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A large-aperture, electromagnetic model for coherent microscopy is presented and the inverse scattering prob-
lem is solved. Approximations to the model are developed for near-focus and far-from-focus operations. These
approximations result in an image-reconstruction algorithm consistent with interferometric synthetic aperture
microscopy (ISAM): this validates ISAM processing of optical-coherence-tomography and optical-coherence-
microscopy data in a vectorial setting. Numerical simulations confirm that diffraction-limited resolution can be
achieved outside the focal plane and that depth of focus is limited only by measurement noise and/or detector
dynamic range. Furthermore, the model presented is suitable for the quantitative study of polarimetric coher-
ent microscopy systems operating within the first Born approximation. © 2007 Optical Society of America

OCIS codes: 100.3190, 100.6890, 170.1650, 170.4500, 110.6880, 180.3170.

1. INTRODUCTION
Traditionally in optical microscopy there has been a per-
ceived trade-off between depth of focus and resolution;
i.e., one cannot be improved without adversely affecting
the other. Hence, techniques that use high-numerical-
aperture (NA) focusing, such as confocal microscopy [1],
optical coherence microscopy (OCM) [2], and multiphoton
microscopy [3], are restricted to generating en face images
unless the sample is translated axially or optical mecha-
nisms are used to scan the focus. Techniques that produce
cross-sectional images without axial translation of the fo-
cus, such as optical coherence tomography (OCT) [4], use
low-NA focusing so that a pencil beam approximation can
be used. Nevertheless, transverse resolution degrades
away from the focus in these techniques.

It has been shown in a recent series of papers [5–9]
that this spatially varying resolution can be corrected in
interferometric optical microscopy, overcoming the trade-
off between depth of focus and resolution, by using a com-
putational technique known as interferometric synthetic
aperture microscopy (ISAM). The coherent nature of the
ISAM imaging modality permits the solution of an in-
verse problem in order to provide a volumetric reconstruc-
tion of the object based only on a planar scanning geom-
etry. ISAM uses a quantitative scattering model and a
simple inversion technique to reconstruct the object with
spatially invariant resolution. The superior imaging per-
formance of ISAM is realized through an improved under-
standing of the physical relationship connecting the de-
tected signal and the object imaged, a relationship not
fully exploited in classical OCT.

Interferometric microscopies collect data that are de-
pendent on both the phase and amplitude of the field scat-
tered from the object of interest. This represents a major

advantage over incoherent techniques, such as wide-field
or confocal microscopy, where the phase of the field is lost.
Coherent detection allows the complex amplitude of the
field, rather than just intensity, to be measured or in-
ferred. In broadband interferometric instruments such as
OCT and ISAM, data are collected over a range of wave-
lengths, in addition to two spatial dimensions, to obtain a
three-dimensional volume of data. This in turn allows the
inference of three-dimensional object structure. In OCT
image reconstruction, it is implicitly assumed that at
each planar scan position a simple Fourier-transform re-
lation exists between the frequency dependence of the
measured field and the depth dependence of the imaged
object. In constrast, ISAM reconstruction takes into ac-
count the multiplex relation between the data and the ob-
ject structure. Inverting this relation allows a spatially
invariant diffraction-limited image resolution to be
achieved, in contrast to OCT where this resolution is
achieved only at the focal plane. The spatially invariant
ISAM resolution should be expected, as the only differ-
ence in the field (as opposed to the intensity) scattered
from different en face planes can be understood as a
change in the complex weighting of the plane-wave com-
ponents of the angular spectrum of the field. The ability
to computationally manipulate these weightings, as al-
lowed by interferometric measurement, means that any
en face plane can be brought into focus computationally
after data are collected. The computational focusing
implemented in ISAM is analogous to that used in syn-
thetic aperture radar [10] (SAR), which is also a broad-
band, coherent technique.

Previous developments of ISAM were based on a scalar
model of Gaussian-beam focusing and scattering. This is a
simplification, as light is a vector wave and Gaussian op-
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tics satisfy Maxwell’s equations only when the paraxial
approximation is invoked. A full vectorial model is devel-
oped to describe the effects of polarization on scattering
and propagation and also to account for high-angle fields.
In addition, no particular beam apodization is required by
the new model, meaning that various imaging modalities
that may not use a Gaussian beam can also be accommo-
dated in this new framework. Resulting analysis and nu-
merical experiments provide a verification of the approxi-
mate scalar model previously used to justify ISAM
processing. The ISAM method is shown to also be appli-
cable in the case of a tightly focused (high-NA) beam. Fur-
thermore, a means to reconcile paraxial (low-NA) [5] and
high-NA [6] limits is presented. Thus the new model adds
rigor to the theoretical framework of ISAM and also ex-
tends its realm of applicability.

The vector-based forward model is constructed using
the standard model for high-NA, vectorial focusing [11] of
the illumination field. Scattering from the object is then
modeled using the first Born approximation, and the re-
sulting field is propagated back through a lens to the de-
tector. It is shown that this model can be approximated in
a manner consistent with previous ISAM results. Simula-
tions confirm that the ISAM Fourier-resampling proce-
dure can still be expected to give excellent results in a
vectorial and/or high-angle framework. High-angle lenses
are shown to give the expected increase in resolution but
without any loss of depth of focus or signal level away
from the focal plane.

2. FORWARD MODEL

In this section the physics of the imaging system are mod-
eled. A general coherent microscope is considered, but one
particular configuration can be seen in Fig. 1. In this sec-
tion, interferometric microscopy is briefly discussed be-
fore the model is constructed. The construction proceeds
by first considering a focused illumination field, then the
response of the sample, followed by focused detection of
the scattered light. The consequences of using the same
lens for illumination and detection are also considered.

A. Interferometric Microscopy
OCT, which is a form of interferometric microscopy, mea-
sures the three-dimensional structure of a sample by scat-
tering broadband radiation from it. As shown in Fig. 1 a
focused beam of broadband light is scanned through a
sample, and the interferometric cross correlation between
the scattered signal and a reference signal is recorded at
a photodetector. By sampling the interferometric cross
correlation at many wavenumbers k, and by translating
the focus of the beam to many positions r�o� within the
sample, the three-dimensional structure of the sample
can be estimated.

For spectral-domain OCT [12,13], the detected inten-
sity I�r�o� ;k� for focal point r�o� and wavenumber k is

I�r�o�;k� = �E�r��k� + E�s��r�o�;k��2 = �E�r��k��2 + �E�s��r�o�;k��2

+ 2 Re��E�r��k��HE�s��r�o�;k��, �1�

where E�r��k� is the reference field, E�s��r�o� ;k� is the scat-
tered field at the detector, and superscript H indicates the

Hermitian conjugation operator. A term can be identified
with the interferometric cross correlation, which is de-
noted by

S�r�o�;k� = �E�r��k��HE�s��r�o�;k�. �2�

Assuming the autocorrelation term �E�s��r�o� ;k��2 is negli-
gible, measurements of I�r�o� ;k� for one or more known
reference fields E�r��k� allow the cross-correlation S�r�o� ;k�
to be inferred. The effects of nonnegligible autocorrelation
terms in ISAM imagery have been investigated in a sepa-
rate publication [14]. Because a single measurement of
I�r�o� ;k� can determine only Re�S�r�o� ;k��, the phase of the
reference may be varied by � /2 to also measure
Im�S�r�o� ;k�� using phase-shifting interferometry [15,16].

The cross-correlation signal S�r�o� ;k� can be related to
the signal measured using time-domain OCT. Given that
k��� is the dispersion relation of the sample medium, re-
lating temporal frequency � to spatial frequency k, the
temporal cross-correlation signal as a function of delay �

is

ST�r�o�;�� =
1

2�
�

−�

�

S�r�o�;k����ei��d�. �3�

By utilizing a procedure to correct the material dispersion
[17], the signal S�r�o� ;k� can be estimated from ST�r�o� ;��,
with a resampling coordinate change from � to k. In prac-
tice, however, typically only Re�ST�r�o� ;��� is measured us-
ing time-domain OCT. The effect of this is that only the

Fig. 1. Basic illustration of a coherent microscope. A source
feeds an interferometer where one arm produces a reference field
and the other consists of illumination and detection from the
sample to be imaged. The reference arm may contain an adjust-
able delay element (represented here by movable mirrors). In
practical implementations, the Mach–Zehnder layout shown
here is often replaced by a Michelson interferometer using a
single objective lens. The sample is scanned mechanically or op-
tically in two or three dimensions.
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real part of the sample susceptibility can be recon-
structed.

Likewise, in the practice of spectral-domain OCT, it is
often inconvenient to perform phase shifting to recover
the imaginary part of S�r�o� ,k� so that only Re�S�r�o� ,k�� is
measured. If the signal S�r�o� ,k� corresponds to a time-
domain signal ST�r�o� ,�� such that ST�r�o� ;��=0 for ��0,
then the real part and the imaginary part of S�r�o� ,k� are
related through a Hilbert transform over k [18]. This con-
dition can be ensured by combining the reference and
sample signals such that the reference signal completely
precedes the sample signal in time. The Hilbert transfor-
mation can be implemented in practice using the Fourier
transform, followed by nulling of all negative frequency
components. Such a procedure provides a method of mea-
suring the full complex S�r�o� ,k� without using multiple
measurements.

B. Focused Illumination
An objective lens is assumed to be illuminated by plane
waves of amplitude E�i�P�k� traveling parallel to the optic
axis (the case of non-plane-wave illumination is easily
modeled by including the illumination pattern in the lens
model, as demonstrated in Subsection 3.E). Here E�i� is a
unit vector and P�k� is proportional to the temporal Fou-
rier transform of the illumination field, or in the case of
incoherent illumination, the square root of the power
spectral density. It is also assumed that the objective lens
is infinity corrected—i.e., it is designed to focus an incom-
ing plane wave to the focal point. This geometry is most
conveniently analyzed by considering the illuminating
field on a planar surface across the instrument side of the
objective lens, while the field immediately after the lens
will be represented on a spherical reference surface cen-
tered on the focal point. Thus the instrument-side pupil is
planar, while the object-side pupil is spherical and cen-
tered around the focal point. The field produced on the ob-
ject side of the lens may be described by a spectrum of
plane waves [11], E�l���x ,�y�, which is given by the expres-
sion

E�l���x,�y� = Ā��x,�y�E�i�P�k�. �4�

Here �x and �y define the propagation direction of a mem-
ber of the plane-wave spectrum. Specifically, they are the
sines of the angles between the propagation direction and
the optic axis of the lens. The action of the lens on the in-

put plane wave is given by the dyad Ā��x ,�y�, and since
this expression does not depend on the wavenumber k,
the lens is implicitly assumed to be achromatic. Chro-
matic aberrations could be included by taking a

k-dependent dyad. Note that Ā��x ,�y� has been defined as
a function of the angle to focus, rather than the lateral po-
sition on the object-side pupil, but the mapping between
the two is straightforward: �x=−�x−x�o�� /�, �y=−�y
−y�o�� /�, where � is the focal length and the three-tuple
r�o�= �x�o� ,y�o� ,z�o�� gives the location of the geometric fo-
cus. The elements �x ,�y define a unit vector �

= ��x , �y , �z��x ,�y��, where

�z��x,�y� = + 	1 − �x
2 − �y

2. �5�

This vector points from each location on the object-side
pupil to the focus. Positive z points from the lens toward
the focal region.

Expressions describing the lens Ā��x ,�y� are well

known; e.g., for an aplanatic lens Ā��x ,�y� may be ob-
tained by simple rotations of the expression given by Eq.
(2.23) in [11]. Modifications can be made to model pupil-
plane filters, aberrations, or more complicated effects
such as the spatially varying polarization used in radially
polarized beams. The field on the object-side pupil [given
in Eq. (4)] determines the field in the vicinity of the focal
point [19]. The field produced by a unit-amplitude inci-
dent wave will be denoted by g�r−r�o� ;k� with its focus at
r�o�:

g�r − r�o�;k� = −
ik

2�
�

�

Ā��x,�y�E�i�

�z��x,�y�
eik�·�r−r�o��d�xd�y.

�6�

Here evanescent waves do not contribute to the focused
field, so � is the region in ��x ,�y� space for which
�z��x ,�y� is real—i.e., the unit disk, �= ��x ,�y :�x

2+�y
2

�1�. The effective region of integration will actually be
smaller than � due to the limited angular extent of the
aperture; however, this effect will be modeled by setting

Ā��x ,�y� to zero outside the aperture.
The object describes all inhomogeneities except, per-

haps, a single planar boundary between free space and a
high-index background. To account for the background,
the illumination amplitude described in Eq. (6) (and the
entire model developed in this paper) can be adjusted by
rescaling the spatial axes. The effects of the boundary be-
tween free space and the imbedding medium can be cap-
tured by defining a virtual lens in the style of [20]. Using
this method, the effects of the boundary will be included
in the lens models.

C. Scattering from the Object
The field P�k�g�r−r�o�� interacts with the object and, un-
der the first Born approximation, produces a secondary
source of density −k2P�k��̄�r�g�r−r�o� ;k�, where �̄�r� is
the susceptibility of the object. The field produced by scat-
tering from the object is treated perturbatively within the
accuracy of the first Born approximation. It is important
to recognize that higher-order terms in the Born series for
the scattered field will introduce signal originating from
apparently greater depth and will effectively be noise in
the signal. This is also the case in standard OCT, where
multiple scattering will produce artifacts and limit the
overall depth of penetration for which the method is effec-
tive.

The tensor susceptibility �̄�r� may be anisotropic but is
assumed to be constant with k. The secondary source can
now be propagated through space using the Green’s ten-

sor Ḡ�r� ,r ;k�. This tensor takes a source at r to a field at
r�. For an illumination focal point of r�o�, the unfocused
scattered field at a position r� can be calculated as
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E�u��r�,r�o�;k� = − k2P�k�� Ḡ�r�,r;k��̄�r�g�r − r�o�;k�d3r.

�7�

The Green’s tensor can also be expressed in an angular
spectrum using the vectorial Weyl’s identity [21,22]. The
spectrum will be limited to propagating waves, as evanes-
cent waves will not contribute at the observation position,
so that

Ḡ�r�,r;k� =
ik

2�
�

�

D̄��x,�y�

�z��x,�y�
e±ik�·�r�−r�d�xd�y, z� 	 z.

�8�

Here D̄��x ,�y� is a dyad that ensures only valid polar-
ization states, i.e., those that are transverse to the direc-
tion of propagation, are included. It will be assumed that
the observation point is on the lens side of the source so
that z��z. The above spectral representation can now be
used in Eq. (7):

E�u��r�,r�o�;k�

= − k2P�k�� ik

2�
�

�

D̄��x,�y�

�z��x,�y�


eik�·�r−r��d�xd�y�̄�r�g�r − r�o�;k�d3r

= − k2P�k�� ik

2�
�

�

D̄��x,�y�

�z��x,�y�


eik�·�r−r�o��e−ik�·�r�−r�o��d�xd�y�̄�r�g�r − r�o�;k�d3r.

�9�

The factor of e−ik�·r�o�
eik�·r�o�

=1 has been inserted so that
the field can be represented as an integral of a spectrum

of plane waves of the form e−ik�·�r�−r�o��. Each such plane
wave is traveling back toward the lens in the −� direction
and has accumulated a phase corresponding to its dis-
tance from the focal point. Such a representation is con-
venient when considering detection optics focused to r�o�.

D. Focused Detection
The signal acquired results from collecting the scattered
light with a lens. This collection operation is modeled us-
ing the backward-propagating angular spectrum of Eq.
(9). It is assumed that the detection lens is also focused to

r�o�. The tensor B̄��x ,�y� defines the detection lens by
mapping an object-side plane wave traveling in the −� di-
rection to the resulting plane-wave component that trav-
els parallel to the optic axis on the instrument side of the
lens. An integration is performed over the scattered plane
waves, and the result is projected onto the reference field
E�r��k� as in Eq. (2). The analysis presented here may en-
compass any reference field E�r��k� but, as indicated in
Fig. 1, the reference field will generally have the same
spectral content as the field illuminating the sample. As
such, it will be represented by �r

*P�k�E�d�, where �r con-
trols the ratio of the reference- and illumination-field am-
plitudes, and E�d� is the detected polarization (like E�i�,

E�d� is a unit vector). Again, a limited aperture can be

modeled by having B̄��x ,�y� fall to zero outside the aper-
ture. The collected signal is therefore expressed as fol-
lows:

S�r�o�,k� = − k2�r�P�k��2�E�d��H� �
�

B̄��x,�y�
ik

2�

D̄��x,�y�

�z��x,�y�


eik�·�r−r�o��d�xd�y�̄�r�g�r − r�o�;k�d3r. �10�

Comparing this expression with Eq. (2), it can be seen
that the reference field E�r��k� accounts for a factor of
�rP

*�k��E�d��H and that the remainder of Eq. (10) de-
scribes the scattered field E�s��r�o� ;k�.

Equation (10) can be simplified by noting that D̄��x ,�y�
is the identity operator for fields perpendicular to the di-
rection of propagation and the null operator for fields par-
allel to it. Since the lens accepts only fields perpendicular
to the incident ray path,

B̄��x,�y�D̄��x,�y� = B̄��x,�y�. �11�

This allows D̄��x ,�y� to be removed from Eq. (10).
Analogously to the illumination pattern of Eq. (6), a de-

tection pattern can be defined as

f�r − r�o�;k� = −
ik

2�
�

�

B̄T��x,�y��E�d��*

�z��x,�y�
eik�·�r−r�o��d�xd�y,

�12�

where superscript � represents conjugation and super-
script T the transpose operation. This can be used to give
a simple form to Eq. (10):

S�r�o�,k� = k2�r�P�k��2� fT�r − r�o�;k��̄�r�g�r − r�o�;k�d3r

= k2�r�P�k��2� f��r − r�o�;k�g�r − r�o�;k����r�d3r

=� h��r�o� − r;k����r�d3r. �13�

The last two lines employ Einstein summation notation
and show how each component of the susceptibility affects
the collected data. The function h��r� is a point-spread
function and is defined as

h��r;k� = �rk
2�P�k��2f��− r;k�g�− r;k�. �14�

These equations represent the most general form of the
forward model. In the following subsection, the case
where the same lens is used for illumination and detec-
tion is explored. Note that the results given in this section
can be generalized to cover partially polarized detection
provided that the correlation between each component of
E�d� and E�i� is known. For the sake of brevity, such an
analysis will not be presented here. The model can also be
used in an analysis of polarization-sensitive imaging by
taking measurements with differing E�i� and/or E�d�. How-
ever, it should be noted that anisotropies in the back-
ground medium are not accounted for in the model pre-
sented here.
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E. Single-Lens Systems
Most practical systems will include only a single lens, and
this will be used for both illumination and detection. This
system is illustrated in Fig. 2. For a single-lens system
the following relation applies:

B̄T��x,�y� = Ā��x,�y�. �15�

This result stems from a simple application of optical reci-
procity [23].

If the detection polarization is chosen to be the same as
the illumination polarization, but propagating in the op-
posite direction, i.e., back out of the object, then the fol-
lowing relation must hold [23]:

E�d� = �E�i��*. �16�

If the conditions of Eqs. (15) and (16) are met, then Eq.
(12) becomes the same as Eq. (6), indicating that the illu-
mination and detection patterns are the same—f�r
−r�o� ;k�=g�r−r�o� ;k�. This results in the following model
for the OCT system:

S�r�o�,k� = k2�r�P�k��2� gT�r − r�o�;k��̄�r�g�r − r�o�;k�d3r.

�17�

This equation is analogous to Eq. (3.18) in [5] but is de-
rived in a more general setting. Additionally, it can be
seen that the detection operation is of the form

S�r�o�,k� = k2�r�P�k��2� gT�r − r�o�;k��·�d3r. �18�

For a fixed-energy secondary source, the detected signal is
maximized when the secondary source is proportional to
g*�r−r�o� ;k�. This corresponds to a counterpropagating
version of the illumination field. As this field would be
traveling back through the same lens that produced it, it
would indeed be expected to maximize the expected sig-
nal. Conversely, if �̄�r� is uniform, then the secondary

source field in Eq. (17) would be g�r−r�o� ;k� (i.e., without
conjugation), and it can be shown that the detected signal
would, as expected, be zero for this no-scatterer case.

F. Data Collection
The imaging system will produce a data set by obtaining
S�r�o� ,k� at many values of r�o�. If this scanning is per-
formed in all three dimensions, then Eq. (13) is a sum of
the three-dimensional convolutions over the components
of the tensor susceptibility. The inverse problem (recon-
struction of the susceptibility from the data) could then be
tackled in the Fourier domain, where the convolution op-
eration becomes a simple multiplication.

However, it is desirable to have a fast imaging system
that scans only in the two dimensions perpendicular to
the optic axis (x and y)—the remaining dimension �z� can
be reconstructed if spectral information is gathered. In
the convention adopted here, the x and y directions will be
called the lateral dimensions, and z points in the axial di-
rection. The scanning offset r�o� will be split into axial and
lateral components

r�o� = �x�o�,y�o�,z�o�� = �r

�o�,z�o��. �19�

The forward model given in Eq. (13) can be written as

S�r

�o�,k� =�� h��r


�o� − r
,z
�o� − z;k����r
,z�d2r
dz.

�20�

The inner integral in Eq. (20) is a convolution. Letting the

symbols S̃�·�, h̃��·� and �̃��·� denote the two-dimensional
Fourier transforms over the lateral dimensions of S�·�,
h��·�, and ���·�, respectively, gives

S̃�Q
,k� =� h̃��Q
,z
�o� − z;k��̃��Q
,z�dz. �21�

This is a sum (over � and ) of one-dimensional Fredholm
integral equations of the first kind (FIEFK) at each lat-
eral Fourier point. If each term in the sum of Eq. (21) can
be isolated or the anisotropy of the object is known, in-
verting the FIEFK is a standard problem [24]. The kernel

h̃��Q
 ,z�o�−z ;k� can be calculated from known theory
[11], and this one-dimensional case should be computa-
tionally tractable. However, inverting the entire data set
will require many such operations and so may be time-
consuming. For this reason, a computationally efficient,
approximate inversion process will be explored.

3. APPROXIMATE MODELS

A mathematical model for a coherent microscope with a
planar scanning geometry and spectral detection, i.e., an
OCT system, was described in the previous section. Al-
though this model is complete, it may be possible to intro-
duce simplifying approximations [5,6]. The goal is to sim-
plify the form of the model—specifically, to take the
FIEFK relation of Eq. (21) and reduce it to a simple
resampling operation.

Fig. 2. Diagram illustrating a single-lens OCT system. Some of
the expressions derived in Section 2 are shown with the physical
quantities they represent. Following standard practice, a ray op-
tics description characterizes the lens. This description can then
be interpreted as an angular spectrum and be used to calculate
the fields in the vicinity of the focal spot.
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A. Alternate Representation of the Point-Spread
Function
The point-spread function given by Eq. (14) is determined
by the product f��r ;k�g�r ;k�. These functions are natu-
rally expressed in the Fourier domain; Eqs. (6) and (12)
will be rewritten as

f��r;k� = −
ik

2�
�

�

F���x,�y�

�z��x,�y�
eik�·rd�xd�y, �22�

g�r;k� = −
ik

2�
�

�

G��x,�y�

�z��x,�y�
eik�·rd�xd�y, �23�

where

F���x,�y� = �B̄T��x,�y��E�d��*��, �24�

G��x,�y� = �Ā��x,�y�E�i��. �25�

The limits of integration of Eqs. (22) and (23) can be ex-
tended to infinity as the aperture pattern is zero outside
�. Since these equations are then in the form of inverse
Fourier transforms, it can be seen that

f̃��Q
,z;k� = − 2�i

F��Q


k
�

kz�Q
�
eikz�Q
�z, �26�

g̃�Q
,z;k� = − 2�i

G�Q


k
�

kz�Q
�
eikz�Q
�z, �27�

where Q
=k�
 and kz�Q
�=k�z�Q
 /k�. Strictly speaking Q


and kz�Q
� are functions of k, but this will not be noted
explicitly.

To calculate h��r ;k� the product f��r ;k�g�r ;k� is rel-
evant, as shown by Eq. (14):

h̃��− Q
,− z;k� = k2�r�P�k��2�f̃��Q
,z;k��
g̃�Q
,z;k��.

�28�

This lateral convolution (denoted by �
) can be written ex-
plicitly as

h̃��− Q
,− z;k� = − 4�2k2�r�P�k��2


�
F��q


k
�

kz�q
�

G�Q
 − q


k
�

kz�Q
 − q
�


ei�kz�q
�+kz�Q
−q
��zd2q
. �29�

The Fourier-domain representation of h̃��−Q
 ,−z ;k�
given in Eq. (29) will form the basis for approximation of
the forward model. Two separate approximations will be
derived—one for scatterers near focus and one for scatter-

ers far from focus. It will be seen that the form of the re-
sultant expression for the data is the same in both cases.

B. Approximation for Far-from-Focus Scatterers
Since F��q
 /k� and G�q
 /k� have a fixed scale and the
rate of complex oscillation in Eq. (29) increases with �kz�,
there will be some distance from the focus at which the
two-dimensional method of stationary phase [22] can be
applied. The method of stationary phase can be applied to
integrals whose integrand contains a rapidly oscillating
complex exponential. The value of such integrals are de-
termined by the value of the integrand at the stationary
points of the argument of the exponential—that is, points
where the argument of the exponential has zero gradient.
In this problem that occurs at the point

q

�stat.� = Q
/2. �30�

The method of stationary phase then gives

h̃��− Q
,− z;k� 
i4�3k

z
�r�P�k��2ei2kz�Q
/2�z


F��Q
/2

k
�G�Q
/2

k
� . �31�

The accuracy of this approximation improves as the oscil-
lations in the integrand become more rapid and as the do-
main of integration increases. These two conditions are
quantified by �kz� and NA2, respectively. The parameter
NA2�kz� will be chosen to determine the applicability of
the approximation based on these quantities and on the
fact that this parameter is proportional to the distance
from the focus, in units of the Rayleigh range. The ex-
ample analytical and numerical results given in Subsec-
tions 3.E and 5.C support the use of NA2�kz� in determin-
ing where the stationary phase approximation is
applicable. It should be noted that the stationary phase
approximation also relies on the aperture profiles
F��q
 /k�, G�q
 /k� being smooth within the domain of in-
tegration. In the next section, the near-focus approxima-
tion will be seen to take a form similar to Eq. (31).

As shown in Eq. (31), for far-from-focus scatterers the
−Q
 component of the lateral-Fourier-domain data is de-
pendent only on a single point Q
 / �2k� in the apertures.
This point can be associated with a ray path from the ap-
ertures to the focal point and shows that the far-from-
focus interactions can be interpreted in a geometrical op-
tics framework. The derivation presented in this
subsection is analogous to standard derivations of geo-
metrical optics from Maxwell’s equations, as in [25],
Chapter 3.

In the case that Q
 / �2k� falls outside one or both of the
apertures, there is no stationary point within the limits of
the integral in Eq. (29). This is because the limits of the
integral are determined by the regions of nonzero overlap
between F��q
 /k� and G��Q
−q
� /k�. In such a case, the

next order in the asymptotic series for h̃�·� is proportional
to �kz�−3/2 (the lowest-order term being proportional to
�kz�−1) and is associated with the point of stationary phase
constrained to the boundary of the overlap of the aper-
tures [22]. That contribution is usually called the bound-
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ary ray and becomes the dominant term in the shadow of
one aperture or the other [26].

C. Approximation for Near-Focus Scatterers
For small values of �kz�, i.e., when a scatterer is near the
focal plane, the oscillations of the complex exponential in
Eq. (29) will be slow. Therefore, for sufficiently small �kz�,
the functions F��q
 /k� and G�q
 /k� will be narrowly
peaked with respect to the remainder of the integrand in
Eq. (29). This peakedness allows the integral to be ap-
proximated.

Before proceeding with the approximation, it will be
convenient to assume the standard case of aplanatic ob-
jective lenses. This means the pupil functions can be writ-
ten as

F���x,�y� = F̌���x,�y�	�z��x,�y�, �32�

G��x,�y� = Ǧ��x,�y�	�z��x,�y�. �33�

The square-root factor comes about from taking the am-
plitude over the flat instrument pupil to the curved object
pupil in a way that conserves energy [11]. The checked
factors are additional transfer patterns on the lens or,
equivalently, account for a non-plane-wave distribution
across the entrance pupil. This notation is simply for con-
venience and does not limit the following results to
aplanatic lenses. Using these forms, Eq. (29) becomes

h̃��− Q
,− z;k� = − 4�2k�r�P�k��2�
F̌��q


k
�

	kz�q
�

Ǧ�Q
 − q


k
�

	kz�Q
 − q
�


ei�kz�q
�+kz�Q
−q
��zd2q
. �34�

Assume F̌��q
 /k�Ǧ��Q
−q
� /k� is peaked at about q

�p�.

Then it is sensible that the integrand modulo of this fac-
tor be written as a Taylor series about this point:

ei�kz�q
�+kz�Q
−q
��z

	kz�q
�kz�Q
 − q
�
= �

l=0

�

�
m=0

�

��l,m,q

�p�;k��qx − qx

�p��l


�qy − qy
�p��m, �35�

where

��l,m,q

�p�;k� = � �

�l+m�

�
lqx�

mqy

ei�kz�q
�+kz�Q
−q
��z

	kz�q
�kz�Q
 − q
�
�

q
=q


�p�

.

�36�

This gives an expansion of Eq. (34) in terms of the mo-

ments of F̌��q
 /k�Ǧ��Q
−q
� /k� as

h̃��− Q
,− z;k� = − 4�2k�r�P�k��2�
l=0

�

�
m=0

�

��l,m,q

�p�;k�


� F̌��q


k
�Ǧ�Q
 − q


k
�


�qx − qx
�p��l�qy − qy

�p��md2q
. �37�

As seen in Eq. (36), the derivatives of the exponential de-

termine ��l ,m ,q

�p� ;k�, and so this coefficient decreases

more rapidly, with l and m, for low �kz�. Similarly, the mo-
ments of the aperture functions decay more rapidly for
more peaked profiles, i.e., for small NA2. As a result, the
series given in Eq. (37) decays more rapidly for small val-
ues of NA2�kz�. Assuming sufficiently small NA2�kz�, the
first term in the series dominates:

h̃��− Q
,− z;k�  − 4�2k�r�P�k��2
ei�kz�q


�p��+kz�Q
−q

�p���z

	kz�q

�p��kz�Q
 − q


�p��


� F̌��q


k
�Ǧ�Q
 − q


k
�d2q
. �38�

The condition of small NA2�kz� required here, in the near-
focus case, is in direct opposition to the far-from-focus
case where NA2�kz� must be large.

In many cases of interest, F̌��q
 /k� and Ǧ�q
 /k� are cir-
cularly symmetric and equal. Then it is most sensible to

make the expansion about the point q

�p�=Q
 /2 as was

done in [6]. This particular point also results in
��1,0,Q
 /2 ;k�=��0,1,Q
 /2 ;k�=��1,1,Q
 /2 ;k�=0, so that
the approximation is accurate up to second-order terms.
This expansion point will be chosen for the remainder of
this work, resulting in the near-focus model

h̃��− Q
,− z;k�  − 4�2k�r�P�k��2
K��Q
;k�

kz�Q
/2�
ei2kz�Q
/2�z,

�39�

where

K��Q
;k� =� F̌��q


k
�Ǧ�Q
 − q


k
�d2q
. �40�

An example of the evaluation of K��Q
 ;k� is given in Sub-
section 3.E. In contrast to the far-from-focus approxima-
tion, the near-focus result cannot be cast in a geometrical
optics framework, as the fields in the focal region are de-
pendent upon the entire aperture. The diffraction effects
in the focal region cannot be modeled using ray optics.

While the expansion around q

�p�=Q
 /2 is applicable in

many cases, it is easy to envision a scenario where it is

not. Consider an example where F̌��q
 /k� is a radially

symmetric Gaussian with variance �1
2 and Ǧ�q
 /k� is a

radially symmetric Gaussian with variance �2
2. In this

case F̌��q
 /k�Ǧ��Q
−q
� /k� can be shown to be centered

around q

�p�=Q
�1

2 / ��1
2+�2

2�.

D. Unified Approximated Model
The near-focus and far-from-focus approximations of Eqs.
(31) and (39) can both be written in the form

h̃��− Q
,− z;k�  H��Q
;k���z�ei2kz�Q
/2�z, �41�

where
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H��Q
;k� = �H�
�N��Q
;k� = − 4�2k�r�P�k��2

K��Q
;k�

kz�Q
/2�
�z� �

1

kNA2

H�
�F��Q
;k� = i4�3kz�Q
/2��r�P�k��2F̌��Q
/2

k
�Ǧ�Q
/2

k
� �z� �

1

kNA2
� , �42�

��z� = ���N��z� = 1 �z� �
1

kNA2

��F��z� =
1

z
�z� �

1

kNA2
� . �43�

Note that the far-from-focus approximation in Eq. (42)
has been rewritten in terms of the aplanatic-lens profiles
given in Eqs. (32) and (33). It can also be seen that as z

moves from a large negative value to zero to a large posi-
tive value, the phase of H��Q
 ;k� changes from 3� /2 to �

to � /2—this behavior is analogous to the well-known
phase anomaly, or Gouy phase shift, observed in a focused
beam (see [25], Chapter 8.8.4).

The conditions on z in Eqs. (42) and (43) make it clear
that Eq. (41) is valid only in the near-focus and far-from-
focus regions, not necessarily in the intermediate zone.
Also note that the intermediate zone’s location is a func-
tion of k and thus varies within a single data set. How-
ever, the image-reconstruction procedure developed in
Section 3 will assume a model of the form given in Eq.
(41) over all space. Although this approximation is not
rigorously justified, numerical simulations will show that
it allows excellent image reconstruction using a very
simple algorithm.

This form for the model makes evident the effects of co-
herent imaging as three separate phenomena. The beam
profiles, polarization behavior, aberrations, and other
such lens-determined or user-defined effects are ex-
pressed in H��Q
 ;k�, while the decay in signal away from
the focus is expressed by ��z�. The broadening effect of de-
focusing is represented in the complex exponential factor,
which can be seen by noting that the only other z depen-
dence present is in ��z�, and this is just a loss in signal
strength. So the fact that the shape of the point-spread
function varies with z is due solely to the complex expo-
nential. Restated, it is known that h��r
 ,z� becomes
broader, due to defocus, as z moves away from the z=0 fo-
cal plane. This effect is due solely to the exponential fac-
tor in Eq. (41). This exponential factor is identical in both
the near-focus and far-from-focus approximations.

This unified form for the approximation shows how de-
focusing effects can be decoupled from the wide range of
other factors that influence the performance of a coherent
imaging system. Near-focus and far-from-focus scatterers
are both shown to be subject to the same phase-shifting
effect. The border between the near-focus and the far-
from-focus regions will be explored further in subsequent
sections. In the next section the scalar Gaussian case is
considered, and it is shown that the exact analytic expres-
sion for this case has a clear relation to the two approxi-
mations developed in this section.

E. Scalar Gaussian Case
For systems of low NA, the fields g�r−r�o� ;k� and f�r
−r�o� ;k� will be dominated by one polarization state. For
example, if in the incident field E�i� is x polarized and the
lens is of low NA and made of an isotropic material, the
field g�r−r�o� ;k� will be predominantly x polarized. This is
because each nonzero component of its plane-wave spec-
trum is traveling at a small angle to the optic axis. The
consequence of this uniform polarization is that only one
�� ,� pair in Eq. (14) will produce a significant point-
spread function. Thus the sum of Eq. (13) reduces to a
single term, and scalar optics can be applied. This low-
NA/scalar treatment of the focused field is consistent with
the paraxial treatment of the Helmholtz equation. Gauss-
ian beams are a solution to this equation and are widely
used to model focused light. In the remainder of this sec-
tion, the techniques developed here are compared with
standard scalar, Gaussian analysis.

Consider the scalar case where the field incident on the
lens is

e−�2�x2+y2�/�2�2�, �44�

where the width of this function is determined by � and �

is the lens focal length. The distribution on the object-side
pupil can then be given by the expression

Ǧ��x,�y� = e−�2��x
2
+�y

2�/2. �45�

This form assumes an aplanatic lens as each ray emerges

from its input height. The factor 	�z��x ,�y� is required to
conserve energy and is implied in Eq. (33). The NA of the
lens can then be defined in terms of � as

� = 	2/NA. �46�

The NA for the Gaussian beam is the sine of the angle at
which the distribution at the object-side pupil drops to 1/e
of its maximum.

Since a single objective lens is being used, Eq. (15) is
satisfied, and since a scalar case is being considered,
matching the polarizations, as in Eq. (16), is not an issue.
This gives

F̌��x,�y� = e−�2��x
2
+�y

2�/2. �47�

The far-from-focus approximation of Eq. (31) can now
be evaluated. The near-focus approximation can also be
found by first calculating K�Q
 ;k� using Eq. (40):
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K�Q
;k� =� e−�2�qx
2
+qy

2�/�2k2�e−�2��Qx − qx�2+�Qy − qy�2�/�2k2�dq


=� e−�2�Qx
2
+Qy

2�/�4k2�e−�2��qx − Qx/2�2+�qy − Qy/2�2�/k2
dq


= �e−�2��Qx/�2k��2 + �Qy/�2k��2�2/2�2
�k2

�2

=
�k2

�2
F̌�Q
/2

k
�Ǧ�Q
/2

k
� . �48�

The model is now defined by Eqs. (41)–(43) with the fol-
lowing definitions:

H�N��Q
;k� = − 4�3k3�r�P�k��2
1

�2kz�Q
/2�
F̌�Q
/2

k
�Ǧ�Q
/2

k
� ,

�49�

H�F��Q
;k� = i4�3kz�Q
/2��r�P�k��2F̌�Q
/2

k
�Ǧ�Q
/2

k
� . �50�

This scalar Gaussian case has been examined in the lit-
erature. The unapproximated outcome shown in [5] in Eq.
(3.23) can be restated in a form relevant to the results de-
rived here:

h̃�− Q
,− z;k� = � 1

H�N��Q
;k���N��z�

+
1

H�F��Q
;k���F��z��
−1

ei2kz�Q
/2�z. �51�

The equation above comes from [5] after accounting for
paraxial approximations, differing representations of the
angular spectra, and correcting a factor of k that is incor-
rectly dropped between Eqs. (3.18) and (3.23).

A method of transitioning between the near-focus and
the far-from-focus approximations is given in Eq. (51). It
can be seen that at large z the far-from-focus result domi-
nates and that at low z the near-focus result dominates
due to the form of ��z� [Eq. (43)]. From Eq. (51) it can be
seen that the approximation to the exact model derived in
this work is clearly related to an exact result for one par-
ticular approximated (i.e., scalar and Gaussian) system.

The transition point between the near-focus and the
far-from-focus regimes can also be evaluated in Eq. (51).
The point at which both the terms contribute equally is

�z� =
�2kz

2�Q
/2�

k3


�2

k
=

2

kNA2
=

�

�NA2
. �52�

This transition point is where �z� is one Rayleigh range
�NA2�kz�=2�. Physically, this indicates that the near-focus
approximation is valid when the field is well collimated,
while the far-from-focus approximation is valid when the
field is behaving as a spherical wave.

4. IMAGE RECONSTRUCTION

In this section, the problem of constructing an image of
the susceptibility from the data is addressed. It will be

shown that the defocusing portion of the model can be
cast as Fourier-domain resampling. This suggests a
simple reconstruction method.

The approximate kernel of Eq. (41) is substituted into
the observation model of Eq. (21). It is assumed, without
loss of generality, that the origin of the coordinate system
lies in the focal plane so that z�o�=0, then

S̃�Q
,k� = H��− Q
;k�� ��z��̃��Q
,z�ei2kz�−Q
/2�zdz.

�53�

It is useful to define a modified susceptibility as

�̄��r� = ��z��̄�r�. �54�

Using this susceptibility and the fact that kz�−Q
 /2�
=kz�Q
 /2� yields

S̃�Q
,k� = H��− Q
;k�� �̃�� �Q
,z�ei2kz�Q
/2�zdz. �55�

The integral above can be recognized as a Fourier trans-
form in the z dimension. Let � denote a three-
dimensional Fourier transform, so that

S̃�Q
,k� = H��− Q
;k��5 �� �Q
,− 2kz�Q
/2��. �56�

This equation relates the data at lateral spatial frequency
Q
 and wavenumber k to the three-dimensional Fourier
transform of the susceptibility. This relationship, between
the data collected at �Q
 ,k� and the object’s Fourier rep-
resentation at Q= �Q
 ,Qz�, is illustrated graphically in
Fig. 3. The Fourier relation in Eq. (56) is a generalization
of the scalar Gaussian result presented in an earlier pa-
per on high-NA ISAM [6]; however, that result was de-

Fig. 3. Illustration of the Fourier-domain relation between the
collected data and the object. A point �Q
 ,k� in the data corre-
sponds to the point Q= �Q
 ,−2kz�Q
 /2�� in the Fourier-domain
representation of the object. Thus the two-dimensional Fourier
transform of the data at wavenumber k gives the object’s three-
dimensional Fourier components at the same lateral frequencies
and at a distance of 2k from the origin.

Davis et al. Vol. 24, No. 9 /September 2007 /J. Opt. Soc. Am. A 2535



rived based solely on approximations valid in the near-
focus region. It is a fortunate happenstance that the near-
focus and far-from-focus cases produce the same Fourier
resampling when equal circularly symmetric lens-
aperture functions are used. The Fourier mapping seen in
Fig. 3 also arises in SAR, where it is often known as the
Stolt mapping [27].

In traditional Fourier-domain OCT, the object is esti-
mated by simply taking the Fourier transform of the data
along the k dimension. This takes the spectral-OCT data
into the spatial domain. The resulting image is known to
be stretched by a factor of −2 in the axial direction. This
image-reconstruction technique is equivalent to assuming
the point �Q
 ,k� in the data corresponds to the point Q

= �Q
 ,−2k� in the three-dimensional Fourier representa-
tion of the object. It will be seen that correcting �Q
 ,
−2k� to �Q
 ,−2kz�Q
 /2�� will provide significant advan-
tages.

The effects of H��Q
 ;k� could be mitigated by applying
a regularized inverse filter, e.g., a Wiener filter [28]. How-
ever, this portion of the forward model depends on system
parameters such as the beam profile used, the polariza-
tion states chosen, etc. It is also dependent on whether a
scatterer is in the near-focus or out-of-focus regime. For
these reasons, its effects will not be inverted at this point.
As mentioned earlier, the defocusing effect is contained in
the complex exponential factor in Eq. (41) and that is
what will be inverted here. Since H��Q
 ;k� is a smooth
(within the passband), real (in the aberration-free case)
Fourier-domain weighting, it represents simple linear
shift-invariant filtering that will not introduce major dis-
tortions to the image. However, it should be noted that in
polarization-sensitive imaging techniques, the H��Q
 ;k�
factor will be important, since how it changes with � and
 determines the polarization response of the system.

In Subsection 2.C it was assumed that the susceptibil-
ity of a scatterer was constant over the wavenumbers ob-
served. If it is not, the variation with k will have an effect
similar to that of the factor H��Q
 ;k�. In fact, if the k de-
pendence is known and spatially uniform across the ob-
ject, as would occur when only one well-characterized
scattering material is present, it can be incorporated into
H��Q
 ;k� and compensated. In cases where the suscepti-
bility varies as a nonseparable function of space and ob-
served wavenumber and/or is not known a priori, distor-
tions may occur in the image. The wavenumber variation
results in a Fourier-domain modulation of the data from
each scatterer. In cases where the wavenumber variation
is slow, the resulting image distortion can be expected to
be minor. However, if a rapid spectral change in suscepti-
bility amplitude and/or phase is present, the reconstruc-
tion quality may be significantly compromised. Such dis-
tortions would also occur in OCT imaging but can be
expected to be more detrimental in the phase-sensitive
out-of-focus reconstructions performed as part of the
ISAM method. This issue will be more pressing for large-
bandwidth imaging systems.

The factor ��z� in Eq. (41) is a z-dependent scaling, but
for three-dimensional image display, it is useful to have
some means of inverting its effects. Consistent with Eq.
(43), an approximated form will be used to model the axial
decay of the signal:

̺�z� = � 1 �z� � z�c�

z�c�/z �z� � z�c�� . �57�

In this approximation z�c� represents the axial plane at
which the model moves from the near-focus to the out-of-
focus regimes. The factor of z�c� in the second term is in-
cluded to ensure continuity. The image recovered after
Fourier resampling will be divided by this function in or-
der to retrieve an estimate of �̄�r� from the estimate of
�̄��r� given [Eq. (54)]. As mentioned in Subsection 3.D
this procedure is not rigorously justified for the interme-
diate area between near-focus and far-from-focus scatter-
ers; however, in each limit the same resampling proce-
dure is suggested. The numerical simulations in the next
section also show good performance at all axial positions
when this inversion method is applied. Additionally, the
form given in Eq. (57) will be further justified in Subsec-
tion 5.C.

The ISAM image-reconstruction algorithm presented
here is noniterative and nonadaptive and can be imple-
mented computationally using only the Fourier trans-
form, interpolation, and multiplication. Fast and efficient
algorithms exist for all of these operations, resulting in a
reconstruction procedure that can be readily implemented
on a modern personal computer.

5. NUMERICAL SIMULATIONS

The numerical simulations in this section apply the re-
construction approach of Section 4 to data simulated us-
ing the unapproximated forward model of Section 2. The
results demonstrate the validity of the approximations
derived in Section 3 and the advantages that can be ex-
pected by using ISAM processing.

A. Simulation Parameters
This section will present numerical simulations where the
data are generated using the exact model in the form of
Eq. (17) and the reconstructions are calculated using the
algorithm proposed in Section 4. Various NAs are consid-
ered, and the lens is assumed to be illuminated by an
x-polarized plane wave. The detection polarization E�d� is
also assumed to be linearly polarized in the x direction.
The illumination amplitude P�k� will be set to 1/ �kNA� to
compensate for the wavenumber-dependent scattering
strength described in Subsection 2.C and so that the inte-
grated intensity of the sample-arm light over the lens is
preserved with NA. The reference amplitude will be kept
constant with NA by setting �r=NA. Isotropic scattering
is assumed so that the susceptibility is scalar:

�̄�r� = ��r��
1 0 0

0 1 0

0 0 1
� . �58�

Substituting this expression for �̄�r� into Eq. (56), it is
found that

S̃�Q
;k� = ��
�

H���− Q
;k���5 ��Q
,− 2kz�Q
/2��, �59�

where
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���r� = ��z���r�. �60�

Two image-reconstruction techniques will be consid-
ered. The first is the traditional approach of taking the
fast Fourier transform (FFT) of spectral-domain data over
the k dimension and correcting for the axial scaling of −2
in the reconstructed image (as mentioned in Section 4).
The second approach will be to use the resampling
method described in Section 4 and illustrated in Fig. 3. A
two-dimensional Fourier transform over r
 will be applied
to the data S�r
 ,k� and the resulting �Q
 ,k� data points
shifted to �Q
 ,−2kz�Q
 /2��. A three-dimensional inverse
FFT is then applied to get an estimate of ���r�. For both
methods the approximated axial response ̺�z� [Eq. (57)]
is divided out and the magnitude of the result is plotted
as the reconstructed image.

B. One-Scatterer Simulations
Consider a unit-amplitude point scatterer located on the z

axis. In Fig. 4, the results of the simulated imaging of
three such objects are shown. Axial offsets of 1 �m, 2 �m,
and 5 �m are considered for a system using a lens with a
NA of 0.75. This high NA serves to effectively demon-
strate the results of the resampling scheme and also to il-
lustrate that image reconstruction with such high NAs is

possible. Three-dimensional data are collected for 64
evenly spaced wavenumbers between 6.28 �m−1

(1000 nm wavelength in free space) and 9.52 �m−1

�660 nm�. At each wavelength a 256
256 image is col-
lected, where each pixel corresponds to a 200 nm

200 nm area in the object. A traditional reconstruction
is shown for each object along with a reconstruction based
on Fourier resampling (as described above). The axial sig-
nal decay is not compensated in these reconstructions.

It can be seen from Fig. 4 that the resampling-based
approach does an excellent job of restoring the out-of-
focus scatterers. The reason for this is clear when the re-
constructions are examined in the Fourier domain. The
Fourier transforms of these axially offset scatterers are
complex exponentials oscillating in the Qz direction. The
frequency of oscillation corresponds to the axial offset. As
can be seen from Fig. 5, the observation distorts these
straight oscillations to a curved path. Spatially, the bend-
ing of the phase fronts corresponds to an out-of-focus blur-
ring. When the proposed image-reconstruction algorithm
is applied, the previously curved paths are straightened
within what is now a curved passband. The spatial effect
is to bring the previously out-of-focus points into sharp
contrast. The reconstructions can still be seen to drop in
intensity with �z�. This is due to the fact that ���r� [Eq.
(60)] is being estimated and that its strength is predicted
to drop with �z� as dictated by ��z�.

As can be seen in Fig. 5, the curves are not corrected to
exactly straight lines. This is due to the approximations
used in Section 3. Additionally, the amplitude of the com-
plex oscillations is not entirely uniform throughout the
passband. This can be attributed to the H���Q
 ;k� factor
of Eq. (59). The phase fronts appear straighter for the

Fig. 5. Real part of the Fourier-domain representations of the
reconstructions from Fig. 4. The standard OCT reconstructions,
shown on the left, stretch the Fourier representation of the data
by a factor of 2 axially and flip the axial Fourier axis. The ISAM
resampling approach (results shown on the right) can be seen to
correct the data so as to better match the expected Fourier spec-
tra of the object. In this case the Fourier-domain objects are com-
plex exponentials oscillating in the axial direction—i.e., the oscil-
lation crests should be straight.

Fig. 4. Reconstructed images for point scatterers lying on the z
axis. Images (a), (c), and (e) show standard reconstructions, while
(b), (d), and (f) show ISAM resampling-based reconstructions.
Images (a) and (b) correspond to a scatterer at �0,0,1� �m, (c)
and (d) are for a scatterer at �0,0,2� �m, and (e) and (f) are for a
scatterer at position �0,0,5� �m. The two-dimensional plots
shown are a lateral-axial slice of the respective three-
dimensional reconstructions. The images are plotted in normal-
ized units, where the peak value of (a) is 1. Note the drop in sig-
nal as the z position of the scatterer increases.
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5 �m scatterer as the stationary-phase approximation be-
comes more accurate as �z� increases. For this system the
Rayleigh range [as defined in Eq. (52)] is approximately
0.5 �m, so the scatterers of Figs. 4 and 5 are either in the
transition or out-of-focus regime. The spectral oscillations
of something closer to the focal point would be hard to see
across the passband and so are not included in these
simple simulations. Later results illustrate the transition
between near-focus and far-from-focus and also include
reconstructions of near-focus points.

C. Determining the Near-Focus-to-Out-of-Focus
Transition
From Eq. (42) it can be seen that the signal level is z de-
pendent for out-of-focus scatterers but not for near-focus
scatterers. This fact can be used to numerically determine
the boundary between these two regions. The forward
model can be used to calculate the total intensity incident
on the detector plane for any given scatterer. A number of
scatterers at various positions along the optic axis were
considered, and the resulting intensities are plotted in
Fig. 6.

Using Parseval’s theorem and the expressions in Eq.
(42), the expected intensity can be calculated. From such
a calculation it can be seen that the intensity should de-
cay as z−2 far from focus. This can be seen in Fig. 6 as a
slope of −2 is observed on the log–log plot. Additionally,
since P�k� was chosen to be inversely proportional to the
NA (giving a sample exposure that is constant with NA)
and �r is proportional to the NA (to give a NA-constant
reference), the out-of-focus intensity is independent of the
NA. This is also observed in Fig. 6. This result has signifi-
cant consequences for imaging, as it means that choosing
a higher NA does not compromise the signal strength
away from focus even though the defocus effects are ex-
pected to be severe. That is, not only does ISAM provide a
means to recover out-of-focus planes in coherent imaging,

it also removes a constraint on the system design and
suggests that there is no reason not to use the highest-NA
lenses available.

The plots of Fig. 6 can also be used to determine the
axial signal model ̺�z�. Fitting each log–log plot with a
piecewise constant curve constructed from two straight
lines is equivalent to finding a scaled version of ̺�z�. This
analysis shows that for these curves the transition point
z�c� is approximately 1.5 Rayleigh ranges. This is similar
to the value of 1 Rayleigh range derived for the scalar
Gaussian case. The transition between these two regimes
is also fairly sharp in Fig. 6. Another way of modeling the
axial decay would be to take the square root of the decay
curves of Fig. 6.

D. Multiple-Scatterer and Noisy Simulations
An object consisting of ten point scatterers is considered.
The imaging system uses the same specifications given in
Subsection 5.B. The resulting noise-free reconstructions
are shown in Fig. 7. For the standard OCT reconstruc-
tions it can be seen that an increase in NA provides an
increase in lateral resolution but lowers the range of z

Fig. 7. Noise-free reconstructions of an object consisting of ten
point scatterers positioned in the x–z plane at [(5.5,0,0), (0,0,1),
�4.5,0,−4.5�, (0,0,5), �−2,0,7�, �2,0,−15�, �−1,0,−15�, �2,0,−16�,
(12,0,17), and �−20,0,25�] �m. The x–z plane of the three-
dimensional reconstructions are shown. Reconstructions for the
standard OCT method are shown in (a), (c), and (e), while ISAM
Fourier-resampling reconstructions are shown in (b), (d), and (f).
Both methods include the axial gain function to boost out-of-
focus planes. The NA used is 0.2 in (a) and (b), 0.4 in (c) and (d),
and 0.75 in (e) and (f). The image scale is normalized to the maxi-
mum reconstruction value for the 0.2 NA data.

Fig. 6. (Color online) Integral of the intensity falling on the de-
tector plotted for a single scatterer as a function of its axial po-
sition. Several NAs are considered, and the intensity is calcu-
lated for Rayleigh ranges of 0.001 to 50 with 25 logarithmically
spaced points. An
marks the 1 Rayleigh range point for each
plot.
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that can be imaged without defocusing. By contrast, the
ISAM technique both maintains the lateral resolution
and compensates for defocusing effects. This is a result
similar to that shown in [5] except that a more compre-
hensive forward model has been used. Vector-field effects,
high apertures, and spreading losses are all included in
the new model, but the ISAM procedure still produces ex-
cellent results.

The 0.2-NA data are largely in focus, so the improve-
ment with ISAM is visible only for the scatterers at the
edge of the plot. As the NA is increased, the focal region
becomes narrower and the scatterers outside the focal re-
gion become invisible in the standard case. ISAM recovers
these scatterers well, although the scatterer at
�−20,0,25� �m does become weaker. This is due to the
fact that out-of-focus scatterers will produce a broad spot
on the detector in high-NA systems. For scatterers near
the border of the imaged region, this means that more of
the scattered light will fall outside the detector and that
the reconstruction intensity will drop accordingly. Notice
that the reconstruction intensity increases with NA. The
reconstructions include a gain specified by the reciprocal
of ̺�z�. This gain maintains the signal in the focus and
amplifies the out-of-focus planes up to a level to match the
in-focus signal.

Noise was included in the simulated measurements.
Complex white Gaussian noise was assumed with vari-

ance independent of the signal level. This assumption is
consistent with an OCT system with noise dominated by
shot noise from the reference beam and/or thermal noise
from the detector [13]. Reconstructions of the ten-
scatterer object for two different noise levels are shown in
Figs. 8 and 9.

In both Figs. 8 and 9 the data are preprocessed using a
noise-reducing filter. This entails zeroing spatial frequen-
cies outside the system’s passband. This filter ensures a
fair comparison of noise levels across NA, i.e., meaning-
less high-frequency noise is removed from low-NA recon-
structions. The signal-to-noise-ratio (SNR) measure used
is defined by considering the total intensity expected from
an in-focus, unit-amplitude scatterer and the variance of
the noise at a single pixel before the noise-reduction filter
is applied.

The out-of-focus spatial amplification used, i.e., divid-
ing by ̺�z�, also has the effect of amplifying the noise
away from the focus, as seen in Figs. 8 and 9. This shows
that the ISAM depth of focus will be limited by the noise
level rather than the NA. For a very noisy system, the sig-
nal level in focus and the noise may be comparable. In
this case OCT and ISAM would have a similar achievable
depth of focus—in ISAM the computationally focused
scatterers away from the focal plane would be over-
whelmed by noise. However in less-noisy systems the ad-
vantage of ISAM would become clear. The OCT recon-

Fig. 8. Noisy reconstructions of the same object considered in
Fig. 7 using the same instrument parameters. The noise level
considered results in a SNR of 0 dB in the 0.2-NA data. OCT re-
constructions are shown on the left and ISAM reconstructions on
the right.

Fig. 9. Noisy reconstructions of the same object considered in
Fig. 7, using the same instrument parameters. The noise level
considered results in a SNR of 10 dB in the 0.2-NA data. OCT
reconstructions are shown on the left and ISAM reconstructions
on the right.
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struction has the traditionally limited depth of field,
while the ISAM reconstruction has a uniform resolution.
All scatterers in the object would be visible until the axial
position at which the 1/ �z� decay in signal strength results
in the scatterer images disappearing under the noise
floor. The point at which this occurs can be found by ex-
amining Fig. 6. The axial position at which a given noise
power exceeds the signal power will give the achievable

depth of focus (an exception to this may be for very-low-
noise systems, where the signal difference between in-
focus and out-of-focus regions may give a dynamic-range-
limited depth of focus). For a well-designed OCT/ISAM
system and an appropriate sample, it is reasonable to ex-
pect a relatively high SNR, as spectral-domain OCT sys-
tems have reported sensitivities of greater than 80 dB
[13]. Demonstrations of ISAM in tissue have also shown
that the SNR is high enough to achieve a significant ex-
tension of the useable depth of field [9].

It is interesting to note that in ISAM a high-NA lens
does not reduce the depth of focus: A result with impor-
tant implications for OCM. It can be seen in Fig. 6 that
given a constant total intensity incident on the object,

Fig. 10. Noise-free reconstructions from a 0.05-NA system im-
aging an object with point scatterers in the x–z plane at posi-
tions of [(22,0,0), (0,0,30), �18,0,−135�, (0,0,150), �−8,0,210�,
�8,0,−450�, �−4,0,−450�, �8,0,−495�, and (48,0,510)] �m. The
x–z plane of the reconstructions is shown in (a) and (b), along
with the x–z detail in (c) and (d) corresponding to the dashed
square, and the x–y detail in (e) and (f) from the plane marked
with a broken line. Images for the standard OCT method are
shown on the left and for the ISAM Fourier-resampling algo-
rithm on the right. Both reconstructions include the axial gain
function to boost out-of-focus planes. The image scale is normal-
ized to the maximum reconstruction value.

Fig. 11. Noise-free reconstructions from a 0.1-NA system imag-
ing the object described in Fig. 10. The image scale is normalized
to the maximum reconstruction value for the 0.05-NA data. The
OCT reconstruction is shown on the left and the ISAM recon-
struction on the right.
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varying the NA does not affect the far-from-focus signal
strength. This property can also be seen in the reconstruc-
tions of Figs. 8 and 9, where the high-NA cases do not suf-
fer from a poorer SNR outside the focal region. Using a
high-NA lens also gives an improved lateral resolution.
Consequently, OCM need not be limited to en face or axi-
ally scanned focus methodologies.

ISAM can also be applied to systems of low NA with
significant advantage. The ISAM correction of defocus for
low-NA data has been demonstrated experimentally [9]
and will be examined in simulation here. Consider a sys-
tem using NAs of 0.05 or 0.1, collecting 1024 wavenum-
bers evenly spaced between 6.28 �m−1 (1000 nm wave-
length) and 8.98 �m−1 (660 nm wavelength) and with a
128
128 lateral image collected at each wavelength
�1.5 �m
1.5 �m pixels�. Noise-free reconstructions of a
nine-point-scatterer object are shown in Figs. 10 and 11.

The correction of defocus can also be seen in the
low-NA images of Figs. 10 and 11. The details for the OCT
plots clearly show the blurring associated with defocus
and interference effects between two scatterers. The in-
terference effects between scatterers, which are exempli-
fied most clearly in Figs. 10(e) and 11(e), are generally re-
garded as “speckle” in conventional OCT imaging. ISAM
quantitatively infers information about the object struc-
ture from the interference effects—this so-called speckle
is a useable signal with ISAM processing. It should be
noted that speckle may also refer to granular structure in
the data resulting from interference effects in multiply
scattered light. Since ISAM is based on the first Born
(single-scattering) approximation, multiple-scatter
speckle remains a nuisance term in ISAM. The Fourier-
domain warping used in ISAM does not significantly alter
the effective energy content of the signal, so the multiple-
scatter speckle and other nuisance terms will not be un-
duly amplified in the ISAM reconstruction.

6. CONCLUSIONS

A rigorous vectorial model for coherent microscopy was
derived without the use of low-angle assumptions such as
the paraxial approximation. This model is directly appli-
cable to OCT and OCM. Motivated by these applications,
a broadband instrument with a planar scanning geometry
was considered, and it was shown that two separate ap-
proximations to the model both result in the ISAM image-
reconstruction procedure. The two model approximations
span the near-focus and far-from-focus regions, but nu-
merical simulations show that ISAM processing produces
excellent results at all positions within the imaged object.

ISAM processes the raw data using Fourier-domain re-
sampling. This warping in Fourier space produces a
quantitative agreement between the reconstruction and
the object imaged. Traditional OCT imaging neglects to
correct for Fourier-space distortions introduced by the im-
aging system, and as a result, defocusing effects distort
the image. It was shown that the depth of focusing in pla-
nar scanning broadband coherent microscopes is not lim-
ited by defocus but rather by noise only. Additionally, in-
creasing the NA of the objective lens does not reduce the
depth of focus, it increases only resolution and signal level
in the in-focus region.

The model presented here and the resulting inversion
techniques provide the tools for quantitative analysis of
several other techniques. Any lens aberrations or chro-
matic behavior can easily be included in the model. The
inversion process can then be modified to take these ef-
fects into account and compensate for them. The vector
analysis presented encompasses polarization-sensitive co-
herent instruments such as interferometric imaging po-
larimetry [29], polarized optical coherence imaging [30],
and polarization-sensitive OCT [31], so these can also be
analyzed using this quantitative model. For example, this
work provides a framework for reconstructing the tensor
susceptibility for anisotropic scatterers. It is also possible
to perform approximation-free image reconstruction us-
ing a more computationally expensive approach, as dis-
cussed in Subsection 2.F.
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