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Nonparaxial spatial solitons and propagation-invariant pattern
solutions in optical Kerr media
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We investigate nonlinear propagation in the presence of the optical Kerr effect by relying on a rigorous
generalization of the standard parabolic equation that includes nonparaxial and vectorial terms. We show
that, in the �1 1 1�-D case, both soliton and propagation-invariant pattern solutions exist (while the standard
hyperbolic-secant function is not a solution). © 2004 Optical Society of America
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Monochromatic optical propagation in the presence of a
refractive-index distribution n�r� � n0 1 dn�r� is usu-
ally described by the scalar parabolic equation. This
is a by-product of the Helmholtz equation

=2E 2 == ? E 1 �v2�c2�n2�r�E � 0 , (1)

and the scalar parabolic equation is derived from
Eq. (1) in the paraxial approximation. More pre-
cisely, after writing the electric f ield as E�r, t� �
A�r�, z�exp�ikz 2 ivt�, where v is the angular fre-
quency, k � �v�c�n0, and introducing d as a typical
length scale of variations in n�r�, we assume that the
parameter h � �Dn�n� �l�d� ,, 1, which expresses the
smallness of the relative variation of the refractive
index over a wavelength scale. Besides, if the f ield
is initially (approximately) transversely polarized, we
neglect its longitudinal component Az with respect to
the transverse one A��r�, z�, and we can derive, using
the slowly varying approximation, the standard scalar
parabolic equation:

i
≠

≠z
A� 1

1
2k

=�
2A� 1

k
n0

dn�r�A� � 0 . (2)

We can then automatically satisfy the divergence
equation = ? �eE� � 0 (where e � e0n2) by using it
to derive the (small) longitudinal component Az. If
the smallness parameter h becomes comparable to 1,
then the approach presented above, which represents
only the lowest-order approximation in h, fails, and
higher-order terms have to be added to account for
nonparaxial contributions. The recent progress in
nanotechnology and the possibility of fabricating
optical structures with subwavelength features are
compelling reasons for generalizing Eq. (2) to the
nonparaxial regime. This can be done rigorously
if, after splitting the f ield into a transverse and a
longitudinal part, one is able to derive an equation
for the transverse part alone to first order in ≠�≠z
that contains terms to all orders in h. This task
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was recently carried out in the general case (linear or
nonlinear) of a tensorial refractive-index distribution,
$n �r�, in a manner that fully preserved the vectorial
nature of the problem.1 The resulting equation co-
incides with a vectorial equation derived by different
authors2 for an isotropic refractive-index distribution,
i.e., for a scalar n�r� and up to the second order in h.

The general equation worked out in Ref. 1 can be
used to study nonlinear optical propagation in the
presence of the optical Kerr effect. In particular,
although it is well established that the associated
parabolic paraxial equation, also known as the non-
linear Schrödinger equation, admits of spatial soliton
solutions of the hyperbolic-secant kind in the �1 1 1�-D
case, it remains to be seen whether this is still the
case if nonparaxial effects are taken into account.
There have been many recent attempts to derive
equations specif ically aimed at describing propagation
in the nonlinear Kerr regime beyond the standard
paraxial scalar approximation, resulting in the exis-
tence of a number of different equations that do not
agree with one another. The equation that Ciattoni
et al. derived in Ref. 3 agrees with the one recently
derived by means of an independent approach.4

To analyze the �1 1 1�-D case we assume the
propagating field to be initially polarized along the
x direction and the y component to remain negligible
over the distance of propagation (which is the case for
at least a few diffraction lengths; see Ref. 3). Then,
the x component Ax � A obeys the equation3
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where n2 is the nonlinear refractive-index coeff icient.
We introduce the dimensionless coordinates and
amplitude j � kx, z � kz, and U � �n2�n0�1�2A and
label with a prime partial differentiation with respect
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to j. Then, Eq. (3) can be recast in the form

i�≠�≠z �U 1 �1�2�U 00 � 2jU j2U 2 �1�3� jU j2U 00

2 �5�6�U2U�00 2 �8�3�U jU 0j2, (4)

which coincides with the one derived in Ref. 4. We
look for solutions of the form U �j, z � � u�j�exp�ibz �,
where u is a real function of j and b is a real parame-
ter. Equation (4) simplifies to

2bu 1 �1�2�u00 � 2u3 2 �7�6�u2u00 2 �8�3�uu02, (5)
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After introducing the new variable f � �du�dj�2, we
can rewrite Eq. (5) as

f �u� � 2
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which can be integrated. Since we are looking for
bright soliton solutions (peaked envelopes), we can
take u0 to refer to the maximum value of the f ield
envelope, where f � �du�dj�2 � 0. Then, Eq. (7)
reduces to
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where G�x� � �3 1 7x�16�7�16. To f ind b in terms of
u0 we impose the further condition that when j ! 6`

both u and its derivative (and thus f ) go to zero. Thus,
we obtain
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As expected, b is always positive, and for both u0 .. 1
and u0 ,, 1, one has b � 2�16�23�u0

2 � 2�2�3�u0
2.
After inserting Eq. (9) into Eq. (8), we check that f �u�,
defined above as �du�dj�2, is always positive as shown
in Fig. 1, so that there exist soliton solutions. The
envelopes can be numerically evaluated by integrating
Eq. (8) and are shown in Fig. 2 for different values of
u0

2. For large u0, the width of the soliton is seen to
exhibit a very slow dependence on u0

2, unlike paraxial
nonlinear Schrödinger equation solitons, where the
width scales linearly as 1�u0. To explain this result
we observe (as shown in Fig. 3) that, for large u0,
we can approximately write f �u� � �a 2 cu2�, where,
empirically, c � 1�4, independent of u0. This rela-
tionship holds over most of the range of 0 , u , u0,
except for small u (i.e., the tail), and only a depends
on the value of u0. Then, this differential equation
yields an explicit solution for the large-u portion of
the envelope, u�j� �

p
�a�c� cos�

p
cj� with a � u0

2�4,
whose width is indeed independent of u0. Conversely,
by expanding the right-hand side of Eq. (8) for small
values of u0, one has f �u� � �14�23�u0

2�1 2 u2�u0
2�,

which can be integrated to approximately yield

Fig. 1. f �u� � �du�dj�2 plotted as a function of u�j�2 for
different values of u0, the peak amplitude. The range of
u is from 0 to u0 in each case, and f �u� is always positive.

Fig. 2. Soliton envelope u�j� obtained by solving
�du�dj�2 � f �u�, where f �u� is obtained from Fig. 1. As
the peak amplitude u0 becomes comparable to 1, the
envelope widths approach a constant value.
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Fig. 3. For large values of u0 .. 1 the normalized en-
velopes u�j��u0 have a constant width, independent of u0.

u � u0 cos��14�23�1�2u0j�, so that the soliton width
scales, as expected, with 1�u0.

We also found that Eq. (4) admits of exact analytic
solutions in the form of invariant-pattern beams,
U �j, z � � exp�ibz �u0 sin�aj 1 g�, for any value of u0
and provided that
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Note that the numerical values given in Eqs. (10)
coincide for large values of u0 with those found for
the spatial solitons. Since u�j� does not go to zero
as j ! 6`, this solution describes a solitary wave,
rather than a soliton, and it represents the nonlinear
Kerr counterpart of the propagation-invariant pattern
solutions of the exact scalar Helmholtz equation in
a linear homogeneous medium (the one-dimensional
analog of the two-dimensional diffraction-free Bessel
beam).5 In dimensional notation, our invariant-
pattern solution reads as

E�x, z� �
q
n0�n2 u0 exp�i�1 2 b�kz�sin�akx 1 g� ,

(11)

which can be excited by the incidence from air of two
plane waves intersecting at a specif ic angle 1u0 and
2u0 with respect to the z axis, E�x, z� � E0 exp�i�kzz 6

kxx��. By matching the tangential f ield components at
the interface between air and the nonlinear medium,
we conclude that tan u0 � an0��1 2 a2n0

2�1�2, which
limits the excitation from air to dielectric material
with n0 # 1�a � 2. Angle u0 is approximately p�4 for
n0 � 1.5.

Various other equations similar to Eq. (4) but differ-
ing in the coefficients and in the presence of an extra
nonlinear term of the kind U 0 2U� have been re-
ported.6 – 10 In these cases as well, our analysis can
be used to investigate soliton and invariant-pattern
solutions. All these equations were derived by
adopting a vectorial approach, without neglecting the
polarization-mixing term in Eq. (1). Recently, it was
claimed that �1 1 1�-D nonparaxial solitons of the
standard hyperbolic-secant form exist,11 based on
solving the nonlinear Helmholtz equationµ

≠2

≠z2
1

≠2

≠x2 1 k2
∂
E 1 2�n�n0�k2E � 0 , (12)

which is assumed to describe nonparaxial propagation
through the presence of the second z-derivative term,
usually neglected in the slowly varying approximation.
This is true if the analysis is restricted to the scalar
approximation,12 but actually both the tensorial nature
of the nonlinear interaction and the presence of the
polarization-mixing term, present in Eq. (1) but ne-
glected in Ref. 11, play an important role in the non-
paraxial regime3 and cannot be omitted.

In conclusion, by relying on a rigorous equation de-
scribing nonparaxial vectorial propagation in the pres-
ence of the Kerr nonlinearity, we have been able to
show the existence of �1 1 1�-D spatial solitons and of
invariant-pattern solutions in the nonparaxial regime.
The spatial solitons that we have found differ remark-
ably from their paraxial counterpart in that their ex-
citation requires, as long as u0 $ 1, a width of the
order of l�2, practically independent from their peak
amplitude.
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