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We introduce a class of depth-based classification procedures that are of a nearest-neighbor nature. Depth,
after symmetrization, indeed provides the center-outward ordering that is necessary and sufficient to define
nearest neighbors. Like all their depth-based competitors, the resulting classifiers are affine-invariant, hence
in particular are insensitive to unit changes. Unlike the former, however, the latter achieve Bayes consistency
under virtually any absolutely continuous distributions – a concept we call nonparametric consistency, to
stress the difference with the stronger universal consistency of the standard kNN classifiers. We investigate
the finite-sample performances of the proposed classifiers through simulations and show that they outper-
form affine-invariant nearest-neighbor classifiers obtained through an obvious standardization construction.
We illustrate the practical value of our classifiers on two real data examples. Finally, we shortly discuss the
possible uses of our depth-based neighbors in other inference problems.
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symmetrization

1. Introduction

The main focus of this work is on the standard classification setup in which the observation, of the
form (X, Y ), is a random vector taking values in R

d × {0,1}. A classifier is a function m :Rd →
{0,1} that associates with any value x a predictor for the corresponding “class” Y . Denoting by
I[A] the indicator function of the set A, the so-called Bayes classifier, defined through

mBayes(x) = I
[
η(x) > 1/2

]
, with η(x) = P [Y = 1 | X = x], (1.1)

is optimal in the sense that it minimizes the probability of misclassification P [m(X) �= Y ]. Under
absolute continuity assumptions, the Bayes rule rewrites

mBayes(x) = I

[
f1(x)

f0(x)
>

π0

π1

]
, (1.2)

where πj = P [Y = j ] and fj denotes the pdf of X conditional on [Y = j ]. Of course, empirical
classifiers m̂(n) are obtained from i.i.d. copies (Xi , Yi), i = 1, . . . , n, of (X, Y ), and it is desirable
that such classifiers are consistent, in the sense that, as n → ∞, the probability of misclassifica-
tion of m̂(n), conditional on (Xi , Yi), i = 1, . . . , n, converges in probability to the probability of
misclassification of the Bayes rule. If this convergence holds irrespective of the distribution of
(X, Y ), the consistency is said to be universal.
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Classically, parametric approaches assume that the conditional distribution of X given [Y = j ]
is multinormal with mean μj and covariance matrix �j (j = 0,1). This gives rise to the so-
called quadratic discriminant analysis (QDA) – or to linear discriminant analysis (LDA) if it is
further assumed that �0 = �1. It is standard to estimate the parameters μj and �j (j = 0,1) by
the corresponding sample means and empirical covariance matrices, but the use of more robust
estimators was recommended in many works; see, for example, Randles et al. [26], He and Fung
[15], Dehon and Croux [4], or Hartikainen and Oja [14]. Irrespective of the estimators used,
however, these classifiers fail to be consistent away from the elliptical case.

Denoting by d�(x,μ) = ((x − μ)′�−1(x − μ))1/2 the Mahalanobis distance between x and μ

in the metric associated with the symmetric and positive definite matrix �, it is well known that
the QDA classifier rewrites

mQDA(x) = I
[
d�1(x,μ1) < d�0(x,μ0) + C

]
, (1.3)

where the constant C depends on �0, �1, and π0, hence classifies x into Population 1 if it is suf-
ficiently more central in Population 1 than in Population 0 (centrality, in elliptical setups, being
therefore measured with respect to the geometry of the underlying equidensity contours). This
suggests that statistical depth functions, that are mappings of the form x �→ D(x,P ) indicating
how central x is with respect to a probability measure P (see Section 2.1 for a more precise defi-
nition), are appropriate tools to perform nonparametric classification. Indeed, denoting by Pj the
probability measure associated with Population j (j = 0,1), (1.3) makes it natural to consider
classifiers of the form

mD(x) = I
[
D(x,P1) > D(x,P0)

]
,

based on some fixed statistical depth function D. This max-depth approach was first proposed
in Liu, Parelius and Singh [23] and was then investigated in Ghosh and Chaudhuri [13]. Dutta
and Ghosh [10,11] considered max-depth classifiers based on the projection depth and on (an
affine-invariant version of) the Lp depth, respectively. Hubert and Van der Veeken [17] modified
the max-depth approach based on projection depth to better cope with possibly skewed data.

Recently, Li, Cuesta-Albertos and Liu [21] proposed the “Depth vs Depth” (DD) classifiers
that extend the max-depth ones by constructing appropriate polynomial separating curves in
the DD-plot, that is, in the scatter plot of the points (D

(n)
0 (Xi ),D

(n)
1 (Xi )), i = 1, . . . , n, where

D
(n)
j (Xi ) refers to the depth of Xi with respect to the data points coming from Population j .

Those separating curves are chosen to minimize the empirical misclassification rate on the train-
ing sample and their polynomial degree m is chosen through cross-validation. Lange, Mosler and
Mozharovskyi [20] defined modified DD-classifiers that are computationally efficient and apply
in higher dimensions (up to d = 20). Other depth-based classifiers were proposed in Jörnsten
[18], Ghosh and Chaudhuri [12] and Cui, Lin and Yang [5].

Being based on depth, these classifiers are clearly of a nonparametric nature. An important
requirement in nonparametric classification, however, is that consistency holds as broadly as pos-
sible and, in particular, does not require “structural” distributional assumptions. In that respect,
the depth-based classifiers available in the literature are not so satisfactory, since they are at best



64 D. Paindaveine and G. Van Bever

consistent under elliptical distributions only.1 This restricted-to-ellipticity consistency implies
that, as far as consistency is concerned, the Mahalanobis depth is perfectly sufficient and is by no
means inferior to the “more nonparametric” (Tukey [32]) halfspace depth or (Liu [22]) simplicial
depth, despite the fact that it uninspiringly leads to LDA through the max-depth approach. Also,
even this restricted consistency often requires estimating densities; see, for example, Dutta and
Ghosh [10,11]. This is somewhat undesirable since density and depth are quite antinomic in spirit
(a deepest point may very well be a point where the density vanishes). Actually, if densities are to
be estimated in the procedure anyway, then it would be more natural to go for density estimation
all the way, that is, to plug density estimators in (1.2).

The poor consistency of the available depth-based classifiers actually follows from their global
nature. Zakai and Ritov [35] indeed proved that any universally consistent classifier needs to be
of a local nature. In this paper, we therefore introduce local depth-based classifiers, that rely
on nearest-neighbor ideas (kernel density techniques should be avoided, since, as mentioned
above, depth and densities are somewhat incompatible). From their nearest-neighbor nature, they
will inherit consistency under very mild conditions, while from their depth nature, they will
inherit affine-invariance and robustness, two important features in multivariate statistics and in
classification in particular. Identifying nearest neighbors through depth will be achieved via an
original symmetrization construction. The corresponding depth-based neighborhoods are of a
nonparametric nature and the good finite-sample behavior of the resulting classifiers most likely
results from their data-driven adaptive nature.

The outline of the paper is as follows. In Section 2, we first recall the concept of statistical
depth functions (Section 2.1) and then describe our symmetrization construction that allows to
define the depth-based neighbors to be used later for classification purposes (Section 2.2). In Sec-
tion 3, we define the proposed depth-based nearest-neighbor classifiers and present some of their
basic properties (Section 3.1) before providing consistency results (Section 3.2). In Section 4,
Monte Carlo simulations are used to compare the finite-sample performances of our classifiers
with those of their competitors. In Section 5, we show the practical value of the proposed clas-
sifiers on two real-data examples. We then discuss in Section 6 some further applications of our
depth-based neighborhoods. Finally, the Appendix collects the technical proofs.

2. Depth-based neighbors

In this section, we review the concept of statistical depth functions and define the depth-based
neighborhoods on which the proposed nearest-neighbor classifiers will be based.

2.1. Statistical depth functions

Statistical depth functions allow to measure centrality of any x ∈ R
d with respect to a probability

measure P over Rd (the larger the depth of x, the more central x is with respect to P ). Following

1The classifiers from Dutta and Ghosh [11] are an exception that slightly extends consistency to (a subset of) the class of
Lp-elliptical distributions.
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Zuo and Serfling [37], we define a statistical depth function as a bounded mapping D(·,P ) from
R

d to R
+ that satisfies the following four properties:

(P1) affine-invariance: for any d × d invertible matrix A, any d-vector b and any distribution
P over R

d , D(Ax + b,P A,b) = D(x,P ), where P A,b is defined through P A,b[B] =
P [A−1(B − b)] for any d-dimensional Borel set B;

(P2) maximality at center: for any P that is symmetric about θ (in the sense2 that P [θ +B] =
P [θ − B] for any d-dimensional Borel set B), D(θ ,P ) = supx∈Rd D(x,P );

(P3) monotonicity relative to the deepest point: for any P having deepest point θ , for any
x ∈ R

d and any λ ∈ [0,1], D(x,P ) ≤ D((1 − λ)θ + λx,P );
(P4) vanishing at infinity: for any P , D(x,P ) → 0 as ‖x‖ → ∞.

For any statistical depth function and any α > 0, the set Rα(P ) = {x ∈ R
d : D(x,P ) ≥ α} is

called the depth region of order α. These regions are nested, and, clearly, inner regions collect
points with larger depth. Below, it will often be convenient to rather index these regions by their
probability content: for any β ∈ [0,1), we will denote by Rβ(P ) the smallest Rα(P ) that has P -
probability larger than or equal to β . Throughout, subscripts and superscripts for depth regions
are used for depth levels and probability contents, respectively.

Celebrated instances of statistical depth functions include

(i) the Tukey [32] halfspace depth DH (x,P ) = infu∈Sd−1 P [u′(X − x) ≥ 0], where Sd−1 =
{u ∈R

d : ‖u‖ = 1} is the unit sphere in R
d ;

(ii) the Liu [22] simplicial depth DS(x,P ) = P [x ∈ S(X1,X2, . . . ,Xd+1)], where S(x1,

x2, . . . ,xd+1) denotes the closed simplex with vertices x1,x2, . . . ,xd+1 and where
X1,X2, . . . ,Xd+1 are i.i.d. P ;

(iii) the Mahalanobis depth DM(x,P ) = 1/(1 + d2
�(P )(x,μ(P ))), for some affine-equivariant

location and scatter functionals μ(P ) and �(P );
(iv) the projection depth DPr(x,P ) = 1/(1+ supu∈Sd−1 |u′x−μ(P[u])|/σ(P[u])), where P[u]

denotes the probability distribution of u′X when X ∼ P and where μ(P ) and σ(P ) are
univariate location and scale functionals, respectively.

Other depth functions are the simplicial volume depth, the spatial depth, the Lp depth, etc. Of
course, not all such depths fulfill properties (P1)–(P4) for any distribution P ; see Zuo and Serfling
[37]. A further concept of depth, of a slightly different (L2) nature, is the so-called zonoid depth;
see Koshevoy and Mosler [19].

Of course, if d-variate observations X1, . . . ,Xn are available, then sample versions of the
depths above are simply obtained by replacing P with the corresponding empirical distribution
P (n) (the sample simplicial depth then has a U -statistic structure).

A crucial fact for our purposes is that a sample depth provides a center-outward ordering of

the observations with respect to the corresponding deepest point θ̂
(n)

: one may indeed order the
Xi ’s in such a way that

D
(
X(1),P

(n)
) ≥ D

(
X(2),P

(n)
) ≥ · · · ≥ D

(
X(n),P

(n)
)
. (2.1)

2Zuo and Serfling [37] also considers more general symmetry concepts; however, we restrict in the sequel to central
symmetry, that will be the right concept for our purposes.
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Neglecting possible ties, this states that, in the depth sense, X(1) is the observation closest to θ̂
(n)

,

X(2) the second closest, . . . , and X(n) the one farthest away from θ̂
(n)

.
For most classical depths, there may be infinitely many deepest points, that form a convex

region in R
d . This will not be an issue in this work, since the symmetrization construction we

will introduce, jointly with properties (Q2)–(Q3) below, asymptotically guarantees unicity of the
deepest point. For some particular depth functions, unicity may even hold for finite samples: for
instance, in the case of halfspace depth, it follows from Rousseeuw and Struyf [29] and results on
the uniqueness of the symmetry center (Serfling [30]) that, under the assumption that the parent
distribution admits a density, symmetrization implies almost sure unicity of the deepest point.

2.2. Depth-based neighborhoods

A statistical depth function, through (2.1), can be used to define neighbors of the deepest point

θ̂
(n)

. Implementing a nearest-neighbor classifier, however, requires defining neighbors of any
point x ∈ R

d . Property (P2) provides the key to the construction of an x-outward ordering of the
observations, hence to the definition of depth-based neighbors of x: symmetrization with respect
to x.

More precisely, we propose to consider depth with respect to the empirical distribution P
(n)
x

associated with the sample obtained by adding to the original observations X1,X2, . . . ,Xn their
reflections 2x − X1, . . . ,2x − Xn with respect to x. Property (P2) implies that x is the – unique
(at least asymptotically; see above) – deepest point with respect to P

(n)
x . Consequently, this sym-

metrization construction, parallel to (2.1), leads to an (x-outward) ordering of the form

D
(
Xx,(1),P

(n)
x

) ≥ D
(
Xx,(2),P

(n)
x

) ≥ · · · ≥ D
(
Xx,(n),P

(n)
x

)
.

Note that the reflected observations are only used to define the ordering but are not ordered
themselves. For any k ∈ {1, . . . , n}, this allows to identify – up to possible ties – the k nearest
neighbors Xx,(i), i = 1, . . . , k, of x. In the univariate case (d = 1), these k neighbors coincide
– irrespective of the statistical depth function D – with the k data points minimizing the usual
distances |Xi − x|, i = 1, . . . , n.

In the sequel, the corresponding depth-based neighborhoods – that is, the sample depth regions
R

(n)
x,α = Rα(P

(n)
x ) – will play an important role. In accordance with the notation from the previous

section, we will write R
β(n)
x for the smallest depth region R

(n)
x,α that contains at least a proportion

β of the data points X1,X2, . . . ,Xn. For β = k/n, R
β(n)
x is therefore the smallest depth-based

neighborhood that contains k of the Xi ’s; ties may imply that the number of data points in this
neighborhood, K

β(n)
x say, is strictly larger than k.

Note that a distance (or pseudo-distance) (x,y) �→ d(x,y) that is symmetric in its arguments
is not needed to identify nearest neighbors of x. For that purpose, a collection of “distances”
y �→ dx(y) from a fixed point is indeed sufficient (in particular, it is irrelevant that this distance
satisfies or not the triangular inequality). In that sense, the (data-driven) symmetric distance
associated with the Oja and Paindaveine [25] lift-interdirections, that was recently used to build
nearest-neighbor regression estimators in Biau et al. [1], is unnecessarily strong. Also, only an
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ordering of the “distances” is needed to identify nearest neighbors. This ordering of distances
from a fixed point x is exactly what the depth-based x-outward ordering above is providing.

3. Depth-based kNN classifiers

In this section, we first define the proposed depth-based classifiers and present some of their basic
properties (Section 3.1). We then state the main result of this paper, related to their consistency
(Section 3.2).

3.1. Definition and basic properties

The standard k-nearest-neighbor (kNN) procedure classifies the point x into Population 1 iff there
are more observations from Population 1 than from Population 0 in the smallest Euclidean ball
centered at x that contains k data points. Depth-based kNN classifiers are naturally obtained by
replacing these Euclidean neighborhoods with the depth-based neighborhoods introduced above,
that is, the proposed kNN procedure classifies x into Population 1 iff there are more observations
from Population 1 than from Population 0 in the smallest depth-based neighborhood of x that
contains k observations – that is, in R

β(n)
x , β = k/n. In other words, the proposed depth-based

classifier is defined as

m̂
(n)
D (x) = I

[
n∑

i=1

I[Yi = 1]Wβ(n)
i (x) >

n∑
i=1

I[Yi = 0]Wβ(n)
i (x)

]
, (3.1)

with W
β(n)
i (x) = 1

K
β(n)
x

I[Xi ∈ R
β(n)
x ], where K

β(n)
x = ∑n

j=1 I[Xj ∈ R
β(n)
x ] still denotes the num-

ber of observations in the depth-based neighborhood R
β(n)
x . Since

m̂
(n)
D (x) = I

[
η̂

(n)
D (x) > 1/2

]
, with η̂

(n)
D (x) =

n∑
i=1

I[Yi = 1]Wβ(n)
i (x), (3.2)

the proposed classifier is actually the one obtained by plugging, in (1.1), the depth-based esti-
mator η̂

(n)
D (x) of the conditional expectation η(x). This will be used in the proof of Theorem 3.1

below. Note that in the univariate case (d = 1), m̂
(n)
D , irrespective of the statistical depth function

D, reduces to the standard (Euclidean) kNN classifier.
It directly follows from property (P1) that the proposed classifier is affine-invariant, in the

sense that the outcome of the classification will not be affected if X1, . . . ,Xn and x are subject
to a common (arbitrary) affine transformation. This clearly improves over the standard kNN
procedure that, for example, is sensitive to unit changes. Of course, one natural way to define an
affine-invariant kNN classifier is to apply the original kNN procedure on the standardized data

points �̂
−1/2

Xi , i = 1, . . . , n, where �̂ is an affine-equivariant estimator of shape – in the sense
that

�̂(AX1 + b, . . . ,AXn + b) ∝ A�̂(X1, . . . ,Xn)A′
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for any invertible d × d matrix A and any d-vector b. A natural choice for �̂ is the regular co-
variance matrix, but more robust choices, such as, for example, the shape estimators from Tyler
[33], Dümbgen [9], or Hettmansperger and Randles [16] would allow to get rid of any moment
assumption. Here, we stress that, unlike our adaptive depth-based methodology, such a trans-
formation approach leads to neighborhoods that do not exploit the geometry of the distribution
in the vicinity of the point x to be classified (these neighborhoods indeed all are ellipsoids with
x-independent orientation and shape); as we show through simulations below, this results into
significantly worse performances.

Most depth-based classifiers available – among which those relying on the max-depth ap-
proach of Liu, Parelius and Singh [23] and Ghosh and Chaudhuri [13], as well as the more
efficient ones from Li, Cuesta-Albertos and Liu [21] – suffer from the “outsider problem3”: if
the point x to be classified does not sit in the convex hull of any of the two populations, then most
statistical depth functions will give x zero depth with respect to each population, so that x cannot
be classified through depth. This is of course undesirable, all the more so that such a point x may
very well be easy to classify. To improve on this, Hoberg and Mosler [24] proposed extending the
original depth fields by using the Mahalanobis depth outside the supports of both populations,
a solution that quite unnaturally requires combining two depth functions. Quite interestingly,
our symmetrization construction implies that the depth-based kNN classifier (that involves one
depth function only) does not suffer from the outsider problem; this is an important advantage
over competing depth-based classifiers.

While our depth-based classifiers in (3.1) are perfectly well-defined and enjoy, as we will
show in Section 3.2 below, excellent consistency properties, practitioners might find quite ar-
bitrary that a point x such that

∑n
i=1I[Yi = 1]Wβ(n)

i (x) = ∑n
i=1 I[Yi = 0]Wβ(n)

i (x) is assigned
to Population 0. Parallel to the standard kNN classifier, the classification may alternatively be
based on the population of the next neighbor. Since ties are likely to occur when using depth, it is
natural to rather base classification on the proportion of data points from each population in the
next depth region. Of course, if the next depth region still leads to an ex-aequo, the outcome of
the classification is to be determined on the subsequent depth regions, until a decision is reached
(in the unlikely case that an ex-aequo occurs for all depth regions to be considered, classification
should then be done by flipping a coin). This treatment of ties is used whenever real or simulated
data are considered below.

Finally, practitioners have to choose some value for the smoothing parameter kn. This may be
done, for example, through cross-validation (as we will do in the real data example of Section 5).
The value of kn is likely to have a strong impact on finite-sample performances, as confirmed in
the simulations we conduct in Section 4.

3.2. Consistency results

As expected, the local (nearest-neighbor) nature of the proposed classifiers makes them con-
sistent under very mild conditions. This, however, requires that the statistical depth function D

satisfies the following further properties:

3The term “outsider” was recently introduced in Lange, Mosler and Mozharovskyi [20].
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(Q1) continuity: if P is symmetric about θ and admits a density that is positive at θ , then
x �→ D(x,P ) is continuous in a neighborhood of θ ;

(Q2) unique maximization at the symmetry center: if P is symmetric about θ and admits a
density that is positive at θ , then D(θ ,P ) > D(x,P ) for all x �= θ ;

(Q3) consistency: for any bounded d-dimensional Borel set B , supx∈B |D(x,P (n)) −
D(x,P )| = o(1) almost surely as n → ∞, where P (n) denotes the empirical distribution
associated with n random vectors that are i.i.d. P .

Property (Q2) complements property (P2), and, in view of property (P3), only further requires
that θ is a strict local maximizer of x �→ D(x,P ). Note that properties (Q1)–(Q2) jointly ensure
that the depth-based neighborhoods of x from Section 2.2 collapse to the singleton {x} when the
depth level increases to its maximal value. Finally, since our goal is to prove that our classifier
satisfies an asymptotic property (namely, consistency), it is not surprising that we need to control
the asymptotic behavior of the sample depth itself (property (Q3)). As shown by Theorem A.1,
properties (Q1)–(Q3) are satisfied for many classical depth functions.

We can now state the main result of the paper, that shows that, unlike their depth-based com-
petitors (that at best are consistent under semiparametric – typically elliptical – distributional
assumptions), the proposed classifiers achieve consistency under virtually any absolutely contin-
uous distributions. We speak of nonparametric consistency, in order to stress the difference with
the stronger universal consistency of the standard kNN classifiers.

Theorem 3.1. Let D be a depth function satisfying (P2), (P3) and (Q1)–(Q3). Let kn be a
sequence of positive integers such that kn → ∞ and kn = o(n) as n → ∞. Assume that, for
j = 0,1, X | [Y = j ] admits a density fj whose collection of discontinuity points has Lebesgue

measure zero. Then the depth-based knNN classifier m
(n)
D in (3.1) is consistent in the sense that

P
[
m

(n)
D (X) �= Y |Dn

] − P
[
mBayes(X) �= Y

] = oP (1) as n → ∞,

where Dn is the sigma-algebra associated with (Xi , Yi), i = 1, . . . , n.

Classically, consistency results for classification are based on a famous theorem from Stone
[31]; see, for example, Theorem 6.3 in Devroye, Györfi and Lugosi [6]. However, it is an open
question whether condition (i) of this theorem holds or not for the proposed classifiers, at least
for some particular statistical depth functions. A sufficient condition for condition (i) is actually
that there exists a partition of Rd into cones C1, . . . ,Cγd

with vertex at the origin of Rd (γd not
depending on n) such that, for any Xi and any j , there exist (with probability one) at most k data
points X	 ∈ Xi + Cj that have Xi among their k depth-based nearest neighbors. Would this be
established for some statistical depth function D, it would prove that the corresponding depth-
based knNN classifier m̂

(n)
D is universally consistent, in the sense that consistency holds without

any assumption on the distribution of (X, Y ).
Now, it is clear from the proof of Stone’s theorem that this condition (i) may be dropped if

one further assumes that X admits a uniformly continuous density. This is however a high price
to pay, and that is the reason why the proof of Theorem 3.1 rather relies on an argument recently
used in Biau et al. [1]; see the Appendix.
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4. Simulations

We performed simulations in order to evaluate the finite-sample performances of the proposed
depth-based kNN classifiers. We considered six setups, focusing on bivariate Xi ’s (d = 2) with
equal a priori probabilities (π0 = π1 = 1/2), and involving the following densities f0 and f1:

Setup 1 (Multinormality). fj , j = 0,1, is the pdf of the bivariate normal distribution with mean
vector μj and covariance matrix �j , where

μ0 =
(

0
0

)
, μ1 =

(
1
1

)
, �0 =

(
1 1
1 4

)
, �1 = 4�0.

Setup 2 (Bivariate Cauchy). fj , j = 0,1, is the pdf of the bivariate Cauchy distribution with
location center μj and scatter matrix �j , with the same values of μj and �j as in Setup 1.

Setup 3 (Flat covariance structure). fj , j = 0,1, is the pdf of the bivariate normal distribution
with mean vector μj and covariance matrix �j , where

μ0 =
(

0
0

)
, μ1 =

(
1
1

)
, �0 =

(
52 0
0 1

)
, �1 = �0.

Setup 4 (Uniform distributions on half-moons). f0 and f1 are the densities of(
X

Y

)
=

(
U

V

)
and

(
X

Y

)
=

(−0.5
2

)
+

(
1 0.5

0.5 −1

)(
U

V

)
,

respectively, where U ∼ Unif(−1,1) and V |[U = u] ∼ Unif(1 − u2,2(1 − u2));

Setup 5 (Uniform distributions on rings). f0 and f1 are the uniform distributions on the con-
centric rings {x ∈ R

2 : 1 ≤ ‖x‖ ≤ 2} and {x ∈ R
2 : 1.75 ≤ ‖x‖ ≤ 2.5}, respectively.

Setup 6 (Bimodal populations). fj , j = 0,1, is the pdf of the multinormal mixture 1
2N (μI

j ,

�I
j ) + 1

2N (μII
j ,�II

j ), where

μI
0 =

(
0
0

)
, μII

0 =
(

3
3

)
, �I

0 =
(

1 1
1 4

)
, �II

0 = 4�I
0,

μI
1 =

(
1.5
1.5

)
, μII

1 =
(

4.5
4.5

)
, �I

1 =
(

4 0
0 0.5

)
and �II

1 =
(

0.75 0
0 5

)
.

For each of these six setups, we generated 250 training and test samples of size n = ntrain =
200 and ntest = 100, respectively, and evaluated the misclassification frequencies of the following
classifiers:

1. The usual LDA and QDA classifiers (LDA/QDA);
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2. The standard Euclidean kNN classifiers (kNN), with β = k/n = 0.01, 0.05, 0.10 and 0.40,
and the corresponding “Mahalanobis” kNN classifiers (kNNaff) obtained by performing
the Euclidean kNN classifiers on standardized data, where standardization is based on the
regular covariance matrix estimate of the whole training sample;

3. The proposed depth-based kNN classifiers (D-kNN) for each combination of the k used in
kNN/kNNaff and a statistical depth function (we focused on halfspace depth, simplicial
depth, and Mahalanobis depth);

4. The depth vs depth (DD) classifiers from Li, Cuesta-Albertos and Liu [21], for each com-
bination of a polynomial curve of degree m (m = 1, 2, or 3) and a statistical depth function
(halfspace depth, simplicial depth, or Mahalanobis depth). Exact DD-classifiers (DD) as
well as smoothed versions (DDsm) were actually implemented – although, for compu-
tational reasons, only the smoothed version was considered for m = 3. Exact classifiers
search for the best separating polynomial curve (d, r(d)) of order m passing through the
origin and m “DD-points” (D

(n)
0 (Xi ),D

(n)
1 (Xi )) (see the Introduction) in the sense that it

minimizes the misclassification error

n∑
i=1

(
I[Yi = 1]I[d(n)

i > 0
] + I[Yi = 0]I[−d

(n)
i > 0

])
, (4.1)

with d
(n)
i := r(D

(n)
0 (Xi )) − D

(n)
1 (Xi ). Smoothed versions use derivative-based methods to

find a polynomial minimizing (4.1), where the indicator I[d > 0] is replaced by the logistic
function 1/(1 + e−td ) for a suitable t . As suggested in Li, Cuesta-Albertos and Liu [21],
value t = 100 was chosen in these simulations. 100 randomly chosen polynomials were
used as starting points for the minimization algorithm, the classifier using the resulting
polynomial with minimal misclassification (note that this time-consuming scheme always
results into better performances than the one adopted in Li, Cuesta-Albertos and Liu [21],
where only one minimization is performed, starting from the best random polynomial con-
sidered).

Since the DD classification procedure is a refinement of the max-depth procedures of Ghosh
and Chaudhuri [13] that leads to better misclassification rates (see Li, Cuesta-Albertos and Liu
[21]), the original max-depth procedures were omitted in this study.

Boxplots of misclassification frequencies (in percentages) are reported in Figures 1 and 2.
It is seen that in most setups, the proposed depth-based kNN classifiers compete well with the
Euclidean kNN classifiers. The latter, however, should be avoided since (i) their outcome may
unpleasantly depend on measurement units, and since (ii) the spherical nature of the neighbor-
hoods used lead to performances that are severely affected by the – notoriously delicate – choice
of k; see the “flat” Setup 3. This motivates restricting to affine-invariant classifiers, that (i) are
totally insensitive to any unit changes and that (ii) can adapt to the flat structure of Setup 3 as
they show there performances that are much more stable in k.

Now, regarding the comparisons between affine-invariant classifiers, the simulations results
lead to the following conclusions: (i) the proposed affine-invariant depth-based classifiers out-
perform the natural affine-invariant versions of kNN classifiers. In other words, the natural way
to make the standard kNN classifier affine-invariant results into a dramatic cost in terms of finite-
sample performances. (ii) The proposed depth-based kNN classifiers also compete well with
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Figure 1. Boxplots of misclassification frequencies (in percentages), from 250 replications of Setups 1 to
3 described in Section 4, with training sample size n = ntrain = 200 and test sample size ntest = 100, of
the LDA/QDA classifiers, the Euclidean kNN classifiers (kNN) and their Mahalanobis (affine-invariant)
counterparts (kNNaff), the proposed depth-based kNN classifiers (D-kNN), and some exact and smoothed
version of the DD-classifiers (DD and DDsm); see Section 4 for details.

DD-classifiers both in elliptical and non-elliptical setups. Away from ellipticity (Setups 4 to 6),
in particular, they perform at least as well – and sometimes outperform (Setup 4) – DD-classifiers;
a single exception is associated with the use of Mahalanobis depth in Setup 5, where the DD-
classifiers based on m = 2,3 perform better. Apparently, another advantage of depth-based kNN
classifiers over DD-classifiers is that their finite-sample performances depend much less on the
statistical depth function D used.
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Figure 2. Boxplots of misclassification frequencies (in percentages), from 250 replications of Setups 4 to
6 described in Section 4, with training sample size n = ntrain = 200 and test sample size ntest = 100, of
the LDA/QDA classifiers, the Euclidean kNN classifiers (kNN) and their Mahalanobis (affine-invariant)
counterparts (kNNaff), the proposed depth-based kNN classifiers (D-kNN), and some exact and smoothed
version of the DD-classifiers (DD and DDsm); see Section 4 for details.

5. Real-data examples

In this section, we investigate the performances of our depth-based kNN classifiers on two well
known benchmark datasets. The first example is taken from Ripley [27] and can be found on
the book’s website (http://www.stats.ox.ac.uk/pub/PRNN). This data set involves well-specified
training and test samples, and we therefore simply report the test set misclassification rates of
the different classifiers included in the study. The second example, blood transfusion data, is

http://www.stats.ox.ac.uk/pub/PRNN
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available at http://archive.ics.uci.edu/ml/index.html. Unlike the first data set, no clear partition
into a training sample and a test sample is provided here. As suggested in Li, Cuesta-Albertos
and Liu [21], we randomly performed such a partition 100 times (see the details below) and
computed the average test set misclassification rates, together with standard deviations.

A brief description of each dataset is as follows:
Synthetic data was introduced and studied in Ripley [27]. The dataset is made of observations

from two populations, each of them being actually a mixture of two bivariate normal distributions
differing only in location. As mentioned above, a partition into a training sample and a test sample
is provided: the training and test samples contain 250 and 1000 observations, respectively, and
both samples are divided equally between the two populations.

Transfusion data contains the information on 748 blood donors selected from the blood donor
database of the Blood Transfusion Service Center in Hsin-Chu City, Taiwan. It was studied in
Yeh, Yang and Ting [34]. The classification problem at hand is to know whether or not the donor
gave blood in March 2007. In this dataset, prior probabilities are not equal; out of 748 donors,
178 gave blood in March 2007, when 570 did not. Following Li, Cuesta-Albertos and Liu [21],
one out of two linearly correlated variables was removed and three measurements were available
for each donor: Recency (number of months since the last donation), Frequency (total number
of donations) and Time (time since the first donation). The training set consists in 100 donors
from the first class and 400 donors from the second, while the rest is assigned to the test sample
(therefore containing 248 individuals).

Table 1 reports the – exact (synthetic) or averaged (transfusion) – misclassification rates of
the following classifiers: the linear (LDA) and quadratic (QDA) discriminant rules, the standard
kNN classifier (kNN) and its Mahalanobis affine-invariant version (kNNaff), the depth-based
kNN classifiers using halfspace depth (DH -kNN) and Mahalanobis depth (DM -kNN), and the
exact DD-classifiers for any combination of a polynomial order m ∈ {1,2} and a statistical depth
function among the two considered for depth-based kNN classifiers, namely the halfspace depth
(DDH ) and the Mahalanobis depth (DDM ) – smoothed DD-classifiers were excluded from this

Table 1. Misclassification rates (for synthetic data) and sample averages and standard
deviations (in parentheses) of misclassification rates obtained from 100 random parti-
tions of the data into training and test samples (for transfusion data)

Synthetic Transfusion

LDA 10.8 29.60 (0.9)
QDA 10.2 29.21 (1.5)
kNN 8.7 29.74 (2.0)
kNNaff 11.7 30.11 (2.1)
DH -kNN 10.1 27.75 (1.6)
DM -kNN 14.4 27.36 (1.5)
DDH (m = 1) 13.4 28.26 (1.7)
DDH (m = 2) 12.9 28.33 (1.6)
DDM (m = 1) 17.5 31.44 (0.1)
DDM (m = 2) 12.0 31.54 (0.6)

http://archive.ics.uci.edu/ml/index.html
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study, as their performances, which can only be worse than those of exact versions, showed
much sensitivity to the smoothing parameter t ; see Section 4. For all nearest-neighbor classifiers,
leave-one-out cross-validation was used to determine k.

The results from Table 1 indicate that depth-based kNN classifiers perform very well in both
examples. For synthetic data, the halfspace depth-based kNN classifier (10.1%) is only domi-
nated by the standard (Euclidean) kNN procedure (8.7%). The latter, however, has to be dis-
carded as it is dependent on scale and shape changes – in line with this, note that the “kNN
classifier” applied in Dutta and Ghosh [11] is actually the kNNaff classifier (11.7%), as clas-
sification in that paper is performed on standardized data. The Mahalanobis depth-based kNN
classifiers (14.4%) does not perform as well as its halfspace counterpart. For transfusion data,
however, both depth-based kNN classifiers dominate their competitors.

6. Final comments

The depth-based neighborhoods we introduced are of interest in other inference problems as well.
As an illustration, consider the regression problem where the conditional mean function x �→
m(x) = E[Y | X = x] is to be estimated on the basis of mutually independent copies (Xi , Yi),
i = 1, . . . , n of a random vector (X, Y ) with values in R

d ×R, or the problem of estimating the
common density f of i.i.d. random d-vectors Xi , i = 1, . . . , n. The classical knNN estimators
for these problems are

m̂(n)(x) =
n∑

i=1

W
βn(n)
i (x)Yi = 1

kn

n∑
i=1

I
[
Xi ∈ B

βn(n)
x

]
Yi, and f̂ (n)(x) = kn

nμd(B
βn(n)
x )

(6.1)

where βn = kn/n, B
β(n)
x is the smallest Euclidean ball centered at x that contains a proportion

β of the Xi ’s, and μd stands for the Lebesgue measure on R
d . Our construction naturally leads

to considering the depth-based knNN estimators m̂
(n)
D (x) and f̂

(n)
D (x) obtained by replacing in

(6.1) the Euclidean neighborhoods B
βn
x with their depth-based counterparts R

βn(n)
x and kn =∑n

i=1 I[Xi ∈ B
βn(n)
x ] with K

βn(n)
x = ∑n

i=1 I[Xi ∈ R
βn(n)
x ].

A thorough investigation of the properties of these depth-based procedures is of course beyond
the scope of the present paper. It is, however, extremely likely that the excellent consistency prop-
erties obtained in the classification problem extend to these nonparametric regression and density
estimation setups. Now, recent works in density estimation indicate that using non-spherical (ac-
tually, ellipsoidal) neighborhoods may lead to better finite-sample properties; see, for example,
Chacón [2] or Chacón, Duong and Wand [3]. In that respect, the depth-based kNN estimators
above are very promising since they involve non-spherical (and for most classical depth, even
non-ellipsoidal) neighborhoods whose shape is determined by the local geometry of the sample.
Note also that depth-based neighborhoods only require choosing a single scalar bandwidth pa-
rameter (namely, kn), whereas general d-dimensional ellipsoidal neighborhoods impose selecting
d(d + 1)/2 bandwidth parameters.
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Appendix: Proofs

The main goal of this appendix is to prove Theorem 3.1. We will need the following lemmas.

Lemma A.1. Assume that the depth function D satisfies (P2), (P3), (Q1), and (Q2). Let P be a
probability measure that is symmetric about θ and admits a density that is positive at θ . Then,
(i) for all a > 0, there exists α < α∗ = maxx∈Rd D(x,P ) such that Rα(P ) ⊂ Bθ (a) := {x ∈ R

d :
‖x − θ‖ ≤ a}; (ii) for all α < α∗, there exists ξ > 0 such that Bθ (ξ) ⊂ Rα(P ).

Proof. (i) First, note that the existence of α∗ follows from property (P2). Fix then δ > 0 such
that x �→ D(x,P ) is continuous over Bθ (δ); existence of δ is guaranteed by property (Q1). Con-
tinuity implies that x �→ D(x,P ) reaches a minimum in Bθ (δ), and property (Q2) entails that
this minimal value, αδ say, is strictly smaller than α∗. Using property (Q1) again, we obtain that,
for each α ∈ [αδ,α∗],

rα :Sd−1 → R
+,

u �→ sup
{
r ∈ R

+ : θ + ru ∈ Rα(P )
}

is a continuous function that converges pointwise to rα∗(u) ≡ 0 as α → α∗. Since Sd−1 is com-
pact, this convergence is actually uniform, that is, supu∈Sd−1 |rα(u)| = o(1) as α → α∗. Part (i)
of the result follows.

(ii) Property (Q2) implies that, for any α ∈ [αδ,α∗), the mapping rα takes values in R
+
0 . There-

fore, there exists u0(α) ∈ Sd−1 such that rα(u) ≥ rα(u0(α)) = ξα > 0. This implies that, for all
α ∈ [αδ,α∗), we have Bθ (ξα) ⊂ Rα(P ), which proves the result for these values of α. Nested-
ness of the Rα(P )’s, which follows from property (P3), then establishes the result for an arbitrary
α < α∗. �

Lemma A.2. Assume that the depth function D satisfies (P2), (P3), and (Q1)–(Q3). Let P be
a probability measure that is symmetric about θ and admits a density that is positive at θ . Let
X1, . . . ,Xn be i.i.d. P and denote by Xθ ,(i) the ith depth-based nearest neighbor of θ . Let K

βn(n)

θ

be the number of depth-based nearest neighbors in R
βn

θ (P (n)), where βn = kn/n is based on a se-
quence kn that is as in Theorem 3.1 and P (n) stands for the empirical distribution of X1, . . . ,Xn.

Then, for any a > 0, there exists n = n(a) such that
∑K

βn(n)

θ
i=1 I[‖Xθ ,(i) − θ‖ > a] = 0 almost

surely for all n ≥ n(a).

Note that, while Xθ ,(i) may not be properly defined (because of ties), the quantity∑K
βn(n)

θ
i=1 I[‖Xθ ,(i) − θ‖ > a] = 0 always is.

Proof of Lemma A.2. Fix a > 0. By Lemma A.1, there exists α < α∗ such that Rα(P ) ⊂ Bθ (a).
Fix then ᾱ and ε > 0 such that α < ᾱ − ε < ᾱ + ε < α∗. Theorem 4.1 in Zuo and Serfling [38]
and the fact that P

(n)
θ → Pθ = P weakly as n → ∞ (where P

(n)
θ and Pθ are the θ -symmetrized
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versions of P (n) and P , respectively) then entail that there exists an integer n0 such that

Rᾱ+ε(P ) ⊂ Rᾱ

(
P

(n)
θ

) ⊂ Rᾱ−ε(P ) ⊂ Rα(P )

almost surely for all n ≥ n0. From Lemma A.1 again, there exists ξ > 0 such that Bθ (ξ) ⊂
Rᾱ+ε(P ). Hence, for any n ≥ n0, one has that

Bθ (ξ) ⊂ Rᾱ

(
P

(n)
θ

) ⊂ Bθ (a)

almost surely.
Putting Nn = ∑n

i=1 I[Xi ∈ Bθ (ξ)], the SLLN yields that Nn/n → P [Bθ (ξ)] = P [Bθ (ξ)] > 0
as n → ∞, since X ∼ P admits a density that, from continuity, is positive over a neighborhood
of θ . Since kn = o(n) as n → ∞, this implies that, for all n ≥ ñ0 (≥ n0),

n∑
i=1

I
[
Xi ∈ Rᾱ

(
P

(n)
θ

)] ≥ Nn ≥ kn

almost surely. It follows that, for such values of n,

R
βn

θ

(
P (n)

) = Rβn
(
P

(n)
θ

) ⊂ Rᾱ

(
P

(n)
θ

) ⊂ Bθ (a)

almost surely, with βn = kn/n. Therefore, max
i=1,...,K

βn(n)

θ

‖Xθ,(i) − θ‖ ≤ a almost surely for

large n, which yields the result. �

Lemma A.3. For a “plug-in” classification rule m̃(n)(x) = I[η̃(n)(x) > 1/2] obtained from a re-
gression estimator η̃(n)(x) of η(x) = E[I[Y = 1] | X = x], one has that P [m̃(n)(X) �= Y ]−Lopt ≤
2(E[(η̃(n)(X)− η(X))2])1/2, where Lopt = P [mBayes(X) �= Y ] is the probability of misclassifica-
tion of the Bayes rule.

Proof. Corollary 6.1 in Devroye, Györfi and Lugosi [6] states that

P
[
m̃(n)(X) �= Y |Dn

] − Lopt ≤ 2E
[∣∣η̃(n)(X) − η(X)

∣∣ |Dn

]
,

where Dn stands for the sigma-algebra associated with the training sample (Xi , Yi), i = 1, . . . , n.
Taking expectations in both sides of this inequality and applying Jensen’s inequality readily
yields the result. �

Proof of Theorem 3.1. From Bayes’ theorem, X admits the density x �→ f (x) = π0f0(x) +
π1f1(x). Letting Supp+(f ) = {x ∈ R

d : f (x) > 0} and writing C(fj ) for the collection of
continuity points of fj , j = 0,1, put N = Supp+(f ) ∩ C(f0) ∩ C(f1). Since, by assumption,
R

d \ C(fj ) (j = 0,1) has Lebesgue measure zero, we have that

P
[
X ∈ R

d \ N
] ≤ P

[
X ∈ R

d \ Supp+(f )
] +

∑
j∈{0,1}

P
[
X ∈ R

d \ C(fj )
]

=
∫
Rd\Supp+(f )

f (x)dx = 0,
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so that P [X ∈ N ] = 1. Note also that x �→ η(x) = π1f1(x)/(π0f0(x) + π1f1(x)) is continuous
over N .

Fix x ∈ N and let Yx,(i) = Yj(x) with j (x) such that Xx,(i) = Xj (x). With this notation, the

estimator η̂
(n)
D (x) from Section 3.1 rewrites

η̂
(n)
D (x) =

n∑
i=1

YiW
β(n)
i (x) = 1

K
β(n)
x

K
β(n)
x∑

i=1

Yx,(i).

Proceeding as in Biau et al. [1], we therefore have that (writing for simplicity β instead of βn in
the rest of the proof)

T (n)(x) := E
[(

η̂
(n)
D (x) − η(x)

)2] ≤ 2T
(n)

1 (x) + 2T
(n)

2 (x),

with

T
(n)
1 (x) = E

[∣∣∣∣∣ 1

K
β(n)
x

K
β(n)
x∑

i=1

(
Yx,(i) − η(Xx,(i))

)∣∣∣∣∣
2]

and

T
(n)
2 (x) = E

[∣∣∣∣∣ 1

K
β(n)
x

K
β(n)
x∑

i=1

(
η(Xx,(i)) − η(x)

)∣∣∣∣∣
2]

.

Writing D(n)
X for the sigma-algebra generated by Xi , i = 1, . . . , n, note that, conditional on D(n)

X ,
the Yx,(i) − η(Xx,(i))’s, i = 1, . . . , n, are zero mean mutually independent random variables.
Consequently,

T
(n)
1 (x) = E

[
1

(K
β(n)
x )2

K
β(n)
x∑

i,j=1

E
[(

Yx,(i) − η(Xx,(i))
)(

Yx,(j) − η(Xx,(j))
) | D(n)

X

]]

= E

[
1

(K
β(n)
x )2

K
β(n)
x∑

i=1

E
[(

Yx,(i) − η(Xx,(i))
)2 |D(n)

X

]]

≤ E

[
4

K
β(n)
x

]
≤ 4

kn

= o(1),

as n → ∞, where we used the fact that K
β(n)
x ≥ kn almost surely. As for T

(n)
2 (x), the Cauchy–

Schwarz inequality yields (for an arbitrary a > 0)

T
(n)
2 (x) ≤ E

[
1

K
β(n)
x

K
β(n)
x∑

i=1

(
η(Xx,(i)) − η(x)

)2

]
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= E

[
1

K
β(n)
x

K
β(n)
x∑

i=1

(
η(Xx,(i)) − η(x)

)2
I
[‖Xx,(i) − x‖ ≤ a

]]

+ E

[
1

K
β(n)
x

K
β(n)
x∑

i=1

(
η(Xx,(i)) − η(x)

)2
I
[‖Xx,(i) − x‖ > a

]]

≤ sup
x′∈Bx(a)

∣∣η(
x′) − η(x)

∣∣2 + 4E

[
1

K
β(n)
x

K
β(n)
x∑

i=1

I
[‖Xx,(i) − x‖ > a

]]

=: T̃2(x;a) + T̄
(n)
2 (x;a).

Continuity of η at x implies that, for any ε > 0, one may choose a = a(ε) > 0 so that
T̃2(x;a(ε)) < ε. Since Lemma A.2 readily yields that T

(n)
2 (x;a(ε)) = 0 for large n, we con-

clude that T
(n)
2 (x) – hence also T (n)(x) – is o(1). The Lebesgue dominated convergence theorem

then yields that E[(η̂(n)
D (X) − η(X))2] is o(1). Therefore, using the fact that P [m̂(n)

D (X) �= Y |
Dn] ≥ Lopt almost surely and applying Lemma A.3, we obtain

E
[∣∣P [

m̂
(n)
D (X) �= Y | Dn

] − Lopt
∣∣] = E

[
P

[
m̂

(n)
D (X) �= Y | Dn

] − Lopt
]

= P
[
m̂

(n)
D (X) �= Y

] − Lopt ≤ 2
(
E

[(
η̂

(n)
D (X) − η(X)

)2])1/2

= o(1),

as n → ∞, which establishes the result. �

Finally, we show that properties (Q1)–(Q3) hold for several classical statistical depth func-
tions.

Theorem A.1. Properties (Q1)–(Q3) hold for (i) the halfspace depth and (ii) the simplicial
depth. (iii) If the location and scatter functionals μ(P ) and �(P ) are such that (a) μ(P ) = θ as
soon as the probability measure P is symmetric about θ and such that (b) the empirical versions
μ(P (n)) and �(P (n)) associated with an i.i.d. sample X1, . . . ,Xn from P are strongly consistent
for μ(P ) and �(P ), then properties (Q1)–(Q3) also hold for the Mahalanobis depth.

Proof. (i) The continuity of D in property (Q1) actually holds under the only assumption that
P admits a density with respect to the Lebesgue measure; see Proposition 4 in Rousseeuw and
Ruts [28]. Property (Q2) is a consequence of Theorems 1 and 2 in Rousseeuw and Struyf [29]
and the fact that the angular symmetry center is unique for absolutely continuous distributions;
see Serfling [30]. For halfspace depth, property (Q3) follows from (6.2) and (6.6) in Donoho and
Gasko [7].

(ii) The continuity of D in property (Q1) actually holds under the only assumption that P

admits a density with respect to the Lebesgue measure; see Theorem 2 in Liu [22]. Remark C in
Liu [22] shows that, for an angularly symmetric probability measure (hence also for a centrally
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symmetric probability measure) admitting a density, the symmetry center is the unique point
maximizing simplicial depth provided that the density remains positive in a neighborhood of the
symmetry center; property (Q2) trivially follows. property (Q3) for simplicial depth is stated in
Corollary 1 of Dümbgen [8].

(iii) This is trivial. �

Finally, note that properties (Q1)–(Q3) also hold for projection depth under very mild assump-
tions on the univariate location and scale functionals used in the definition of projection depth;
see Zuo [36].
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