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Nonparaxial dark solitons in optical Kerr media
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We show that the nonlinear equation that describes nonparaxial Kerr propagation, together with the already
reported bright-soliton solutions, admits of �1 1 1�D dark-soliton solutions. Unlike their paraxial counter-
parts, dark solitons can be excited only if their asymptotic normalized intensity u2

` is below 3�7; their width
becomes constant when u2

` approaches this value. © 2005 Optical Society of America
OCIS codes: 190.0190, 190.3270, 190.5530.
Optical spatial solitons are beams in which linear
diffraction is exactly compensated for by nonlinearity
through self-lensing. This phenomenon has allowed
the observation of self-trapping owing to the optical
Kerr effect in glass, in polymers, in gases, and in
liquids, and also was observed in photorefractive
materials and in crystals that exhibit a quadratic
(second-order) response.1,2 The distinguishing fea-
tures of solitons are that they allow for guided
propagation in an otherwise homogeneous medium,
that they manifest quasi-elastic collisions, and that
they are amenable to external control through the
modulation of launch-wave characteristics, such as
intensity or transverse phase chirp. These charac-
teristics, which distinguish them from linear optical
propagation, hold the key to potential technological
applications, which range from all-optical routing,
to transparent beam interconnects, to the massive
integration of optical operations in a fully three-
dimensional environment. In these projected ap-
plications, light is made to propagate in effective
waveguides that have modes with numerical apertures
that violate the paraxial approximation, for which the
conventional scalar approach to propagation, such as
that at the basis of the parabolic equation, fails. In
other words, without drastically reducing the propa-
gating optical wavelength (a solution that encounters a
number of hurdles, among which is absorption), minia-
turization implies nonparaxial propagation regimes.
If solitons are the nonlinear embodiment of optical
waveguides, what is the equivalent for submicrometer
propagation modes? One possibility that we have
been investigating is the direct reduction of the spatial
scale for beams propagating in Kerr materials: Can
we predict nonparaxial spatial solitons, that is, beams
for which diffraction (in the more involved nonparaxial
understanding) is compensated for by the similarly
more involved Kerr self-action? As the understand-
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ing of Kerr solitons in a paraxial scheme has triggered
a large and fruitful investigation into a wealth of
different nonlinear phenomena and processes, so our
goal is to set the basis for a similar development in
the nonparaxial regime.

The existence of nonparaxial �1 1 1�D bright spa-
tial solitons in Kerr media, that is, of soliton solutions
of the nonlinear Schrödinger equation generalized to
include higher-order terms that account for nonparax-
ial effects, was recently predicted.3 These solitons, be-
sides being reduced to standard paraxial solitons in
the limit of small normalized peak intensity u2

0, as ex-
pected, present new and interesting features. In par-
ticular, the soliton width turns out to be practically
independent of the peak intensity for u2

0 . 1. It is
natural to extend the same analysis to the investiga-
tion of nonparaxial dark spatial solitons, which, as is
well known, exist in the paraxial regime for defocusing
media that possess negative nonlinear refractive-index
coefficients �n2 , 0�. In this Letter we show, by a
straightforward generalization of the formalism used
for bright solitons, that, whenever n2 , 0, nonparaxial
dark solitons exist. However, they differ significantly
from their paraxial counterparts in that they can ex-
ist only below a specific value of asymptotic intensity
u2

` �u2
` , 3�7�.

The governing equation that describes nonlinear
propagation in Kerr media of a linearly polar-
ized monochromatic field Ex�x, z, t� � A�x, z� 3

exp�ikz 2 ivt� (where k is the wave number in the
linear background medium) reads as4,5
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which differs from the standard nonlinear Schrödinger
equation through the presence on its right-hand side of
differential terms that account for the tensorial nature
of the nonlinear refractive index, for the nonparaxial
effects associated with the transverse scale of varia-
tion of the f ield (comparable with the wavelength), and
for the vectorial coupling between transverse and lon-
gitudinal components. We introduce the normalized
variables j � kx, z � kz, U �

p
jn2j�n0A, to obtain

µ
i

≠

≠z
1

1
2

≠2

≠j2

∂
U � 2g

µ
jU j2U 1

1
3

jU j2
≠2U
≠j2

1
8
3
U

Ç
≠U
≠j

Ç2
1

5
6

U2 ≠2U�

≠j2

∂
, (2)

where g � jn2j�n2 � sign�n2�, and look for a soliton so-
lution of the form U �j, z � � exp�ibz �u�j�, thus getting
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where a prime stands for a derivative with respect
to j.

We note that different versions of Eq. (3) exist in the
literature 6 –11; the difference from Eq. (3) lies in the co-
efficients that appear on the right-hand side. The an-
alytical approach presented below and in Ref. 3 would
allow, if they were applied to those equations, one to
prove the existence of spatial nonparaxial solitons of
the same form as our solitons but numerically differ-
ent in amplitude, width, and nonlinear phase.

The change of dependent variable f � u02 (according
to which df�dj � 2u0u00 � u0df�du) reduces Eq. (3) to
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du

1 g
32u

3 1 7gu2 f � 12
b 2 gu2

3 1 7gu2 u , (4)

which can be integrated to give, after some algebra,
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where u0 is the field amplitude at a given point. This
is in itself a remarkable result, as it shows that the
problem is, as in the paraxial case, fully integrable.
The bright-soliton case was discussed in Ref. 3, where
the existence of bright solitons has been proved for g .

0 (no bright soliton exists for g , 0). We consider now
the problem of proving the existence of dark solitons.
To this end, we write, besides Eq. (5), its derivative
with respect to j, that is,
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Taking the limit j ! 6` of both Eqs. (5) and (6), and
setting u0 � 0, f �u�6`�� � 0, and �d2u�dj2�j�6` � 0,
we get
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where u2
` � u2�6`�. The solution of the set of Eqs. (7)

in the two unknowns b and f �0� reads as b � gu2
` and
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which is inserted into Eq. (5), yield
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It is easy to check whether the right-hand side of
Eq. (8), is real, as it should be, only if u2

` . 23�7
for g � 11 and u2

` , 3�7 for g � 21. However, in
the first case, f �u�, as provided by Eq. (8), is always
negative, so there are no dark solitons for g � 11
(as in the paraxial limit). In the second case Eq. (8)
furnishes
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which is always positive, so dark solitons exist for
g � 21 in the range 0 , u2

` , 3�7. The results
of numerical integration of Eq. (9) are shown in
Fig. 1, where u is plotted as a function of j for
various values of u`. We can now compare our
result with the paraxial result, in which U �j, z � �
u` exp�iz�D2�tanh�j�D�, with D2 � 1�u2

`. In our
case the propagation constant is the same, and the
relation between D and u` (existence curve) turns out
to coincide with the paraxial relation only for small
values of u`, as shown in Fig. 2. In particular, for
u` ! 3�7, D !

p
23�6: From an intuitive point of

view, the existence of this threshold is related to the
eventual dominance of the defocusing effect that is
due to nonlinearity over diffraction (which, in our
case, has a focusing effect).

Referring, for example, to sodium vapor, which is
known to be a strong nonlinear material, one has12 n2 �
24 3 10210 cm�V2, to which corresponds an asymp-
totic intensity I` � �n0�n2� �1�2Z0�u2

` (where Z0 is the
vacuum impedance) of �1 MW�cm2. We have made
an extensive numerical investigation of the stability of
nonparaxial dark solitons, of which a typical example is
shown in Fig. 3. These results provide clear evidence
of the robustness and observability of dark solitons,
even if they are not a mathematical demonstration of
stability, which is beyond the aim of the present study.
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Fig. 1. Soliton envelope u�j� and intensity u2�j� for vari-
ous values of u2

` , 3�7.

Fig. 2. Normalized soliton half-width D as a function of
u2

` in the paraxial (lower curve) and nonparaxial (upper
curve) regimes.

Fig. 3. Square modulus of f ield amplitude jU �j, z �j2 for
four diffraction lengths obtained by solution of Eq. (2) �g �
21� with boundary condition U �j, 0� � u�j� for u` � 0.3.

Fig. 4. Envelope v�j� of the longitudinal f ield component
of the soliton for the same values of u` as in Fig. 1.

It is also possible by means of the general scheme
developed in Ref. 13 to evaluate the longitudinal com-
ponent Ez�x, z� � i
p
n0�jn2j exp�ibz �v�j� of the soliton

field. More precisely, one has13
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expressing in implicit form the longitudinal component
in terms of transverse component u. Amplitude v�j�
obtained by solution of Eq. (10) with respect to v is plot-
ted in Fig. 4 for the soliton envelopes shown in Fig. 1.
It is clearly seen, as expected, that in the nonparaxial
regime (roughly corresponding to u2

` . 0.2) the longitu-
dinal component becomes comparable with the trans-
verse component.

In conclusion, we have shown that linearly polarized
�1 1 1�D nonparaxial dark solitons exist in defocusing
Kerr media, provided that the asymptotic normalized
intensity is not larger than 3�7. The analytical rela-
tion shown in Fig. 2 between soliton width D and u2

`

shows that, for u2
` . 0.2, the width is practically in-

dependent of u2
` and assumes the same value

p
6�23

(corresponding, in dimensional units, to a full width of
�l�p) that has been found for bright solitons.3 This
saturation effect appears to be of a purely nonparax-
ial nature and constitutes the signature of nonparaxial
solitons.
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