SEASKEN to test for trends in water-quality constituents 65-68
B1.--Example input and output using PROC SEASRS to test for a step in annual mean streamflow 76-77
B2.--Example input and output using PROC SEASRS to test for step trends in water-quality constituents 78-81
C1.--Parsing module for the Seasonal Kendall test and slope estimator procedure 83
C2.--Procedure module for the Seasonal Kendall test and slope estimator procedure 84-90
C3.--Parsing modeule for the Seasonal Mann-Whitney-Wilcoxon rank sum test and slope estimator procedure 91
C4.--Procedure module for the Seasonal Mann-Whitney-Wilcoxon rank sum test and slope estimator procedure 92-100

TESTING FOR TRENDS IN WATER-QUALITY DATA USING THE STATISTICAL ANALYSIS SYSTEM By Charles G. Crawford, James R. Slack, and Robert M. Hirsch

ABSTRACT

Two nonparametric procedures to test for trends in water-quality data (SEASKEN AND SEASRS) have been developed for the Statistical Analysis System* (SAS). The procedure SEASKEN tests for a monotonic trend in time by a modified form of Kendall's tau, the Seasonal Kendall test. The procedure SEASRS tests for a step trend between two different periods in a time series using a modified form of the Wilcoxon (Mann-Whitney) rank sum test, the Mann-WhitneyWilcoxon rank sum test for seasonal data. Examples are presented using the two procedures. The source code and user's guide for each of the two procedures are also presented.

Procedures for flow adjusting water-quality data by the SAS procedures REG and SYSREG and techniques for plotting water-quality data as a time series by the SAS procedure PLOT are presented.

Additionally, examples are presented to demonstrate the use of the U.S. Geological Survey procedures QWRETR, DVRETR, QWSAS, and DVINPUT to retrieve data from the Geological Survey WATSTORE system and make it available to SAS.

INTRODUCTION

Increased public concern over the quality of the Nation's rivers in the past several decades has led Federal, State, and local officials to implement or greatly expand existing water-quality monitoring programs. Examples of such programs are the Geological Survey's Benchmark and NASQAN networks (see Briggs, 1978). Most of these monitoring programs have as a goal the detection of trends in water quality.

[^0]Techniques of trend detection in water-quality data have correspondingly received much attention recently in the literature (see, for example, fuller and Tsokos, 1971; Lettenmaier, 1976; and Hirsch and others, 1982). Most of the trend detection methods presented to date are based on classical (parametric) hypothesis testing. However, because of the nature of water-quality data (typically skewed, serially correlated, and showing seasonality), many of the assumptions underlying classical hypothesis tests are not met, rendering them inappropriate. (For a discussion of the problems associated with these tests, the reader is referred to Smith and others, 1982.) Recently, however, thinking has begun to shift toward distribution-free (nonparametric) tests that have less restrictive assumptions than their classical counterparts and are therefore less sensitive to the distribution of the water-quality time series.

This report describes procedures in the Statistical Analysis System (SAS) that can appropriately be used to detect trends in water-quality data. The report describes the use of both the standard procedures provided with SAS and two additional procedures, SEASKEN and SEASRS. A working knowledge of SAS by the reader is assumed. The report was written primarily for user's of the U.S. Geological Survey's WATSTORE data base and Amdahl computer system; however, the source code for the SAS macros and procedures are included in the appendices. The user's guide for the SEASKEN and SEASRS procedures are also included in the appendices.

RETRIEVING DATA FROM THE WATSTORE DAILY VALUES AND WATER QUALITY FILES
In order to use SAS on water-quality data, it is first necessary to get the data into a SAS data set. A SAS data set is a collection of data observations addressable by SAS procedures. Each observation has one or more variables associated with it. For more information about SAS data sets, see SAS Institute, Inc.
(1979) or SAS Institute, Inc. (1982a). Data can be entered into a SAS data set from data cards in the job stream or by reading data stored on disk or tape files. When using data from the WATSTORE file, one of the standard Survey retrieval procedures must first be used. One of two Survey applications programs (PROC QWSAS or the DVINPUT macro) is then called to convert the standard retrieval output into a SAS data set. FROC QWSAS is a SAS procedure that produces a SAS data set from the standard water quality file retrieval procedure QWRETR. PROC QWSAS is described in detail in the WATSTORE user's guide, volume 3, chapter IV, section R. DVINPUT is a SAS macro that converts output from the WATSTORE daily values file retrieval, DVRETR, to a SAS 'ata set. Use of the DVINPUT macro is described in the WATSTORE message SAS documentation section (member WRD06). The standard retrieval procedures, DVRETR and QWRETR, are discussed in the WATSTORE user's guide, volumes 1 and 3, respectively.

Figure 1 shows example input using the QWRETR and QWSAS procedures. This example retrieves twelve parameters - two streamflow parameters (00060 \& 00061) and ten water-quality constituents - for three stations from the water quality file. Both daily mean streamflow (parameter code 00060) and instantaneous streamflow (00061) should be retrieved. For purposes of this test, the mean streamflow may be used if the instantaneous streamflow is missing. PROC QWSAS creates a SAS data set named DATA1 containing the station identification number and the eleven parameters requested in the QWRETR procedure. The parameter values are stored in variables named Pnnnnn where nnnnn is the WATSTORE parameter codes given in the retrieval list. In addition, the variables YEAR, MONTH, DAY, DATE, DECTIME, and SNAME were requested in the QWSAS statement. The variable DATE is the day on which the sample was collected, in days since January $1,1960$. DECTIME is a decimal number representing the time the sample was collected, in
//f1 JUB $1 /$ CLASS /*SETUP
$118545 / \mathrm{H}$
//PROCLIB DD DSN=WRD.PROCLIB,DISP=SHR
// EXEC QWRETR,VOLI $=118545$
//HDR.SYSIN DO *
M3 1968100119810930
ROOO600006100410006300066500915009250093000940009450095070300
0000600006100410006300066500915009250093000940009450095070300
033765100
// EXEC WRDSAS
//SYSIN DD *

PROC SORT:BY STATION YEAR MONTH DAY:
30 P00940 P00945 P00950 P70300:
DATA TREND.MONTHLY;SET:
/"

years. These two forms of sample collection time are useful in plotting the data as time series. Additionally, the variable DATE may be formatted in several different ways (see SAS Institute, Inc., 1982a, p. 409). SNAME is the variable containing the station name.

The variable DECTIME is required to use the SAS procedures SEASKEN and SEASRS. For data sets that do not already include the variable DECTIME, it can be easily generated using the following statement in a SAS data step:

$$
\begin{equation*}
\text { DECTIME }=\operatorname{YEAR}(D T)+(J U L D A T E(D T)-Y E A R(D T) \star 1000) / 365 ; \text {, } \tag{1}
\end{equation*}
$$

where DT is the date the observation was made.
An example use of this is shown in figure 2.
The example in figure 1 also sorts and prints the information retrieved by station. Finally, the data is stored as file TREND.MONTHLY in the data set USERID.FILENAME on a direct access device for later analysis. Line 16 describes the existing file to be used for data storage, and line 24 copies the data to the disk file. For information on creating disk data sets on the USGS Amdahl computer system, see the USGS Computer Users Manual, Chapter 5.

To adapt this example input to a specific application, the user will need to (1) substitute the six digit volume number of the appropriate water quality back file tape for 118545 in lines 3 and 5; (2) substitute the appropriate retrieval dates on the master control card on line 7 ; (3) change the retrieval and output list as desired on lines 9 and 10 ; (4) substitute the desired station numbers in lines 11 through 13 (and delete or add D cards as required); (5) substitute an appropriate data set name in the $\operatorname{DSN}=$ field on line 16 ; and (6) change the variables list in lines 22 and 23 to agree with the parameters listed in the retrieval list and PROC QWSAS optional variables.

//F2 JOB

/ /PROCLIB DD DSN=WRD.PROCLIB, DISP=SHR
/ / EXEC DVRETR,AGENCY=USGS,VOLI $1=115620$
/ /HDR.SYSIN DD *
M 3 1970100119800930
ROOO608015480155
FOOOO3
D
I*
/ / EXEC WRDSAS,MACRO=DV,OSN='\&\&BKREC', DSN1=NULLFILE, DSNZ=NULLFILE / /TREND DD DSN=USERID.FILENAME,DISP=OLD
DVINPUT SNAME
DATA DATAA (RENAME = (VALUE =POO060)) DATAB(RENAME=(VALUE=P80154)) DATAC(RENAME=(VAL
UE=P801SS)): SET;
IF PARMCODE $=60$ THEN OUTPUT DATAA:
IF PARMCODE $=80154$ THEN OUTPUT DATAB;
IF PARMCODE 80155 THEN OUTPUT DATAC:
PROC SORT DATA=DATAA;BY STATION DATE;
PROC SORT DATA=DATAB;BY STATION DATE:
DATA TEMP:MERGE DATA
FORMAT DATE YYMMDD8.
FORMAT DATE YYMMDD8.:
$D E C T I M E=Y+(J-Y * 1000) / 365$;
LABEL P80154=SUSPENDED SEDIMENT CONCENTRATION (MG/L)
P80155 =SUSPENDED SEDIMENT DISCHARGE (TONS/DAY)
POOOGU=STREAMFLOW (CFS):
PROC SORT:BY STATION DATE:
PROC PRINT;BY STATION:VAR DATE DECTIME POOO60 P80154 P80155;
DATA TREND.DAILY;SET TEMP:
/ /
Figure 2.--Example input for WATSTORE retrieval of streamflow data by the DVRETR and DVINPUT procedures.
Figure 2.--Example input for WATSTORE retrieval of streamflow data by the DVRETR and DVINPUT procedures.

The lines in the QWRETR example in figure 1 do the following: Line 1. Job control.
2. Class (extension of line 1).
3. Instructs the computer operator to mount the specified backfile tape.
4. Invokes the WRD cataloged procedure library.
5. Invokes the procedure QWRETR and specifies the mounted backfile tape to be used in the retrieval.
6. Establishes that data for QWRETR follow.
7. Specifies that data from both the current and backfile are to be retrieved for the period October 1, 1968, to September 30, 1981.
8. Specifies that QWSAS will be invoked as an application program.
9. Restricts the retrieval to the listed parameters only.
10. Restricts the output list to the listed parameters only.

11-13. Specifies the stations to be included in the retrieval.
14. Job control language step separator card (step delimiter).
15. Invokes the procedure WRDSAS (WRD modified version of SAS).
16. Defines existing direct access data set to be used for storage of the retrieved data.
17. Establishes that SAS instructions follow.
18. Invokes the procedure QWSAS and requests the variables YEAR, MONTH, DAY, DATE, DECTIME, and SNAME to be included in the data set created in line 23 below.
19. Uses mean streamflow (parameter code 00060) if instantaneous streamflow (00061) is missing, and discards the mean streamflow parameter.
20. Sorts data set in order of variables listed in BY statement.
21. Prints data set.

22-23. Selects and orders variables to be included in print of data set.
24. Creates file TREND.MONTHLY containing the retrieved data and stores it in the data set USERID.FILENAME.
¿5. Step delimiter.
26. End of job.

Figure 2 shows example input using the DVRETR and DVINPUT macro procedures. This example retrieves streamflow, suspended-sediment concentration, and suspendedsediment discharge from the daily values file for one station. The DVINPUT macro creates a SAS data set containing the station identification number, parameter code, value, date, and the optional variable requested on the DVINPUT statement, station name. The variable PARMCODE contains the values of the WATSTORE parameter codes in the retrieval list. This format of the data set is awkward since all the variables requested in the retrieval list are combined into different observations of the variable PARMCODE. The statements in lines 16 through 31 convert the initial SAS data set into one containing the station identification number, station name, date, P00060, P80154, and P80155. In addition, lines 27 and 28 add the variables Y (year), J (Julian date), and DECTIME for each observation, and lines 29 through 31 add variable labels for suspended-sediment concentration, suspended-sediment discharge, and streamflow.

This example also sorts and prints the data contained in the modified data set named TEMP. Finally, the data set is stored as the file TREND.DAILY on the data set USERID.FILENAME on a direct access device.

Note that DVINPUT is a SAS macro and not a SAS procedure. It is not preceded by the statement PROC or followed by a semicolon.

To adapt this example setup to a specific application, the user will need to 1) substitute the six-digit volume number of the appropriate daily values backfile tape for 115620 in lines 3 and 5 ; 2) substitute the appropriate retrieval dates on the master control card on line 7 ; 3) change the retrieval and output list as desired on lines 8 and 9 ; 4) substitute the desired station numbers in line 10 (add or delete D cards as required); 5) change lines $18-20$ and 29-31 appropriately; 6) substitute an appropriate data set name in the $\operatorname{DSN}=$ field on line 13; and 7) change the variable list in line 33 to agree with the parameters listed in the retrieval list and the DVINPUT optional variables. The lines in the DVRETR example input of figure 2 do the following:

Line 1. Job control.
2. Class (extension of line 1).
3. Instructs the computer operator to mount the specified backfile tape.
4. Invokes the WRD cataloged procedure library.
5. Invokes the procedure DVRETR with AGENCY=USGS being the agency code and specifies the mounted backfile tape to be used in the retrieval.
6. Establishes that data cards for DVRETR follow.
7. Establishes that data from both the current and backfile are to be retrieved for the period October 1, 1970, to September 30, 1980.
8. Restricts the retrieval to the listed parameters only.
9. Restricts retrieval to listed statistics codes only.
10. Specifies the station to be included in the retrieval.
11. Step delimiter.
12. Invokes the procedure WRDSAS and defines the temporary data set containing retrieval data and supplies the macro DV.
13. Defines existing direct access data set to be used for storage of the retrieved data.
14. Establishes that SAS instructions follow.
15. Invokes the macro DVINPUT and requests that the variable SNAME be included in the created SAS data set.

16-31. Converts the SAS data set.
32. Sorts data set in order of variables listed in BY statement.
33. Prints the variables in the VAR statement in the order they are listed in the VAR statement.
34. Creates file TREND.DAILY containing the retrieved data and stores it in the data set USERID.FILENAME.
35. Step delimiter.
36. End of job.

DETERMINING THE RELATIONSHIP BETWEEN WATER-QUALITY CONSTITUENTS AND STREAMFLOW
Quite frequently, concentrations of water-quality constituents are related to streamflow. When a water-quality constituent and streamflow are related, apparent trends in water quality may be due only to fluctuations in streamflow rather than to changes in the processes that affect the introduction and fate of a given constituent in the stream. For example, consider a stream where dissolved solids and streamflow are negatively correlated. That is, as streamflow increases dissolved solids decrease and vice versa. During a period of drought, high dissolved solids concentrations would be expected. If this period of drought was followed by a period of wet weather, a decrease in dissolved solids concentrations would be expected. If such a time series was tested for trend in dissolved solids concentration, a significant downtrend would be
indicated. However, such a trend could be entirely attributable to the fluctuation in streamflow during the period. In order to test for trends in the processes affecting dissolved solids during the period, it would be necessary to remove the effect of streamflow. Flow adjustment is an attempt to remove a major source of variation in water quality (streamflow) which may be masking those variations attributable to changes in the constituent inputs to the stream or in the processes occurring in the stream.

Smith and others (1982) described a flow-adjustment procedure suitable for this purpose. Their approach is to develop a time series of flow-adjusted concentrations (FAC) and to test that series for trend. FAC is defined as the actual concentration (C) minus the expected concentration (\hat{C}) predicted from the discharge (Q) relationship. The FAC should be randomly distributed with a mean of zero over the period of record if no change in the processes that affect the water-quality constituent have occurred. Of course, for some constituents - e.g., biological - adjustment by some other variable - e.g., solar radiation or air temperature - might be appropriate. Where some of the data are reported as "less than" a detection limit, these approaches to flow adjustment are not valid. If only a very few values are reported as "less than," then flow adjustment could be used provided some sensitivity analysis were done to check that the choice of values to use in place of the "less than" was not very influential in the overall results.

Some common models used for flow adjustment include the following:
(2) $\hat{c}=a+b Q$
1 inear
(3) $\hat{c}=a+b \ln (Q) \quad$ log-linear
(4) $\hat{c}=a+b \frac{1}{1+B Q}$
hyperbolic, B a constant typically in the range $10^{-3} \mathrm{Q}^{-1} \leq \beta \leq 10^{2} \mathrm{Q}^{-1}$, where \bar{Q} is mean discharge
(5) $\hat{c}=a+b \frac{1}{Q}$ inverse
quadratic

A good guide to selecting a flow adjustment equation is the R^{2} value, but one should check plots of the predicted (\hat{C}) and observed (C) values versus Q (a $\log \mathrm{Q}$ scale is usually desirable), and plots of the residual versus the predicted (Q) to confirm that the relationship fits well and is not excessively heteroscedastic (e.g., variance increases as predicted concentrated increases). For many constituents (particularly suspended constituents or biological ones like bacteria or plankton), these models may be inadequate, because the constituents are very heteroscedastic. In these cases, models based on fitting the log concentrations may be preferred.

Candidate models include the following:
(7) $\ln \hat{C}=a+b \ln Q \quad \log -1 o g$
(8) $\ln \hat{C}=a+b_{1} \ln Q+b_{2}(\ln Q)^{2} \quad \log$-quadratic \log

Deciding between a model based on concentration (equations 2-6) and one based on \log concentration (equation 7 or 8) should not be based on R^{2} values. Rather, the decision should be based on examination of residuals plots.

If none of the models considered results in a significant fit, as determined from the probability values for the t statistics in the cases with one explanatory variable (equations 2-5 or 7) or the probability value of the F statistic (equations 6 or 8), then no flow adjustment should be performed.

If one of the linear models (equations 2-6) is used, the residuals (Flow Adjusted Concentrations) are defined as $C-\hat{C}$. If one of the log models (equations $7-8$) is used, the residuals are $\ln C-\widehat{\ln C}$. Note that in the former case the residuals have the dimensions of C (typically mg / L), but in the latter case they are dimensionless. This has important implications for the interpretation of trend test results. If \log models are used and a slope is estimated in Proc SEASKEN, it must be transformed as follows: If B is the slope
value reported by Proc SEASKEN, then ($e^{B}-1$) $\cdot 100$ is the change in percent per year. If log models are used and a step change is being considered and D is the difference (mean FAC of period 2 minus mean FAC of period 1), then the percentage change from period 1 to period 2 would be ($e^{D}-1$) 100 .

The following section provides two examples of SAS jobs to search for appropriate flow adjustment models. The first, using the macro ABREGMAC, simply estimates the regression equation and computes the usual summary statistics; the second, using the macro REGMAC, provides extensive diagnostics on the results. These macros are intended to be illustrative of the kinds of analyses one may want to run. Knowledge gained by working with a particular data set should dictate variations of these that one may choose to pursue.

The SAS job listing and output in figure 3 follow the procedures used by Smith and others (1982) but includes several other models as well. It considers all of the models defined by equations 2-8. Plots of C versus Q and $\log C$ versus $\log Q$ are produced to aid in model selection.

Simple regression is used to estimate the coefficients a and bof each model, to calculate R^{2} (the fraction of the variance of the dependent variable explained by the given function of Q) and p (the probability of erroneously rejecting the null hypothesis that $b=0$). B is equal to $10\left(-2.5-\beta^{*}\right)$ where β^{*} is the interger part of $\log _{10} \bar{Q}$, where \bar{Q} is the mean streamflow. Eight different hyperbolic models are generated by incrementing the initial value of β by a factor of $10^{0.5}$ seven times.

The macro REGDATA (lines 6 -43) calculates the necessary functions of Q needed for the linear regressions. The macro ABREGMAC (lines 44-64) does the linear regressions using the SAS regression procedure SYSREG (SAS Institute, Inc., 1979, p. 403). Lines $65-67$ create a data set named DATAA with only sulfate and streamflow data for station 03374100. Line 68 sorts this newly
hyperz:MODEL DEPVAR=HYPERBZa;

MODEL:	LOGLIN		$\begin{aligned} & \text { SSE } \\ & \text { DFE } \end{aligned}$	$\begin{array}{r} 7440.682 \\ 96 \end{array}$	F RATID PRDB>F	$\begin{aligned} & 128.65 \\ & 0.0001 \end{aligned}$
DEP VAR:	P00945		MSE	77.507101	R-SQUARE	0.5727
	SULFATE	DISSOLVED	(MG/L	S04)		

PRDB>|T|
$\begin{array}{rr}18.2053 & 0.0001 \\ -11.3423 & 0.0001\end{array}$
-9.317384 0.821471
$\begin{array}{lr}\text { FRATIU } & 72.11 \\ \text { PROB } & 0.0001 \\ \text { R-SOUARE } & 0.4289 \\ & \\ & \\ \text { RATID } & \text { PROB } \\ & \\ -8.2491 & 0.0001 \\ 8.4915 & 0.0001\end{array}$
$\begin{array}{lr}\text { FRR11D } & 73.45 \\ \text { PROB>F } & 0.0001\end{array}$
$\begin{array}{ll}\text { PROB } P F & 0.0001 \\ R-S Q U A R E & 0.4335\end{array}$
T RATID $\operatorname{TROB}||T|$
$\begin{array}{rr}-7.8215 & 0.0001 \\ 8.5705 & 0.0001\end{array}$
VARIAPLE
LABEL
VARIARLE
LABFL
VARIARLE
LABEL

VARI ARLF
LABFL
VARI ABLE
LABEL
$\begin{array}{rr}29.2306 & 0.0001 \\ 9.9452 & 0.0001\end{array}$
12.286630 1.268460 0.0.001
10538.97 FRATID 62.61
$\begin{array}{ll}\text { PROB PF } & 0.0001 \\ \text { R-SQUARE } & 0.3947\end{array}$
T RATIO PROB>ITI
0.0001
0.0001
$\begin{array}{lr}\text { FRATIO } & 46.21 \\ \text { PROB } & 0.0001 \\ \text { R-SQUARE } & 0.49 .31\end{array}$
TRATID PRDB>ITI
1080
080
000
000
VARIARLE
LABFL
SIREAMFLOW, INSTANTANEDUS (CFS)
VARIAPLE

MCDEL: DEP VAR:	LOGEDG		SSE DFE MSE	$\begin{array}{r} 3.577098 \\ 96 \\ 0.037261 \end{array}$	$\begin{aligned} & \text { F RATID } \\ & \text { PROB>F } \\ & \text { R-SQUARE } \end{aligned}$	$\begin{aligned} & 104.24 \\ & 0.0001 \\ & 0.5206 \end{aligned}$
VARIABLE		OF	PARAMFIER ESTIMATE	STANDARD ERRDR	J RATIO	PROB>ITI
INTERCEP 1		1	5.582358	0.164343	33.9676	0.0001
100061		1	-0.183890	0.018012	-10.2096	0.0001
MCDEL:	L OGOAD		$\begin{aligned} & \text { SSE } \\ & \text { DFE } \end{aligned}$	$\begin{array}{r} 3.530233 \\ 95 \end{array}$	F RATIO PROB>F	$\begin{array}{r} 52.89 \\ 0.0001 \end{array}$
DEP VAR:	L00945		MSE	0.037160	R-SQUARE	0.5268
VARIABLE		DF	Parameter ESTIMATE	STANDARD ERRDR	T RATIO	PROB>ITI
INTERCEPT		1	4.407203	1.059222	4.1608	0.0001
L00061		1	0.082749	0.238112	0.3475	0.7290
102		1	-0.014901	0.013269	-1.1230	0.2643

created data set by station and SNAME (sorting by station and SNAME are required by REGDATA and ABREGMAC). The macros REGDATA and ABREGMAC are written with dummy names for the data set and dependent variables. Lines 69-71 substitute the desired data set and variable names into these macros. In this example, the flow-adjustment procedure will be done on the data set DATAA for the variable P00945 (sulfate). The macro LNDEPVAR inserts a name for the natural logarithm of the dependent variable. The argument of this macro may be any unused variable name the user chooses for the log of the variable given in line 70 . The procedures could have been done on any number of variables by repeating the statements in lines 69-73 and making changes in the data set and dependent variables. (For more information on the use of a macro to substitute a variable for dummy names, see SAS Institute, Inc., 1979, p. 12.) The statement in line 72 executes the macro REGDATA and the statement in line 73 executes the macro ABREGMAC.

SYSREG (line 46) outputs for each of the models: (1) the error sum of squares (SSE); (2) the error degrees of freedom (DFE); (3) the error mean square (MSE); (4) the model F ratio and Prob $>F$ (test and significance probability that all parameters except the intercept are zero); (5) the model R-square $\left(R^{2}\right)$; and (6) the degrees of freedom, estimate, standard error, and T ratio and Prob $>|T|$ for parameters in the model. The R-square and Prob $>|T|$ for the function of Q in the model correspond to the R^{2} and p value in the Smith and others (1982) flow-adjustment procedure. Plots of streamflow versus sulfate, in both arithmetic and \log form, are shown in figure 3.

Figure 4 shows a listing and output of a sample SAS job that does the flow-adjustment procedure using the macro REGMAC (1ine 44). In addition to providing R^{2} and p for each model, the program provides several diagnostic
//A EXEC WKDSASODSN1=NULLFILE,DSNZ=NULLF
//TREND DD DSN=USERID.FILENAME,DISP=OLD
//SYSIN DD
MACROREGDATA
OPTIONS NOMACROGEN;
PROC MEANS DATA=FILENAME NOPRINT MEAN:BY
//A EXEC WKDSASODSN1=NULLFILE,DSNZ=NULLF
//TREND DD DSN=USERID.FILENAME,DISP=OLD
//SYSIN DD
MACROREGDATA
OPTIONS NOMACROGEN;
PROC MEANS DATA=FILENAME NOPRINT MEAN:BY
PROC MEANS DATA=FILENAME NOPRINT MEAN;BY STATION;VAR POOO61
OUTPUT OUT=MEANG HEAN=MOOOGI:
PROC SORT DATA=HEANG;BY STATION;
DATA INPDATA;MERGE MEANQ FILENAME;BY STATION;
PROC MEANS DATA=FILENAME NOPRINT MEAN;BY STATION;VAR POOO61
OUTPUT OUT=MEANG HEAN=MOOOGI:
PROC SORT DATA=HEANG;BY STATION;
DATA INPDATA;MERGE MEANQ FILENAME;BY STATION;
*GET LOG OF DEPENDENT VARIABLE:
LNDEPVAR = LOG (DEPVAR);
*GET LOG OF THE FLOW:
LOOO61 $=$ LUG (POOO61):
LOOO61 $=$ LUG(POOO61):
*BETA $=$ THE INTEGER PORTION OF THE BASE 10 LOG OF THE MEAN FLOW:
BETA=INT(LOG10(MOOO61)):
BETA =INT(LOG1O(MOOO61)):
*BN=DIFFERENT VALUES USED IN THE HYPERBOLIC FUNCTIONS:
$* B N=D I F F E R E N T$ VALUES USED IN THE HYPERBOLIC FUNCTIONS:
$B 1=10 * *(-2.5-8 E T A):$
$B 2=B 1 * 10 * * \cup .5$;
$* B N=0 I F F E R E N T$ VALUES USED IN THE HYPERBOLIC FUNCTIONS;
$B 1=10 * *(-2.5-8 E T A)$:
$B 2=B 1 * 10 * * U .5$:
$B 3=82 * 10 * * 0.5$;
$84=83 * 10 * * 0.5$;
$B 5=84 * 10 * * * 5 ;$
$B 6=85 * 10 * * 0.5$;
$B 7=86 * 10 * * 0.5$;
*HYPERBNQ=OIFFERENT HYPERBOLIC FUNCTIONS:
HYPERE1Q=1/(1+B1*P00061);
HYPERE2Q=1 $(1+B 2 *$ POU061);
//PROCLIZ DD DSN=WRD.PROCLIB,DISP=SHR
//PROCLIZ DD DSN=WRD.PROCLIB, DISP=SHR
//A EXEC WRDSAS,DSN1=NULLFILE,DSNZ $=$ NULLFILE
//TREND DD DSN=USERID.FILENAME,DISP=OLD
$* 2=$ POOUC $1 * * 2$;
$* 1 Q 2=$ SQUARE OF
*LQ2=SQUARE OF THE LOG OF THE FLOW:
LQ2=LOUUG1* 2 ;
PRUC SURT DATA=INPDATA; 3 Y STATION:
*LQZ=SQUARE OF THE LOG
LQ2=LOUU61**2;
DRUC SURT DATA =INPDAT
HYPERLBQ $=1 /(1+38 * P 00061)$:
*INVQ= THE INVERSE OF THE FLOW;
INVQ=1/POOO61:
*Q2=SQUARE OF THE FLOW:
HYPERB4Q $=1 /(1+34 * P 00061) ;$
HYPERBSQ $=1 /(1+35 * P 00061) ;$
HYPERE6Q $=1 /(1+86 * P 00061)$:
MACRO REGMAC
OPTIONS NOMACROGEN NOOVP;
PROC REG DATA=INPDATA;BY STATION:
D P00061:
TITLE OUTPUT FROM MODLABEL:
MODLAGEL:MUDEL $Y=F L O W / / R$
MODLAUEL: MUDEL $Y=F L O W / R ; \quad Y=F L O W$.

[^1]OUTPUT UUT=REGDAT1 P=P R=R STUDENT=SR COOKD=COOKD;
PROC SORT DATA=REGDAT1 ;BY STATION:
PROC SORT DATA=REGDAT1;BY STATION:
PLOT R*P / VREF=O;
PROC UNIVARIATE DATA=REGDAT1 PLOT NORMAL;VAR R;
DATA DATAA:SET TRENO.MONTHLY:
IF STATION $=03374100$
KEEP STATION SNAME POO945 POOO61:
PROC SURT;GY STATION:
MACRO FILENAME OATAA\%
MACRO DEPVAR POUY45\%
MACRO LNDEPVAR LOO945\%
REGDATA
MACRO Y DEPVAR/
MODLABEL LOGLIN\%
Y DEPVAR\%
Y DEPVAR\%
FLOW LOOO61\%
MODLABEL LOGLOG\%
MACRO Y LNDEPVAR\%
MACRO FLOW LOOO61\%

		SUM DF	MFAN SQUARES
SOUAFE			

| Variable | DF | PAFAMETER ESTIMATE | STANDARD ERRDR | $\begin{aligned} & \text { TFOR HO: } \\ & \text { PARAMETER=0 } \end{aligned}$ | PROB > \|T| | VARIABLE LABEL | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INTERCEP | 1 | 60.288824 | 1.418811 | 42.492 | 0.0001 | INIERCEPT | | |
| P00061 | 1 | -0.0005675 | .00006713385 | -8.453 | 0.0001 | STREAMFLOW. | INSTANT ANE OUS | (CFS) |

conk: s

SID FRR STUDFNT
\qquad

STC FRR
PREDICT

ID

085

$\begin{aligned} & n 0 \\ & \text { 을 } \\ & \text { 등 } \end{aligned}$	OMN～に 88880 $\therefore 0^{\circ} 0^{\circ}$	－ONnonmmmonnmo 응ㅎㅇㅇㅇㅇㅇㅇㅇㅇㅇ으응응 $\therefore 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 00^{\circ} 00^{\circ}$
N		
$\frac{i}{i}$	$4 *$	
		 NOーOO－ipiócNo －
		 OOOOOEOCOㅇÓO

C - a
$\begin{array}{ll}\text { PLOT OF P\&LOOO61 } & \text { SYMBOL USFD IS P } \\ \text { PLOT OF POO945*LODO61 SYMBUL USED IS O }\end{array}$ c a

70awas

> 00
> 0 $0 a^{2}$

ㄹ

No

08
08
08
mo
0 08
88
0
0
0 0
0
0
$\dot{0}$
$\dot{\infty}$ 08
0.
0
ing
in 08
08
00
0
c
m 0
0
0
0
0
0
0
0
0
0 08
08
0
0
0
0 08
08
08
0

n | 08 |
| :--- |
| 80 |
| 0 |
| | 0

0
0
0 0
0
0
0 0
0
0
0
0
0
0 08
08
0
内 00
00
00
in
n 0
0
0
0
0
0 00
080
00
$n n 0$
$m 0$
 80
08
00
-0
-6 8
0
0
0 8
0
0
0 00
08
00
00
04 008
080
00
0.
No
N 80
08
00
n
0 0
8
0
0
0
0

\circ
0
0
0
$a c$

- 0

UNIVARIATE
 $\begin{array}{rr}17.9169 & \text { LDHFST } \\ 11.8377 & -24.7292 \\ 9.34287 & -24.2206 \\ -10.6342 & -22.9778 \\ -16.9796 & -21.3236 \\ -24.7282 & -16.7509\end{array}$

21
25
801
206
856
806

$58^{\circ} 4$
$!$

RESIDUALS

MOMENTS

VARIANCE KURTOSIS
CSS
SID MEAN PROR \mid |S| PROB>0
V ARIABLE $=R$

> SUM WGTS

\qquad
SUM IIF
SOUARES
3.883952
3.57709 B
7.461050

0.193032
3.916335
4.928899
PARAMETER
ESTIMATE
$5.58235 B$
-0.183890

MEAN SQUARE

3.883952
0.037261
R-SQUAFE
ADJ R-SO

STANDAFO
ERROR
0.164343
0.018012

F VALUE	PROR
104.235	0.0001
0.5205	
0.5155	

PROB > ITI

0.0001 0.0001

conk
0
 -

0.191911
0.189064
0.190836
0.192040
0.191755
0.190624
0.191934
0.191123
0.190519
0.190832
0.191968
0.191796
0.191263
0.190471
0.190239
0.191839
0.191965
33.968
-10.219
TFOR HO:
PARAME TER $=0$
0.164343
0.018012 -

$$
\begin{aligned}
& n \\
& 0 \\
& 1 \\
& 1
\end{aligned}
$$

16:03 THURSJAY, AUGUST 18. 199316

PLOT DF LOOOA5*L00061 SYMBOL USED IS D

tools which aid the user in selecting the most appropriate regression model. The program uses the macro REGDATA to establish the data. The macro REGMAC uses the REG procedure (SAS Institute, Inc., 1982b, p. 39) rather than the SYSREG procedure to generate regression results. In addition to the information provided by SYSREG, the REG procedure in this application prints (1) the observed and predicted value for each observation; (2) the residual (FAC), the standard error of the residual and the studentized residual (the residual divided by its standard error); and (3) Cook's D, a measure of the change to the parameter estimates that would result from deleting each observation. This program also plots for each model the observed and predicted values of the selected dependent variables against the \log of streamflow, and the FAC (residuals) against the predicted value. In these plots, the \log of the flow is used on the x-axis to provide better resolution in the low discharge range. Finally, the macro does a residuals analysis with the Univariate procedure (SAS Institute, Inc., 1979, p. 427). This procedure does univariate statistics on the residuals, tests for normality by the Shapiro-Wilk W statistic (for sample sizes ≤ 50) or a modified version of the Kolmogorov-Smirnov D Statistic (for sample sizes >50) and provides a stemleaf, box plot, and probability plot of the residuals. For a discussion of regression analysis and the use of these dianostic tools, the reader is referred to Chatterjee and Price (1977), Belsley and others (1980), Daniel and Wood (1980), and Draper and Smith (1981).

The procedure is invoked three times in the example, shown in figure 4 , once for the linear model of equation 2 (lines 65-68), once for the log-linear model of equation 3 (lines 69-72), and for the log-1og model of equation 7 (lines 73-76). In each instance three variables are set - the model label (MODLABEL) in lines 65, 69, and 73 , the independent variable (Y) in lines 66 , 70, and 74, and the explanatory variables (FLOW) in lines 67, 71, and 75 -
then the macro REGMAC is called (lines 68,72 , and 76) to do the computation. In the example shown in figure 4, the log-linear (equation 3) was selected to flow adjust the sulfate concentrations. The linear model (equation 2) is clearly deficient. Both plots demonstrate this quite clearly. However, the log-log model (equation 7) is not manifestly better or worse than the log-linear model. The pattern seen on the residuals plots for these two models are very similar, both showing some modest lack of fit at the low end and a slight amount of heteroscedasticity. The choice betwen these two models, in this case, is largely a matter of preference. The log-1inear model has the advantage that the residuals are in units of mg / L.

PLOTTING WATER-QUALITY DATA AS A TIME SERIES

It is now possible to examine the flow-adjusted concentrations for trend. A good exploratory method for detecting trends is to plot the data as a time series. Figure 5 shows an example SAS program that generates time series plots for streamflow, sulfate concentration, and the flow-adjusted sulfate concentration for the data used in figure 3. Note that PROC REG (lines 12-14) is used to calculate the FAC and generate the data set used by PROC PLOT (lines 16-19; (SAS Institute, Inc., 1979, p. 343). Note also that the variable DECTIME (lines $17-19$) is used as the time variable in these plots. PROC PLOT produces 1 ine printer plots as shown in figure 5. More elaborate plots of SAS data can be made using PROC GPLOT (SAS Institute Inc., 1981b, p. 69). The procedure GPLOT is a part of the SAS/GRAPH system which is a computer graphics system for producing figures on terminal screens and plotters. A list of compatible graphics devices is given in the SAS/GRAPH User's Guide (SAS Institute, Inc., 1981b, p. 2).
1/FS JOB
IPROCLIB DD DSN=WRD.PROCLIB, DISP=SHR
//PREXEC WRDSAS,DSN1=NULLFILE,DSN2=NULLFILE
ITREND DU DSN=USERID.FILENAME, DISP=OLD
/SYSIN DU *
I ONS NOUVP:
A DATAA:SET TREND.MONTHLY:
STAT LON = ' 0337410
$061=\operatorname{LOG}(P O O 061)$;
EEP STATION SNAME POO94S P00061 L00061 DECTIME;
ROC SORT DATA=DATAA;BY STATION:
PROC SORT DATA=DATAA;BY SIATION,
PROC REG DATA =DATAA NOPRINT:BY STATION;
MODEL POU945=LOOO61;
PROC SORT DATA=PLOTDATA;BY STATION:
:NOII甘LS A 日: $\forall 1 \forall 0107 d=\forall 1 \forall 0$ lold jotd
PLOT PUOU61*DECTIME
PLOT FAC*DECTIME;
Figure 5.--Example input and output of SAS statements to plot water-quality data and regression

NOTE: $\quad 5$ ORS HAO MISSING VALUES

STATISTICAL PROCEDURES TO TEST FOR TRENDS IN WATER-QUALITY TIME SERIES
Two nonparametric tests for detecting trends in time series have been added to SAS at the U.S. Geological Survey Amdahl computer facility. PROC SEASKEN does the Seasonal Kendall test and slope estimator developed by Hirsch and others (1982). This procedure is suitable for detecting monotonic trends in time series with seasonality, missing values, or values reported as "less than." The procedure is not, however, robust against serial correlation. Additional information about the Seasonal Kendall test and slope estimator is given in the User's Guide presented in Appendix A.

PROC SEASRS tests for differences in the location parameters (mean, median, etc.) of two separate periods in a time series. The procedure uses a version of the Wilcoxon rank-sum test (Mann-Whitney test) modified to handle seasonality. This test is appropriate for detecting step trends (changes) in water quality before and after events such as construction of a dam or sewage treatment plant or an abrupt land-use change (construction, mining, clear cutting). Additional information about the modified Wilcoxon rank-sum test is given in the User's Guide presented in Appendix B.

In many cases, it may be appropriate to apply one of these PROC's to the concentration data as well as to the flow-adjusted concentration (FAC) data. Trends or changes in FAC may be interpreted as an indication that the streamflow concentration relationship has changed; that is, for a given discharge one may expect different concentration values today versus some time in the past. In cases where there have been substantial changes in the flow frequency distribution (due to changing regulation, diversion, or consumption), it may be very useful to look for trends or changes in raw concentration data. This will be indicative of the combined effects of changes in human inputs to
the stream and changes in the flow frequency distribution on the frequency distribution of concentrations.

The presence of a large number of missing values or "less than" values (censoring) in the records being tested does not substantially affect the significance of the tests, although their power (ability to detect actual trends) may be reduced. PROC SEASKEN has been tested with as much as 50 percent of the seasonal values missing or 50 percent of them censored without any problem in significance.

The consequences of using these tests when data are serially correlated is that the actual significance of the test becomes higher than the nominal significance level. For monthly data, serial correlations are generally in a range such that actual significance may be about twice as high as the nominal. In other words, a p-level reported as 0.05 may more accurately be as high as 0.10 . The problem becomes severe where the measurements are from a large body of water with a long residence time (by comparison with the sampling frequ y). Aquifers, large lakes, or reservoirs, or the streams draining large lakes or reservoirs, may present problems. Keeping the parameters SEASON (see appendicies A and B) small, typically no larger than 12 , will help avoid serious problems due to serial correlation. When the correlation problem is thought to be severe, reducing SEASON (reducing the number of values per year used in the test) should prove to be helpful.

Figure 6 shows a program listing and output of a SAS job that uses PROC SEASKEN to test for time trends in the streamflow, sulfate concentration, and the flow-adjusted sulfate concentrations used in the regression example shown in figure 3. The flow-adjusted concentrations were calculated by the REG procedure using the LOGLIN model shown in figure 3 and are included in the output data set generated by PROC REG.
／／F6 JUB
／／PROCLIB DD DSN＝WRD．PROCLIB，DISP＝SHR
／／A EXEC WRDSAS／DSN1＝NULLFILE，DSNZ＝NULLFILE
／／TRENU DD USNEUSERID．FILENAMEDDISP＝OLD
／／ISYSIN DD＊
DATA DATAA；SET TREND．MONTHLY；
IF STATION＝ 03374100
KEEP STATION SNAME P00945 P00061 L00061 DECTIME；
PROC SORT DATA＝DATAA；BY STATION：
PRUC REG DATA＝DATAA NOPRINT；BY STATION；
MODEL POU94S＝LOOOAT：\quad OUTPUT UUT＝PLOTDATA $P=P$ FAC；
PROC SURT UATA＝PLOTDATA；BY STATION：
PROC SEASKEN DATA＝PLOTDATA SEASON＝12：3Y STATION：
VAR DECTIME P00061 P00945 FAC；
Figure 6．－－Example input and output of SAS statements to do the Seasonal Kendall test and slope estimator procedure on a water－quality data time series．
ロニ～ッさ～ロペロの
SEASONAL KENDALL TFST AND SLOPE ESTIMATOR FOR TREND MAGNITUDE

Vafiabl		NDBS	NVALS	IAU	- Level	SLIPE
P00061	STREAMFLON, INSTANTANEDUS (CFS)	103	98	-0.020	0.837	-60.00
P00945	SULFATE DISSOLVED (MG/L AS SOA)	98	96	-0.182	0.032	-1.333
fac	RESIDUALS	98	98	-0.279	0.001	-1.066

NOBS IS THE NUMBER OF NON-MISSING OBSERVAYIDNS IN THE DRIGINAL DATA. NVALS IS THE NUMBER OF NON-MISSING SEASONAL VALUES CDVSTRUCTED.

The results of the SEASKEN test show that no significant trend is evident in streamflow but that both the sulfate and flow-adjusted sulfate concentrations exhibited highly significant decreasing trends ($p-l e v e l(p)<0.05$) during the period of record used in the test.

This trend can be further examined using PROC SEASRS. The data used in this example are from a station draining a watershed containing considerable surface coal mining. The regulations promulgated under the Surface Mine Control and Reclamation Act of 1977 (PL 95-87) were implemented toward the latter third of the period of record for this station (May 1979). Figure 7 shows a program listing and output of a SAS job that uses PROC SEASRS to determine if differences exist in streamflow, sulfate concentration, and the flow-adjusted sulfate concentration (using the LOGLIN model of figure 3) before and after this date. The results of the SEASRS test show that no significant step trend is evident in streamflow ($p-l e v e l>0.05$) but that sulfate concentration and the flow-adjusted sulfate concentration exhibit a highly significant trend (p-level<0.05).

The reader should be aware that both the Seasonal Kendall test and the Seasonal Wilcoxon rank-sum test are exploratory in nature. The fact that the Seasonal Wilcoxon rank-sum test indicates a difference between the periods in the time series prior to and following the implementation of the surface mine regulations does not necessarily imply causality, nor does it imply that it will continue into the future.
//F7 JUB
//PROCLIB DD DSN=WRD.PROCLIB-DISP=SHR
//A EXEC WROSASODSNI=NULLFILEDDSNZ=NUL
$S A S, D S N I=N U L L F I L E, D S N 2=N U L L F I L E$
$S N=U S E R I D . F I L E N A M E, D I S P=O L D$
$N=U S E R I D . F I L E N A M E, D I S P=O L D$
TREND.MONTHLY:

END.MONTHLY: 4100

P00945 P00061
LOOO61 DECTIME:
$\forall \forall$
d
:
PRUC SORT DATA=DATAA:BY STATION:
PROC REG DATA=DATAA NOPRINT:BY STATION:
MODEL POO $945=L O O O 61$;
SE

: 1900
$\forall \forall 1$
PROC SEASRS DATA=FACDATA SEASON=12 DATE=1979.33;BY STATION: VAR DECTIME P00061 POO945 FAC:
 sum and slope estimator procedure on a water-quality data time series.
//IREND
/ISYSIN
DATA DATAA
5
0
0
0
0
0
0
11
$\frac{11}{0}$
0
0
0
1 $\forall 1 S$ d $\exists \exists x$
PRUC SORT DATA=DATAA:BY STATION:
PROC REG DATA=DATAA NOPRINT:BY STATION:
MODEL POU $945=L O O O 61$;
$=F A C D A T A \quad P=P \quad R=F A C$;
:NOIIVIS \quad 日 : $\forall 1 \forall O J \forall i=\forall I \forall 0 \quad 1 \forall O S$ Jotd

$$
\begin{array}{lll}
n & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

$$
\underset{\sim}{\sim} \underset{\sim}{\sim}
$$ MANN-WHITAEY-HILCOXAN RANK SUM TEST FOR SEASONAL DATA

$$
\begin{aligned}
& \text { FIRST SERIES } \\
& (1973-1979) \\
& \text { NOBS NVALS }
\end{aligned}
$$

NOBS NVALS CUTDFF DATE
NOBS IS THE NUMBER DF NON-MISSING OBSERVATIINS IN THE DRIGINAL DATA.
NVALS IS THE NUMBER OF NDN-MISSING SEASONAL VALUES CONSTRUCIED.

$$
\begin{array}{ll}
69 & 1979.33 \\
68 & 1979.33 \\
68 & 1979.33
\end{array}
$$

APPENDIX A: PROC SEASKEN user's guide with examples

This procedure tests for monotonic trends in time series using a modified form of Kendall's tau (Kendall, 1975) derived by Hirsch and others (1982).

The null hypothesis for this test is that the probability distribution of the random variable does not change over time. In the Kendall's tau test, all possible pairs of data values are compared. If a later value (in time) is higher, a plus is recorded, if the later value is lower, a minus is recorded. If no trend exists in the data, the probability of a later value being higher or lower than any previous value is 0.50 . In this case, the number of pluses should approximately equal the number of minuses. If the number of pluses greatly exceeds the number of minuses, the values later in the series are more often higher than those earlier in the series, indicating an uptrend. If the number of minuses greatly exceeds the number of pluses, a downtrend is indicated. In this modified Kendall's tau, the problem of seasonality is avoided by comparing only observations from the same season of the year. Thus, for monthly data with seasonality, January data is compared only with January data, and so on.

Trend magnitude is determined using the seasonal Kendall slope estimator (Hirsch and others, 1982). The slope estimate is taken to be the median of the slopes of the ordered pairs of data values compared in the Seasonal Kendall test:

A more complete discussion of the Seasonal Kendall test and Seasonal Kendall slope estimator and its use are given in Smith and others (1982). SPECIFICATIONS

The following statements may be used in the SEASKEN procedure: PROC SEASKEN SEASON $=n$ options;

BY variables;
VAR variables;

The PROC SEASKEN statement invokes the procedure. The VAR statement is used to specify the numeric variables for the analysis. The BY statement is optional. The observations must be in chronological order. This can be done by using PROC SORT and sorting by the variables in the BY statement followed by DECTIME. For example:

PROC SORT; BY variable DECTIME;
PROC SEASKEN statement
The PROC SEASKEN statement has the form:
PROC SEASKEN SEASON $=n$ options;
SEASON $=n \quad$ gives the number of seasonal values per year. For example, $S E A S O N=12$ would be used for data collected monthly and $\operatorname{SEASON}=52$ would be used for data collected weekly. SEASON = 1 may be used for annual summary data, such as average annual streamflow. Each water year will be divided into n equal length seasons. Note that for $\operatorname{SEASON}=12$, for example, the 12 seasons will not correspond exactly to the 12 calendar months since months are not of equal length. For each season of each year, there may be no observations (a missing value will be assumed as the seasonal value), one observation (that value will be used as the seasonal value), or several (not more than 400) observations (the median of the values will be used as the seasonal value).

This statement is not optional and must be included.
The options that may be used in the PROC SEASKEN statement follow. DATA $=$ SASdataset gives the name of the SAS dataset to be used by PROC SEASKEN. If it is omitted, the most recently created SAS data set is used.
gives the detection limit of the analytical procedures used to determine the constituent values in the time series. The number associated with each call of the detection limit option refers to the order of the constituents on the VAR statement. The use of the detection limit option is most important when several different analytical procedures with different degrees of sensitivity were used to determine values of the same constituent in the time series. In this case, the highest detection limit of all the procedures should be used.

The detection limit option sets all values less than or equal to the detection limit equal to one-half the value of the detection limit.

This option would not be used when the test is applied to Flow-Adjusted Concentrations (FAC). VAR statement

VAR dectime variables;
The names of the variables to be tested for trends are listed in the VAR statement. The first variable must contain the decimal tine values corresponding to the times the observations in the time series were made. Dectime is in the form of decimal time; for example, 12 noon, June 1, 1975, will be 1975.4178. Up to 15 additional numeric variables may be included. The total number of seasonal values (number of seasons times the number of water years) may not exceed 1200. The VAR statement is not optional and must be included.

BY variables;
A BY statement may be used with PROC SEASKEN to obtain separate analyses on observations in groups defined by the BY variables. The input data set must be sorted in order of the BY variables.

DETAILS

Missing Values
Missing values may appear in a time series used in SEASKEN. The existence of missing values presents no theoretical problem for applying the seasonal Kendall test for trend. Comparisons of data pairs where one member is missing are not included in the calculation of the test statistic. (Internally, missing values are represented as -1E31.)

One or more seasons may be devoid of data; for example, one may use SEASON=12 and have data only for the summer. In this case, all other months will be set to missing values.

Formulas
The test statistic, S_{i}, is:

$$
S_{i}=\sum_{k=1}^{n_{i}-1} \sum_{j=k+1}^{n_{i}} \operatorname{sgn}\left(x_{i j}-x_{i k}\right)
$$

Where n_{i} are the number of annual values for season i,
$X_{i j}$ the seasonal value for season i and year j,
$X_{i k}$ the seasonal value for season i and year k,
and

$$
\operatorname{sgn}(\theta)=\left\{\begin{array}{rll}
1 & \text { if } \theta & >0 \\
0 & \text { if } \theta & =0 \\
-1 & \text { if } \theta & <0
\end{array}\right.
$$

The expected value of S_{i} is $0, E\left[S_{i}\right]=0$ and its variance is:

$$
n_{i}\left(n_{i}-1\right)\left(2 n_{i}+5\right)-\int_{t_{i}} t_{i}\left(t_{i}-1\right)\left(2 t_{i}+5\right)
$$

$\operatorname{Var}\left[S_{i}\right]=$ 18
where t_{i} is the extent of a given tie (number of X^{\prime} s involved in tie) for season i,
and $\sum_{\mathrm{t}_{\mathbf{i}}}$ denotes the summation over all ties.
The composite statistic of the seasonal statistics, S_{j}, is S^{\prime} :
$E\left[S^{\prime}\right]=\sum_{i=1}^{\text {season }} E\left[S_{j}\right]=0$
and the variance of S^{\prime} is:

$$
\operatorname{Var}\left[S^{\prime}\right]=\sum_{i=1}^{\text {season }} \operatorname{Var}\left[S_{i}\right]=\sum_{i=1}^{\text {season }} \frac{n_{i}\left(n_{i}-1\right)\left(2 n_{i}+5\right)}{18}
$$

The normal approximation with a continuity correction of 1 (toward zero) is used to estimate $p=\operatorname{Prob}\left[\left|S^{\prime}\right| \geq s\right]$ (the probability that S^{\prime} will depart from zero by the amount s or more). The standard normal deviate, Z, is calculated by:

$$
Z= \begin{cases}\frac{S^{\prime}-1}{\left(\operatorname{Var} S^{\top}\right)^{1 / 2}} & \text { if } S^{\prime}>0 \\ 0 & \text { if } S^{\prime}=0 \\ \frac{S^{\prime}+1}{\left(\operatorname{Var} S^{\prime}\right)^{1 / 2}} & \text { if } S^{\prime}<0\end{cases}
$$

The p-level of the test is determined from Z using the standard normal distribution. The p-level is the probability of obtaining a Z value that is as large or larger in absolute value than the one obtained if the null hypothesis were true (i.e., there was actually no trend). If one pre-selects a significance level α (the risk of rejecting the null hypothesis when it is
actually true), then one should reject whenever the p-level is less than α. A typical value for α is 0.05 .

The statistic τ (tau) is:

$$
\tau=\sum_{i=1}^{\text {season }} \frac{S_{i}}{n_{i}\left(n_{i}-1\right) / 2}
$$

Note that τ may only take on values between -1 and +1 . Negative values indicate downwards trend, positive values indicate upwards trend. It is a type of rank correlaton coefficient between the variable and time.

The seasonal Kendall slope estimator is the median value of

$$
d_{i j k}=\left(x_{i j}-x_{i k}\right) /(j-k) \text { for all }\left(x_{i j}, X_{i k}\right) \text { pairs }
$$

where $d_{i j k}$ is the slope between seasonal values for season i, year j and season i, year k with $j>k$.

The slope estimate is valid only when all of the data are reported as above the limit of detection. If there are only a few "less thans" it can be viewed as a reasonable approximation.

Printed output

For each variable SEASKEN prints (see figures A1 and A2)

1. the variable name (VARIABLE)
2. the variable label, if any
3. the total number of non-missing observations in the input data (NOBS)
4. the number of seasonal values constructed from the observations (NVALS)
5. the statistic tau (τ) (TAU)
6. The significance probability ($p-1 e v e l$) of the trend, two-sided (P LEVEL)
7. The estimate of trend magnitude, in units per year (SLOPE)

EXAMPLES

Example 1: Annual Mean Streamflow

In this example (figure $A-1$), PROC SEASKEN is called to test for a trend in the annual mean streamflow observed at a U.S. Geological Survey streamflow gaging station. The data was entered from card input (lines 9-19).

Example 2: NASQAN Data
In this example (figure $A-2$), PROC SEASKEN is called to test for trends in 10 water quality constituents at three U.S. Geological Survey NASQAN stations. The data was previously stored as a SAS data set on a direct access storage device. Note that the SAS data set, TREND.MONTHLY was sorted by STATION (line 6) so that the BY statement option (line 8) could be used with SEASKEN.
ATA SFLUW;
INPUT WYEAR AMU da;LIST;
DECTIME=WYEAR-O. 25 ;

OOO O O O O
0
NGO
\sim
Figure Al.--Example input and output using PROC SEASKEN to test for a trend in annual mean streamflow.

SEASONAL KENDALL TEST AND SLDPE ESTIMATOR FOR TREND MAGNI TUDF

DD $D S N=W R D . P R O C L I B, D I S P=S H R$
USASODSN1 =NULLFILE,DSN $2=$ NULLFILE
D USN=USERID.FILENAME, DISP=OLD
ATA=TREND. MONTHLY;BY STATION:

UAR DECTIME P70300 P00410 P03630 P00665 P00915 P00925 P00930 P00940 P00945 P0035
Figure A2.--Example input and output using PROC SEASKEN to test for trends in water-quality

Varlati		NOES	NVALS	tal	P Level	SLIPF.
P70300	Solins, resioue at 140 deg. C Dissolved	77	74	0.119	0.259	9.100
P00410	LIKALINITY FIELD (MG/L AS (ACO3)	66	63	-0.072	0.565	-1.292
P00630	NIIROGEV, NOIPNO3 IUIAL (MG/L AS N)	76	73	0.233	0.024	. 1000
POOR35	PHISPHORUS. TOTAL (MG/L AS P)	7%	73	-0.c63	0.559	-. 1000E-29
P00915	Caltiuy dissmlven (mg/l as ca)	77	74	-0.077	0.469	-. 5000
P00925	MAGNFSIUM, DISSCLEVE (MGSL AS MG)	77	74	0.031	0.794	.1000E-29
P00930	SODIUY, DISSILLVEO (MG/L AS NA)	77	74	-0.021	'0.477	-. 1000E-29
P00950	CHLJRIDE, DISSOLVED (MG/L AS CL)	77	74	0.093	0.375	.1833
P00945	SULFATE DISSOLVED (MG/L AS SOG)	77	74	-0.175	0.087	-. 6458
P30950	FLUJRIDE, DISSCILVED (MG/L AS F)	77	74	-0.046	0.598	-. 1000E-29

NJBS 15 THI NUMRER DF NON-MISSING OBSERVAIIONS IN TYF GRIGINAL DATA.
NVALS IS THE NUMGER DF NLON-MISSIAG SEASONAL VALUES CONSTRUCTED.
sfastinal kendall iest and slope estimator fior theni macnitude
WAIER YEARS 1973-1

$$
\begin{aligned}
& 1981 \\
& \mathrm{NOH}
\end{aligned}
$$

$$
\begin{aligned}
& \text { VARIARI.F } \\
& \begin{array}{l}
\text { SLUPE } \\
-2.000 \\
-4.067 \\
.8000 E-01 \\
.5000 E-02 \\
-.6667 \\
-.2000 \\
.1667 \\
.5000 \\
-1.333 \\
-.1000 E-29
\end{array} \\
& \text { iAu Plevel } \\
& \begin{array}{l}
0.400 \\
0.022
\end{array} \\
& 0.007 \\
& \stackrel{n}{n} \\
& 0.323 \\
& 0.456 \\
& \stackrel{\infty}{\infty} \\
& \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array} \\
& \begin{array}{l}
\text { N } \\
\stackrel{N}{0} \\
\dot{0}
\end{array} \\
& 0.078
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { VALS } \\
96 \\
\hline 84 \\
71 \\
90 \\
96 \\
96 \\
96 \\
96 \\
96 \\
96
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { nVals tau } \\
& \text { flujqioe, osssolve faril as fo } \\
& \text { nOBS } \\
& \text { NJBS IS THF NUMBER DF NIN-MISSIVG DGSERVAIIDNS IN THE ORIGINAL DATA. }
\end{aligned}
$$

WAIER YEARS 1975-19R1
w ? P S
NJBS 15 THF NUMBER DF NON-MISSIVG OBSERVAIIONS IN THE ORIGINAL
NVALS IS THE NJPIBER OF NGN-MISSSNG SEASJNAL VALUES CONSTRUCTED.

Appendix B: PROC SEASRS user's guide with examples
The SEASRS procedure tests for differences in the location parameters of two separate periods in a time series using a modified version of the Wilcoxon rank-sum test (Bradley, 1968, p. 105). This test is equivalent to the Mann-Whitney test described in Conover (1971, p. 224). The null hypothesis for this test is that two populations comprised by data from two separate periods in a time series are identical. This test assumes that sampling was random.

If the null hypothesis is true, no distinction can be made between the n observations in the first period and the m observations in the second period of the time series. In effect, all were taken from a common population. Therefore, each of the possible combinations of the $n+m$ observations taken from the common population were equally likely to have become the two samples actually collected. For each of these possible combinations exists a value of the test statistic, W. This statistic is the sum of the ranks of the n observations within the combined ($n+m$ observations) sample. (The smallest value in the combined sample receives a rank of 1 , the next smallest a rank of 2, etc.). The null hypothesis is rejected if the value of the test statistic W differs from the expected value of W by a preselected value corresponding to a desired probability.

For a more thorough discussion of the Wilcoxon rank-sum test, and examples of its use, the reader is referred to Bradley (1968, p. 105) and Hollander and Wolfe (1973, p. 68).

SPECIFICATIONS

The following statements may be used in the SEASRS procedure: PROC SEASRS SEASON $=n \quad$ DATE $=x$ options; BY variables; VAR variables.

The PROC SEASRS statement invokes the procedure. The VAR statement is used to specify the numeric variables for the analysis. The BY statement is optional. The observations must be in chronological order. This can be done by using PROC SORT and sorting by the variables in the BY statement followed by DECTIME. For example:

PROC SORT; BY variable DECTIME;

> PROC SEASRS statement

The PROC SEASRS statement has the form:
PROC SEASRS SEASON $=n \quad$ DATE $=x$ options;
$\operatorname{SEASON}=\mathrm{n} \quad$ gives the number of seasonal values per year. For example, SEASON = 12 would be used for data collected monthly and $\operatorname{SEASON}=52$ would be used for data collected weekly. SEASON = 1 may be used for annual summary data, such as average annual streamflow. Each water year will be divided into n equal length seasons. Note that for $\operatorname{SEASON}=12$, for example, the 12 seasons will not correspond exactly to the 12 calendar months, since months are not of equal length. For each season of each year, there may be no observations (a missing value will be assumed as the seasonal value), one observation (that value will be used as the seasonal value), or several (not more than 400) observations (the median of the observations will be used as the seasonal value).

This statement is not optional and must be included.

DATE = xxxx gives the time separating the two periods of the time series. DATE is in the form of decimal time, for example, 12 noon, June 1, 1975, will be 1975.4178. If the two periods in the time series are widely separated, any date in the gap will suffice. An observation occurring at precisely time DATE is placed in the second period.

This statement is not optional and must be included.

The options that may be used in the PROC SEASRS statement follow. DATA $=$ SASdataset gives the name of the SAS dataset to be used by PROC SEASRS. If it is omitted, the most recently created SAS data set is used.

DL1 - DL15 = detection limit
gives the detection limit of the analytical procedures used to determine the constituent values in the time series. The number associated with each call of the detection limit option refers to the order of the constituents on the VAR statement. The use of the detection limit option is most important when several different analytical procedures with different degrees of sensitivity were used to determine values of the same constituent in the time series. In this case, the highest detection limit of all the procedures should be used.

The detection limit option sets all values less than or equal to the detection limit equal to one-half the value of the detection limit.

This option would not be used when the test is applied to Flow-Adjusted Concentration (FAC). VAR statement

VAR dectime variables;
The names of the variables to be tested are listed in the VAR statement. The first variable must contain the decimal time values corresponding to the times the observations in the time series were made. Dectime is in the form of decimal time; for example, 12 noon, June 1 , 1975, will be 1975.4178. Up to 15 additional numeric variables may be included. The total number of seasonal values (number of seasons times the sum of the number of water years in the first period plus the number of water years in the second period) may not exceed 1200. The VAR statement is not optional and must be included.

BY statement

BY variables;
A BY statement may be used with PROC SEASRS to obtain separate analyses on observations in groups defined by the BY variables. The input data set must be sorted in order of the BY variables.

DETAILS

Missing values

Missing values may be included in time series used in SEASRS. The existance of missing values presents no theoretical problem for applying the Mann-Whitney-Wilcoxon rank-sum test for seasonal data. Ranks of observations with missing values are not included in the calculation of the test statistic. (Internally, missing values are represented as -1E31.)

One or more seasons may be devoid of data; for example, one may use SEASON $=12$ and have data only for the summer. In this case all other months will be set to missing values.

The test statistic, W_{j}, is:
Formulas

$$
W_{i}=\sum_{j=1}^{n j} R_{n}
$$

where $\quad n_{i}$ is the number of annual values for season i in the first period in the time series,
and $\quad R_{n}$ are the ranks of the seasonal values for season i in the first period of the time series.

The expected value of W_{i} is:
$E\left[W_{i}\right]=\left[n_{i}\left(n_{j}+m_{j}+1\right)\right] / 2$
where m_{i} is the number of annual values for season i in the second period in the time series,
and its variance is:
$\operatorname{Var}\left[W_{i}\right]=\left[n_{j} m_{i}\left(n_{j}+m_{j}+1\right)\right] / 12$.
The composite statistic of the seasonal statistic, W_{i}, is W and is defined as:
$W=\sum_{i=1}^{\text {season }} W_{i}$.
The expectation of W is:
$E[W]=\sum_{i=1}^{\text {season }} E\left[W_{i}\right]$
and its variance is:

$$
\operatorname{Var}[W]=\sum_{i=1}^{\text {season }}\left[W_{i}\right] .
$$

The normal approximation is used to estimate $p=\operatorname{Prob}[|W-E[W]| \geq W]$ (the probability that W will depart from its expected value by the amount w or more). The standard normal deviate, Z, is calculated by:

$$
Z=\frac{W-E[W]}{(\operatorname{Var}[W])^{1 / 2}} .
$$

The p-level of the test is determined from Z using the standard normal distribution. The p-level is the probability of obtaining a Z value that is as large or larger in absolute value than the one obtained if the null hypothesis were true (i.e., there was actually no trend). If one pre-selects a significance level α (tr risk of rejecting the null hypothesis when it is actually true), then one should reject whenever the p-level is less than α. A typical value for α is 0.05 .

An estimate of the magnitude of the step trend is taken as the median of the difference between all pairs of seasonal values, one from each period but of the same season.

The step trend estimate is valid only when all of the data are reported as above the limit of detection. If there are only a few "less thans" it can be viewed as a reasonable approximation.

Printed Output

For each variable SEASRS prints (see figures B1 and B2):

1. the variable name (VARIABLE)
2. the variable label, if any
3. the number of original observations (NOBS) and number of constructed seasonal values (NVALS) in the first series
4. the CUTOFF DATE value
5. the number of original observations and number of constructed seasonal values in the second series
6. the significance probability of the difference, two-sided (P LEVEL)
7. the estimate of the step trend (STEP)

EXAMPLES

Example 1: Annual Mean Streamflow
In this example (figure B-1), PROC SEASRS is called to test for differences in annual mean streamflows observed at a U.S. Geological Survey streamflow gaging station before and after construction of a series of reservoirs in the drainage basin. The data was entered from card input (lines 9-19).

Example 2: NASQAN Data
In this example (figure B-2), PROC SEASRS is called to test for differences in 10 water-quality constituents at three U.S. Geological Survey NASQAN stations before and after implementation of the Surface Mining Control and Reclamation Act of 1977. The second and third stations are located in watersheds mined for coal. The first station is not and serves as a control. Note that the SAS data set, TREND. MONTHLY was sorted by STATION (line 6) so that the BY statement option (line 8) could be used with SEASRS.
OD DSN＝WRD．PROCLIB，DISP＝SHR
$D D$
$O W$
EAR AMQ OU；LIST；
YEAR－O． 25 ；
SAEL
5：
！MO7tW甘ヨy1S N甘ヨW

응응ㅇㅇㅇㅇㅇㅇㅁ

のののののののの

Figure B1．－－Example input and output using PROC SEASRS to test for a step in annual mean streamflow．
／PR
LABEL AMG＝ANNUAL
RDS：
MnMin in mo m
natatuona

SEASRS SEASON＝1 DATE＝1963．75；
DECTIME AMQ：
MANN-HHITNEY-WILCOXAN RANK SUM TEST FOR SEASONAL dATA
VARIABLE
(1925-1963) (1964-1981)
NOBS NVALS CUTJFF DATE NORS NVALS
$0.770 \quad 250.0$
18
18
1963.75
39
NOBS is the number of nan-missing ob servalions in the original data.
nvals is the number of non-missing seasdnal values consirucied.
1182108
B $U D \quad U S N=W R D . P R O C L I B, D I S P=S H R-7 L E$

DSN=USERID.FILENAMEODISP=OLD
ROC SEASRS DATA=TREND.MONTHLY SEASON $=12$ DATE $=1979.4 \quad D L 3=0.1 \quad D L 4=0.01 \mathrm{DLT}=0.1 \mathrm{DL}$
$3=0.1 ; B Y$ STATIUN:
VAR DECTIME P70300 P00410 P00630 P00665 P00915 P00925 P00930 P00940 P00945 P0095

Figure B2.--Example input and output using PROC SEASRS to test for step trends in water-quality constituents.

$$
\begin{array}{llllllllll}
1 & n & 0 & 0 & 0 & N & 0 & n & 0 & 0 \\
i n & 0 & 0 & \infty & 0 & n & n & N & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & & 0 & N & 0 & N & N & N & N & N
\end{array}
$$

$$
\underset{\sim}{\infty} \underset{\sim}{\sim} \sim \underset{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{\sim}
$$

$$
\begin{aligned}
& \text { FIRST SERIES } \\
& \text { (1975-1979) } \\
& \text { VDBS NVALS }
\end{aligned}
$$

$$
\begin{aligned}
& 47 \\
& 47 \\
& 47 \\
& 47 \\
& 47 \\
& 47 \\
& 47 \\
& 47 \\
& 47 \\
& 47
\end{aligned}
$$

$$
\begin{aligned}
& \text { NOBS IS THE NUMBER OF NON-MISSING OB SERYATIONS IN THE DRIGINAL DATA. } \\
& \text { NVALS IS THE NUMBER DF NDN-MISSING SEASONAL VALUES CDNSTRUCTED. }
\end{aligned}
$$

$$
\begin{aligned}
& 1979.40 \\
& 1979.40 \\
& 1979.40 \\
& 1979.40 \\
& 1979.40 \\
& 1979.40 \\
& 1979.40 \\
& 1979.40 \\
& 1979.40 \\
& 1979.40
\end{aligned}
$$

$$
\begin{aligned}
& \text { SFCDNO SERIES } \\
& \text { (1979-1981) } \\
& \text { HOBS NVALS }
\end{aligned}
$$

 STATIDN IDENTIFICATION NUMBER $=03374100$
MANN－WHITNEY－HILCOXAN RANK SUK TEST FOR SEASONAL DATA
VARIABLE
FIRSI SERIES
（1973－1979）
VOBS NVALS
SIVAN
SIB6I－GLGII
SJIX3S 0NUJJS
N
15
$\underset{N}{N}$
27
\cdots
N
n
n N $\underset{N}{N}$
27 $\cdots \infty$ 28 28 28 29 28 28 $\stackrel{\infty}{\sim}$ 28 P LEVEL
0.166
0.211 0.001 0.654 0.578 0.245 0.573 0.60 B $0.006 \quad-7.000$ 0.745 N 28 1979.40 VOBS NVALS CUTOFF DATE
SIEP -14.50
-14.00 .5000 ．1000E－01 -2.000 -2.000 .6000 1.000 ？
SE COND
$11979-1$
NORS
NORS
ーーーーーーーー
1979.40
1979.40
1979.40
1979.40 1979．40 1979.40 1979.40 1979.40 1979.40 69
69
64
63
69
69
69
69
69
69
NOBS IS THE NUMBER OF NON－MISSING OBSERVATIONS IN THE DRIGINAL DATA．
NVALS IS IHE NUMBER OF NON－MISSING SEASONAL VALUES CDVSTRUCTED．

VARIABLE		$\begin{aligned} & \text { FIRSI } \\ & \text { (197 } \\ & \text { VDBS } \end{aligned}$	ERIES 979) NVALS	CUTOFF DATE	$\begin{aligned} & \text { SECO } \\ & 11975 \\ & \text { NOBS } \end{aligned}$	SERIES 9R1) NVALS	P Level	STED
P70 300	SOLIDS, RESIDUE AT IRO DEG. C dissml ved	47	46	1979.40	25	24	0.788	-3.500
P00410	ALKALINITY FIELD (MG/L AS CACO3)	47	46	1979.40	16	16	0.279	-10.00
P00630	NITROGEN, NO2 + NO3 TOTAL (MG/L AS N)	46	46	1979.40	29	26	0.168	.3000
P 00665	PHOSPHORUS, TOTAL (MG/L AS P)	46	46	1979.40	29	25	0.133	.3000E-01
P00915	CALCIUM DISSOLVED (MG/L AS CA)	45	45	1979.40	27	26	0.842	-1.000
P00925	MAGNESIUM, DISSOLVED (HG/L AS MGI	46	45	1979.40	27	26	0.139	-2.000
F00930	SODIUM, DISSOLVED (MG/L AS NA)	46	45	1979.40	27	26	0.547	-1.000
P00940	CHLORIOE, DISSOLVEO (MG/L AS CL)	47	46	1979.40	29	26	0.512	-1.000
P00945	SULFATE DISSOLVED (MG/L AS SOA)	47	46	1979.40	27	25	0.087	-8.000
P00950	FLUDRIDE, DISSOLVED (MG A AS F)	47	46	1979.40	27	26	0.352	. 0

NOBS IS THE NUMBER OF NON-MISSING OBSERVATIONS IN THE ORIGINAL DATA.
NVALS IS THE NUMBER OF NON-MISSING SEASONAL VALUES CONSTRUCTED.

Appendix C: Source code for SAS procedures
Two separate programs are required to add a procedure to the Statistical Analysis System at a user's installation, a parsing module and a procedure module. The parsing module acts as a control program for the procedure and defines permissible options and parameters for the procedure. The procedure module inputs the appropriate data and computes the test statistic. The parsing module for Proc SEASKEN is given in figure C -1. The procedure module is given in figure C-2. The parsing module for Proc SEASRS is given in figure C-3. The procedure module is given in figure C-4. Information about SAS parsing and procedure modules can be found in the SAS Programmer's Guide (SAS Institute, Inc., 1981a). Only minimal JCL is shown since JCL is highly installation dependent.
NOGEN SEASKEN，LOADMOD＝SEASKENZ，DEFLIST $=1$ ，

JIぬヨ
JIぬヨ
14
16
16
RIC

IERIC

ISITS
1SITS
SITSV

$$
\begin{array}{r}
\text { ONJ } \\
\text { ONGS甘S } \\
\text { 1SITS甘S }
\end{array}
$$

$\sum_{\alpha}^{n} \sum_{\alpha}^{n} \sum_{\alpha}^{n} \sum_{\infty}^{n} \frac{n}{\alpha}$

HAME SEASKEN（R）

OENMvルロNかの
Figure C1．
COMMON /STATS/ NV,N,NOBS(15),NVALS(15),NDATES(2),TAU(15),
NOTIFY SAS.
CALL SASFHX

$$
\begin{aligned}
& \text { PROCESS THE DATA. } \\
& \text { GET NUMBER OF VARIABLES FROM SAS. } \\
& \text { NV } 1 \text { = NOVAR(1) }
\end{aligned}
$$

nv is the number of variables exclusive of the time variable.
NV $=$ NVI-1
If (NV.GT.O) GO ro 10
CALL VARERR
STOP
10 CONTINUE

INTEGER*2 NTYPE,NPOS,NLNG,NVARO,NFL,NFD,NF,NJUST

REAL* 8 NAME (15) , LABEL 5,15$)$
REAL. XCHEK/-1.0E30/,XMISS/-1.0E31/
$M=0$
KOUS =
GET SPECIFICATION OF EACH VARIABLE.
OO IU I =I, NV
CALL SAS TO LOAD COMMON BLOCK.
CALL NAMEV (I,I + NTYPE)
SAVE NAME.
NAME I I $=$ NNAME
$M=0$
KOUS =
GET SPECIFICATION OF EACH VARIABLE.
OO 10 I $=1, N V$
CALL SAS TO LOAD COMMON BLOCK.
CALL NAMEV (I,I I 1 , NTYPE)
SAVE NAME.
NAME I I) $=$ NNAME
$M=0$
KOUS =
GET SPECIFICATION OF EACH VARIABLE.
DO IO I=I NV
CALL SAS TO LOAD COMMON BLOCK.
CALL NAMEV(I,I+1, NTYPE)
SAVE NAME.
NAME (I) =NNAME
$M=U$
$K O 甘 S=U$
GET SPECIFICATION OF EACH VARIABLE.
OO IU I = 1 , NV
CALL SAS TO LOAD COMMON BLOCK.
CALL NAMEV $1, I+1$, NTYPE)
SAVE NAME.
NAME I I =NNAME
 SUBROUTINE READ
COMMON /STATS/ NV,N,NOBS(15),NVALS(15),NDATES(2),TAU(15),
8 ALPHA(15),SLOPE(15)
COMMON /DATA/ X(1200.15)
COMMON /DATA/ X
COMMON /IOUNIT/ IPRINT
LOGICAL*1 SETUP,HAVE(1200), EVEN
REAL* 8 PARM, BASETM,PERYR,Y(16)
INTEGER L(15)
REAL SORT $(400,15)$
\checkmark
C

- ounpesoud dozemlzsə
ədols
pue

SAVE LABEL.
LABEL $(J, I)=$ NLABEL (J)
CONTINUE
NOBS (I)

$=$ ㅇ
SETUP=.F
20 CYCLE TO GET EACH OBSERVATION.

OBSERVATION.

IF(IEND.EQ.1)GO TO 40 GET AN OBSERVATION.

GET AN OBS
KOBS KOBS +1
CALL VARX $(1, Y)$
IF (SETUP) GO TO
IF (SETUP) GO TO 80
FIRST OBSERVATION,

CALCULATE TIME OF OCT. 1 OF WA
YEAR = Y(1) +0.25
BASETM=IFIX(YEAR)-0.25
NDATES(1) = YEAR
GET NUMGER OF SEASONS.
PERYR=PARM (16)

$$
\begin{aligned}
& \text { LAST }=1 \\
& \text { SETUP=, TRUE }
\end{aligned}
$$

SETUP=.TRUE.
80 CONTINUE

PROCESS OBSER
1
2
\sim
w
2
2
0
0
0
0

PROCESS OBSERVATION.
$M=(Y(1)-B A S E T M) \star P E R Y R$
IF (M.GE.LAST) GO TO 200
WRITE (IPRINT, 9001) KOBS
9001 FORMAT (' OBSERVATION NUMBER', I1O,
\& IS OUT OF CHRONOLOGICAL ORDER.
\& FORMAT (' OBSERVATION NUMBER', II IO,
STOP
CONTINUE
IF (M.LE.1200) GO TO 210
$\sum_{\substack{c \\ 0 \\ 0}}^{\substack{c}}$
200
2006
210
ULTIPLE OBSERVATIONS?
(HAVE (M)) GO TO 90
NO. SAVE. TRUE.
HAVE $(M)=$ TRU.
$=2$
LAST $=M$
DO $30 \quad I=1, N V$
PREPARE FOR MULTIPLE OGSERVATIONS.
u \quad
\sim
VAL $=$ FIXMIS(Y(I+1))
if (VAL,GT.X(HEK) $L(I)=1$
If (VAL.GT.XCHEK) $L(I)=1$
If (VAL.GT. XCHEK) \quad NOBS (I) $=$ NOBS(I) +1
IF (VAL.GT.XCHEK) NVALS(I) =NVALS(I) +1
CONTINUE
OO $110 \mathrm{I}=1$, NV
IF (K.EQ.Z.AND.L(I).EQ.1) NVALS(I)=NVALS(I)-1
VAL=FIXMIS(Y(I+1))
$V A L=F I X M I S(Y(I+1))$
IF (VAL.LT.XCHEK) IF (VAL.LT.XCHEK) GO TO 110
NOBS(I) $=$ NOBS(I) 1
(I) $=\mathrm{L}(\mathrm{I})+1$
SORT(L(I), I) =VAL
CONTINUE
CALL INPUT (IEND)
IF (IEND.EQ.1) GO TO 120
KOBS = KOBS +1
C LIMIT TO 400 OBSERVATIONS. MISSING OR NOT. IN ONE SEASON. WRITE (IPRINT.9005) KOBS
앙
110

$$
\begin{aligned}
& \operatorname{SORT}(1, I)=V A L \\
& \operatorname{CONTINUE}
\end{aligned}
$$

MULTIPLE OBSERVATIONS
CYCLE UNTIL NEW SEASON.

[^2]FIXVAR=O.O
FIXVAR=0.
LOOP THROUGH THE SEASONS. $N C O M P=0$
N1 $=N-N P E R$
LOOP THROUGH YEARS FOR VALUES IN SEASON ISEAS. DO 20 ISTART $=I S E A S$, N1, NPER
IF (X(ISTART,J).LE.XCHEK) GO TO 20
VALUE IS ALWAYS TIED WITH ITSELF.
NTIE =1
$N 2=I S T A R T+N P E R$
$T R Y$ EACH LATER SEASON
DO 30 IEND $=$ N2, N,NPER
VALID VALUE?
IF (X(IEND,J).LE.XCHEK) GO TO 30
COMPARE.
NCOMP $=$ NCOMP +1
INDEX=INDEX+1 $Y Y=(X(I E N D, J)-X(I S T A R T, J)) /((I E N D-I S T A R T) / P E R Y R)$
IF (YY.GT,O.O) NPLUS=NPLUS+1
IF (YY.LT.O.O) NMINUS=NMINUS+1
IF (YY.EQ.O.O) NTIE =NTIE+1
MARK VALUES THAT ARE TIED.
(TASTIE (IEND) $=$ TRUE.
IF (YY.EQ.O.O) WASTIE (IEND)
SAVE ADJUSTED DIFFERENCES.
CONTINUE
WERE NOT COUNTED BEFORE.
IF (NTIE.NE.1.AND.. NOT.WASTI
1.O)* (2.O*NTIE+5.0)/18.0
20 CONTINUE
NCOMPT $=$ NCOMPT+NCOMP
NMONTH $=(1.0+S Q R T(1.0+8.0 * N C O M P)) / 2.0$
VARTOT $=$ VARTOT + NMONTH* (NMONTH-1.0) * (2.0*NMONTH+5.0)/18.
0 CONTINUE
DONE COMPARING.
$S=N P L U S-N M I N U S$
WERE THERE ANY VALID COMPARISONS AND AT LEAST TWO DIFFERENT VALUES? IF (NCOMPT.GT.O.AND.VARTOT.GT.O.O) GO TO 40 NONE. GO HOME EMPTY.
TAU(J) $=0.0$
$A L P H A(J)=1.0$
ALUPE $(J)=0.0$
SLUPE $(J)=0.0$
40 CONTINUE
CALCULATE
CALCULATE THE STATISTICS.

TAU(J) $=$ S/NCOMPT
CONTINUITY CORRECTION.

$\begin{array}{lll}\text { IF (S.GT.O.O) } & S=S-1 \\ \text { IF (S.LT.O.O) } & S=S+1\end{array}$
$Z=S / S Q R T$ (VARTOT)
COMPARE TO THE STANDARD NORMAL DISTRIBUTION.
IF (Z.GT.O.O) ALPHA $(J)=2.0 *(1.0-C D F N(Z))$
SORI THE DIFFERENCES. VSRTA IS AN IMSL ROUTINE.
CALL VSRTA(Y.INDEX)
MEDIAN. 1
$O D D=M O D(I N D E X, 2), E Q .1$
$I F(O D D) Y M E D=Y((I N D E X+1) / 2)$
$\begin{array}{lll} & \left(000^{\circ} 10 N^{\circ}\right) & 1 \\ =03 W h & (000) & 1\end{array}$
SLOPE(J) =YMED
ADJUST FOR THE FACT THAT TAU AND ALPHA MAY SAY THERE IS A
SIGNIFICANT TREND BUT THE ESTIMATE OF THE SLOPE IS
IF (NMINUS.GT.NPLUS) SLOPE $J, J=-1.0 E-30$
IF (NMINUS.LT.NPLUS) SLOPE $J)=1.0 E-30$
CONTINUE
RETURN
REPORT RESULTS.
IF (.NOT.ODD) YMED=0.5*(Y(INDEX/2)+Y((INDEX/Z)+1))
IF (SLOPE (J) .NE.O.O) GO TO
SUEROUTINE OUT
COMMON ILABCM/
COMMON /LABCM/ NAME,LABEL
REAL* 8 NAME(15) LLABEL $(S, 15)$
COMMON /STATS/ NV,N,NOBS(15),NVALS(15),NDATES(2),TAU(15),
ALPHA(15),SLOPE(15)
COMMON /IOUNIT/ IPRINT
STANDARD SAS HEADING.
CALL STITLE (O, LINES)
FORMAT (/26X, 'SEASONAL KENDALL TEST AND SLOPE ESTIMATOR FOR',

$$
\begin{aligned}
& \text { FORMAT (' VARIABLE', } 50 x,{ }^{\prime} \text { NOBS } \\
& \text { NVALS }
\end{aligned}
$$

TAU P^{\prime}.
8 LEVEL
W WRITE (IPRINT, 6003) NAME(I), (LABEL(J,I),J=1,5),NOBS(I),NVALS(I), TAU(I),ALPHA(I),SLOPE(I)
6003 FORMAT (1X,A8,3X,5A8,2I10,2F
10 CONTINUE

$$
6004
$$

$$
\begin{aligned}
& \text { WRITE (IPRINT,6004) } \\
& \text { FORMAT }(, \text { NOBS IS }
\end{aligned}
$$

WRITE (IPRINT,6004) THE NUMBER OF NON-MISSING OBSERVATIONS',
RMAT ' 'THE ORIGINAL DATA.' 1

- NVALS IS THE NUMBER OF NON-MISSING SEASONAL VALUES',
RETURN

$$
\begin{aligned}
& \& \quad \text { NVALS IS THE NUMBER OF NON-MISSING SEASONAL VALUES', } \\
& \hdashline \text { CONSTRUCTED. }
\end{aligned}
$$

 6002 FORME (IPRINT,6002)

$$
\begin{aligned}
& 6003 \text { FORMAT (} 1 \mathrm{X}, \mathrm{~A} 8,3 \mathrm{X}, 5 \mathrm{~A}, 2 \mathrm{I} 110,2 \mathrm{~F} 10.3, \mathrm{G} 15.41) \\
& 10 \text { CONTINUE }
\end{aligned}
$$

EUNDULATIVE DISTRIBUTION FUNCTION FOR THE NORMAL DISTRIBUTION.
PRIMARY REFERENCE IS ABRAMOWITZ AND STEGUN, NBS HANDBOOK OF MATHEMATICAL FUNCTIONS, EQ. 26.2.19.
FUNCTION CDFN (X)
IF (x) 10.20 .30
CDFN=0.5/(1. $0+0.0498673470 * T+0.0211410061 * T * * 2+0.0032776263 * T * * 3$ $X+0.380036 E-4 * T * * 4+0.488906 E-4 * T * * 5+0.53830 E-5 * T * * 6) * * 16$
20 RETURN

CDFN $=1.0-0.5 /(1.0+0.0498673470 * x+0.0211410061 * x * * 2+0.0032776263 * x$ $x * * 3+0.380036 E-4 * x * * 4+0.488906 E-4 * x * * 5+0.53830 E-5 * x * * 6) * * 16$
RETURN
40 CONTINUE
RETURN
SO CONTINUE
CONVERT A SAS MISSING VALUE TO ONE RECOGNIZED by these routines. FUNCTION FIXMIS(X)
REAL* 8 XOVALUE
EQUIVALENCE (VALUE,MISSX)
If (VALUE.EQ.O.ODO.AND.MISSX.NE.O) VALUE $=-1.0031$
FIXMIS=VALUE
RETURN
END

- SYSI
ENTRY ENTRY this statement must be present
SETSSI ADOUOOOO
NAME SEASKENZ(R)
v
/"

JOB
$/ /$ EXEC ASMSAS
//ASM.SYSIN DD

$$
\begin{aligned}
& \text { NOGEN } \\
& \text { NAME SEASRS,LOADMOD } \\
& \text { SEASRSS2, DEFLIST }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FFMODE=NUMERIC } \\
& \text { DL1,1,DL2,2,DL3,3,DL4,4,DLS,5,MODE=NUMERIC } \\
& \text { DL6,0,OL7,7,DL8,8,DL9,9,DL10,10,MODE NUMERIC } \\
& \text { DL11,11,DL12,12,DL13,13,DLI4,14,MODE =NUMERIC } \\
& \text { DL15,15,SEASON,16,DATE,17,MODE=NUMERIC } \\
& \text { VARIABLES,1,VAR,1,MODE=NUMERIC }
\end{aligned}
$$

08 RTSAS
DD dify sas.

SASFHX data.
DATA.
FF VARIABLES FROM SAS.
NOMBER(1) CLAS
EXEC $1 /$ E.SYSIN $1-1 \wedge N=$ varerr $V=N V(N V)$ GO TO 10
 IF

TINUE
ROND IN DATA.
NN) $\because \forall \exists Y 7$
CO $20 \mathrm{~J}=1$ /NV
COMPUTE RANK
\square
COMPUTE RANK SUM FOR EACH VARIABLE.
CALL SEASRS (J)
20 CONTINUE
WRITE OUT RESULTS.
\quad CALL OUTPUT (NV)

\quad STOP

SUBRROUTINE TO READ IN THE OBSERVATI

$$
\begin{aligned}
& \text { ONTINUE } \\
& \text { NRITE OUT RESULTS. } \\
& \text { CALL OUTPUT (NV) }
\end{aligned}
$$

COMPUTE RANK SUM FOR EACH VARIABLE.
CALL SEASRS (J)
CONTINUE
WRITE OUT RESULTS.
CALL OUTPUT (NV)
STOP
END
SUBROUTINE TO READ IN THE OBSERVATI
COMPUTE RANK SUM FOR EACH VARIABLE.
CALL SEASRS (J)
CONTINUE
WRITE OUT RESULTS.
CALL OUTPUT (NV)
STOP
END
SUBROUTINE TO READ IN THE OBSERVATI
C SUbroutine to read in the observations and form the seasonal values.
COMMUN /DATA/ X(1200.15),NX1,NX2,ALPHA(15), DF(15),CUTOFF,
NUBS1(15).N
REAL* CUTOFF
REAL* 8 CUTOFF
COMMON /LABINF/ NAME(15) PLABEL $(5,15)$
INTEGER NOBS (15), NVALS(15)
DIMENSION L(15)
COMMON /IOUNIT/
COMMON IIOUNIT/ IPRINT
REAL* 8 NAME LLABEL,Y(16), PARM, BASETM,PERYR
REAL SORT(4OO,15)
LOGICAL* HAVE(1200), SETUP, SECOND,EVEN
COMMON IIOUNIT/ IPRINT
REAL* 8 NAME LLABEL,Y(16), PARM, BASETM,PERYR
REAL SORT(4OO,15)
LOGICAL* HAVE(1200), SETUP, SECOND,EVEN
LOGICAL 1 HAVE(1200), SETUP,SECOND, EVEN
COMMON /NAMECM/ NTYPE
INTEGER*2 NTYPE,NPOS,NLNG,NVARO,NFL,NFD,NF,NJUST
REAL*8 NNAME,NLABEL (5),NFORM,NIFORM
$\mathrm{H}=0$
KOBS
KOBS $=0$
$N V=N V 1-1$
GET SPECIFICTION OF EACH VARIABLE.
DO $10 \quad 1=1, N V$
DO $10 \quad I=1$, NV
CALL SAS TO LOAD COMMON BLOCK.
CALL NAMEV $1,1+1$, NTYPE)
SAVE NAME.

[^3]80 CONTINUE

IF (M.GE.LAST) GO TO 90
WRITE (IPRINT, 9001) KOBS
FORIMAT (OBSERVATION NUMBE
TOP
ONTI
90 CONTINUE
IF (IALE. 1200) GOTOM 100
WRITE (IPRINT, 9002) KOBS
9002 FORMAT (' OBSERVATION NUMBER',I10.' IS LATER THAN SEASON 1200.')
90 CONTINUE
IF (HALE, 1200) GOTO 100
WRITE (IPRINT, 9002) KOBS
9002 FORMAT (' OBSERVATION NUMBER', 110,' IS LATER THAN SEASON 1200.')
9002 format (' observation number',i10,' is Later than season 1200.
CONTINUE
MULTIPLE OHSERVATIONS?
IF (HAVE (M)) GO TO 110
w
\&
~
0
2
HAVE $(M)=$. TRUE.
$K=2$
$L A S T=$
LAST $=M$
DO $30 I=1, N V$
PREPARE FOR PO
PREPARE FOR POSSIBLE MULTIPLE OBSERVATIONS.
VAL=FIXMIS $(Y(I+1))$
$L(I)=U$
IF (VAL.GT.XCHEK) L(I) $=1$

F $(V A L, G T . X C H E K) \quad N V A L S(I)=N V A L S(I)+1$
$S O R T(1, I)=V A L$
$30 \times(\mathrm{M}, 1)=\mathrm{VAL}$
G0 TO 20
MULTIPLE OBSERVATIONS
CONTINUE
DO $130 \mathrm{I}=1, \mathrm{NV}$
NEWM = (Y (1)-BASETM) *PERYR+MBASE
CONTINUE
CALL INPU
130 SORT(L(I),I)=VAL
limit to 400 observation, missing or not, in one season. IF (K.LE.400) GO TO 110
CYCLE UNTIL NEW SEASON.
IF (IEND.EQ.1) GO TO 140
KOBS =KOBS
CALL VARX $1, Y$)
If (K.EQ.2.AND.L(1)
VAL $=$ FIXMIS(Y(I +1$)$.
IF (VAL.LT.XCHEK) GO TO 130
NOBS(I) =NOB

WRITE (IPRINT,9005) KOBS
9005 FORMAT ('AT OBSERVATION NUMBER', IITO,
\& THERE WERE MORE THAN 400 OBSERVATIONS IN THAT SEASON.' $)$
C GTOP MEDIANS
\[

$$
\begin{aligned}
& \text { GET MEDIANS } \\
& 140 \text { CONTINUE } \\
& \text { DO } 150 \mathrm{I}=1,1
\end{aligned}
$$
\]

ANY NON-MISSING OBSERVATIONS?

$$
\begin{aligned}
& \text { DO } 15 U I=1 / N V \\
& \text { ANY NON-MISSING OBSERVATIONS? }
\end{aligned}
$$

IF (L(I).EQ.O) GO TO 150
YES.
NVALS (I) $=$ NVALS $(I)+1$
$I H=(L(I)+1) / 2$
$I H=(L(I)+1) / 2$
$E V E N=2 * I H . E Q . L(I)$
FIND MEDIAN.
CALI VSRTACSORT(1.
CALL VSRTA(SORT(1,I),L(I))
IF (.NOT,EVEN) $X\left(M_{0}, I\right)=\operatorname{SORT}(I H, I)$
150 CONTINUE
$X(M, I)=(\operatorname{SORT}(I H, I)+\operatorname{SORT}(I H+1, I)) / 2.0$
C CONTINUE PROCESSing if end-of-file not encountered.

WRITE (IPRINT,9003)
FORMAT ('THERE ARE FEWER THAN 2 SEASONS.')
STOP
CONTINUE
IF (SECOND
IF (SECOND) GO TO 160
WRITE (IPRINT, 9004)
9004 format (' THERE ARE NO OBSERVATIONS AFTER TJHE CUTOFf DATE.')
160 CONTINUE

NDATES (4) $=Y(1)+0.25$
 NX2=LAST-NX1

DO $1701=1$ N
NOBS (I)
=NOBS (I)
NVALSC(I) =NVALS(I)
COT UNUSED CELLS TO MISSING.
$210 \mathrm{M}=1$, LAST
(HAVE(M)) GO ro 210

CMOI)=XM
ONTINUE
ONTINUE
9003

> END PERFORM RANK SUM TEST. SUZROUTINE SEASRS (J)
COMMON /DATA/ X(1200,15),NX1,NX2,ALPHA(15),DF(15),CUTOFF, 8 NOBS1(15),NOBSZ(15),NVALS1(15),NVALSZ(15),NDATES(4)

[^4]REAL* © CUTOFF
DIMENSION Y (1200) ,R(1200) DIMENSION Y
REAL*
REAL XCHEK/-1.0E301
IF (NVALS1 (J).EQ.O.OR.NVALSZ(J).EQ.O) GO TO 700

[^5]

FORMAT (/39X, MANN-WHITNEY-WILCOXAN RANK SUM TEST FOR SEASONAL',
WRITE (IPRINT, 6OO2) NDATES
6002 FORMAT ($53 x$, FIRST SERIES
SUBROUTINE OUTPUT (NV)
COMMON /DATA/ X(1200,15),NX1, NX2, ALPHA(15), DF (15), CUTOFF.
COMMON /LABINF/ NAME(15) LABEL $(5,15)$

WRITE (IPRINT, 6003) NAME(I), (LABEL(J,I),J=1,5),NOBS1(I),NVALS1 (I),

CONTINUE
6004 FORMAT (//INOBS IS THE NUMBER OF NON-MISSING OBSERVATIONS ${ }^{\circ}$,
8 'IN THE ORIGINAL DATA.' NOS IS THE NUMBER OF NON-MISSING SEASONAL VALUES', RETURN
ENO
CUMULATIVE DISTRIBUTION fUNCTION fOR THE NORMAL DISTRIBUTION.
PRIMARY REFERENCE IS ABRAMOWITZ AND STEGUN, 26.2 .19. FUNCTION CDFN(x)
ONTINUE (X.LT.-6.0) GO TO 40
$C D F N=0.5 /(1.0+0.0498673470 * T+0.0211410061 * T * * 2+0.0032776263 * T * * 3$
$+0.380036 E-4 * T * 4+0.488906 E-4 * T * 5+0.53830 E-5 * T * *) * 16$
응

REFERENCES

Belsley, D. A., Kuh, Edwin, and Welsch, R. E., 1980, Regression diagnostics: New York, John Wiley and Sons, 292 p.

Bradley, J. V., 1968, Distribution-free statistical tests: Englewood Cliffs, N. J., Prentice-Hall, 388 p.

Briggs, J. C., 1978, Nationwide surface water quality monitoring networks of the U.S. Geological Survey, in Establishment of Water-Quality Monitoring Programs, San Francisco, June 1978, Proceedings: Minneapolis, American Water Resources Association, p. 49-57.

Chatterjee, Samprit, and Price, Bertram, 1977, Regression analysis by example: New York, John Wiley and Sons, 462 p.

Conover, W. J., 1971, Practical nonparametric statistics: New York, John Wiley and Sons, 462 p.

Cook, R. D., 1977, Detection of influential observations in linear regression: Technometrics, v. 19, p. 15-18.

Daniel, Cuthbert, and Wood, F. S., 1980, Fitting equations to data, (2nd ed.): New York, John Wiley and Sons, 458 p.

Draper, N. R., and Smith, Harry, 1981, Applied Regression Analysis (2nd ed.) New York, John Wiley and Sons, 709 p.

Fuller, F. C., Jr., and Tsokos, C. P., 1971, Time series analysis of water pollution data: Biometrics, v. 27, p. 1017-1034.

Hirsch, R. M., Slack, J. R., and Smith, R. A., 1982, Techniques of trend analysis for monthly water quality data: Water Resources Research, v. 18, no. 1, p. 107-121.

Hollander, Myles, and Wolfe, D. A., 1973, Nonparametric statistical methods: New York, John Wiley and Sons, 503 p.

Kendall, Maurice, 1975, Rank correlation methods: London, Charles Griffin and Co., Ltd., 202 p.

Lettenmaier, D. P., 1976, Detection of trends in water quality data from records with dependent observations: Water Resources Research, v. 12, no. 5, p. 1037-1046.

SAS Institute, Inc., 1979, SAS users guide, 1979 edition: Cary, N. C., SAS Institute, Inc., 494 p.

SAS Institute, Inc., 1981a, SAS Programmer's guide, 1981 edition, Cary, North Carolina, SAS Institute, Inc. 184 p.

SAS Institute, Inc., 1981b, SAS/GRAPH users guide, 1981 edition: Cary, North Carolina, SAS Institute, Inc., 126 p.

SAS Institute, Inc., 1982a, SAS users guide - basics, 1982 edition: Cary, North Carolina, SAS Institute, Inc., 924 p.

SAS Institute, Inc, 1982b, SAS users guide - statistics, 1982 edition: Cary, North Carolina, SAS Institute, Inc., 584 p.

Smith, R. A., Hirsch, R. M., and Slack, J. R., 1982, A study of trends in total phosphorus measurements at NASQAN stations: U.S. Geological Survey WaterSupply Paper 2190, 34 p.
U.S. Geological Survey - WATSTORE User's Guide
U.S. Geological Survey Computer User's Manual

[^0]: * Use of brand and firm trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

[^1]: M

[^2]:

[^3]:

[^4]:

[^5]:

