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Abstract. Let 7" be a translationally finite self-similar tiling of R d. We prove that if 7" is 
nonperiodic, then it has the unique composition property. More generally, 7- has the unique 
composition property modulo the group of its translation symmetries. 

Introduction 

We consider tilings of the Euclidean space R d. A tile is a compact set which is the closure 
of its interior. A tiling is a collection of  tiles with disjoint interiors whose union is the 
whole space. (This may seem too general but it is the right setting for our results.-In first 
reading, however, one can think of  polyhedral tiles.) A finite set of  tiles with disjoint 
interiors is called apatch. We always assume that our tiling is translationallyfinite which 
means that, for any R > 0, it has finitely many patches of  diameter less than R, up to 
translation. In particular, there are finitely many tiles up to translation. Two tilings T1 
and 72 are said to be locally isomorphic if every patch of  Tj can be found in 72 and 
vice versa (again, the patches are identified by translations). Local isomorphism is an 
equivalence relation; the equivalence classes are called LI classes, or species. 

A vector x ~ R d is a period of  the tiling T if T + x = T.  A tiling is called 
crystallographic [LP] if it has d linearly independent periods, and nonperiodic if it 
has no nonzero periods. As the term suggests, crystallographic tilings have been used 
to model crystals. In the last decade, nonperiodic tilings have attracted much attention, 
largely motivated by the discovery of quasi-crystals in 1 984. Among nonperiodic tilings, 
the best known is the Penrose tiling (or rather, the whole LI class which consists of  
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A self-similar domino tiling. 

uncountably many filings), see [GS], which turned out to be a good model for certain 
quasi-crystallographic alloys. 

One of the many remarkable properties of the Penrose tiling is self-similarity: its tiles 
can be grouped into patches to form a new tiling that is locally isomorphic to the original 
one dilated by the golden ratio (called the expansion constant). This procedure is called 
a composition. (The statement about the Penrose tiling is literally true if the "Robinson 
triangles" are used as tiles; in the case of "kites and darts" or "thick and thin rombi" a 
slight modification is needed; see [GS].) This property (with some expansion constant, 
or more generally, some expansive similarity) is shared by a large class of filings which 
we call self-similar tilings. 

We say that a self-similar filing has the unique composition property if the com- 
position procedure is unique. Closely related notions have been considered under the 
names uniquely hierarchical and inflation-deflation symmetry. The unique composition 
property can be illustrated by the following examples. 

Example 1. Let T be the filing of the plane by squares {[0, 1] 2 4- (m, n) : m, n 6 Z}. 
Of course, this is a crystallographic tiling. It is self-similar with expansion constant 2, 
but does not have the unique composition property, since there are four distinct ways to 
compose its tiles into a tiling which is a translate of 2T. 

Example 2. A tiling of the plane by "dominoes" 2 • 1 and 1 • 2 is shown in Fig. 1. 
The origin is indicated by a dot, and the arrows represent a "substitution" procedure 
consisting of multiplication by 2 and subdivion. The increasing patches "converge" to 
a tiling of the half-plane; the other half can be tiled by mirror symmetry. We get a self- 
similar tiling of the plane with expansion constant 2. It is easy to see directly that the 
unique composition property holds in this case. 

A well-known "folklore" theorem (see Theorem 10.1.1 of [GS]) states that a tiling 
with the unique composition property is nonperiodic. Our main result is the converse: 
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A nonperiodic translationally finite self-similar tiling has the unique composition 
property. 

The unique composition property is often useful. In particular, Anderson and Putnam 
[AP] assumed it in their study of  the K-theory of  C*-algebras arising from self-similar 
tilings. In [So] we used unique composition to construct eigenfunctions for tiling dy- 
namical systems. 

Unique composition is a tiling analog of"bilateral recognizability," a property of  sym- 
bolic substitution systems. Moss6 [M] proved that a nonperiodic primitive substitution 
always has this property, and our proof is modeled after her argument. 

Two variations are also considered in this paper. First, let/C = {x c R a : 7 . + x  = 7"} 
be the group of  translation symmetries for a self-similar tiling 7-. We show that if Hi and 
H2 are two tilings composed from the tiles of  7., both locally isomorphic to the inflation 
of  7., then H2 = Hi + x for some x ~ /C. This formulation covers nonperiodic tilings 
as well, when/C = {0}. Second, we extend the results to self-affine tilings, when the 
inflation map is an arbitrary expansive linear transformation of R d. 

1. Definitions and Statement of Results 

Suppose that there is a finite set of  tiles ..4 = {AI . . . . .  Am}, called prototiles, and 
denote by ,-V.4 the set of tilings all of  whose tiles are translates of  the Ai. Sometimes 
it is convenient to have distinct prototiles which are translates of  one another. Then we 
assign "markings" to distinguish them, and a tile should be thought of as a pair of  a set 
and a marking. Two tiles are considered to be equal, T = T', if they coincide as sets 
and have the same marking. If T is a tile, then T + x denotes its translate by a vector 
x ~ R d, with the same marking. 

A patch is a finite set of tiles with disjoint interiors. The support o f  a patch P, denoted 
by supp(P),  is the union of  tiles in P.  The translate of  P by x 6 R d is P + x  = {T + x  : 
T 6 P }. We say that P is a 7.-patch if P C 7-. The diameter of  the support of  the patch 
P is denoted by diam(P).  We always assume that the tiling is translationally finite: 

V R > O, the number of  T"-patches P, having diam(P) < R, 

is finite, up to translation. (1) 

Next we define self-affine and self-similar tilings. Let tp be a linear map on R d. It is 
called expansive if, 

Yx ~ R a, II~0xll > ~011xll for some L0 > 1. 

The map ~0 is a similarity if II~o(x)ll : ~llxll for all x. 
Suppose that there is a substitution rule w on the set of  prototiles .4 that associates to 

each Ai a patch supported on ~oAi. More precisely, there exist n i j  > 0 and Xij k E R d for 
1 < i, j < m; 1 < k < n j ,  such that 

o)(Ai):{Aj-~-Xijk: l < j <_m, l < k  <n i j }  for l < i < m ,  (2) 
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with 

m nij 

~oAi = U U ( A j  + Xijk). 
j= l  k=l 

Here all the Aj +xijk must have disjoint interiors; if some nij = 0 then the corresponding 
union ~Jk~l (Aj + xijk) is considered to be empty. 

The substitution (2) is extended to all tiles by og(Ai q- x)  ~- o9(Ai) -]- qgX, and to 
patches and tilings by o9(P) = U{Og(T): T ~ P}. The substitution o9 can be iterated 
producing larger and larger patches o9k (Ai).  Notice that oJ: 2(.4 --~ 2(.4. The nonnegative 
matrix [nij ] is called the substitution matrix. We always assume that o9 is primitive, that 
is, some power of the substitution matrix is strictly positive. Equivalently, this means 
that starting with any tile, repeated substitution leads to a patch containing translates of 
all prototiles. 

Definition. A patch is called legal if it is a translate of a subpatch of <ok (Ai) for some 
i _< m and k >_ 1. A tiling 7" is said to be self-affine with the prototile set A, expansion 
map ~p, and substitution rule w, if every 7.-patch is legal. A self-affine tiling is self-similar 
if ~o is an expansive similarity. 

Warning. There is a large literature on self-similar and self-affine tilings (and tiles), 
with considerable variation in terminology. We do not attempt to survey it here; the 
works [LP], [T], [K], [R2], [BG], [B], [LW], and [So] give a sample and contain further 
references. 

Many examples of self-similar tilings can be found in [Se] and [G]. Some of the tilings 
studied in IT], [K], [B], and [So] have a fractal boundary. 

The set of self-affine tilings associated with (.,4, w) is denoted by 2(.a,,o. We have 
2(A.~ C 2(.4, and the inclusion is usually proper. It is clear from the definition that 
o9(2(.4,o~) C 2(.4,o,. It is well known that, by primitivity of the substitution, 2(.4,o, forms 
a single LI class. 

Definition. The tilings from 2(-4,,o are said to have the unique composition property if 
w: XA.~o --> 2(A.o, is one-to-one. 

It is helpful to view the substitution o9 as a composition of two maps: inflation, that 
is, multiplication by ~0, and subdivision, which is denoted by S. To make this precise, 
we consider "superprototiles" qaAi which inherit the marking from A i and on which o9 
acts by co(qgAi) = qgo9(Ai). Similarly, we define legal "superpatches" and get the set of 
self-affine supertilings R'~-4,o~. The map ~0 defines a bijection from X-4.o~ to 2(~-4,o~ which 
is denoted ~p as well. The subdivision map S decomposes each supertile r -F X into 
tiles according to (2), and extends to S: 2(~.4,o, ~ 2(-4,o~. Thus, we have o9 = S o ~o. 
Clearly, the unique composition property is equivalent to S being one-to-one. 

A "local" equivalent definition of unique composition is often useful. Let BR(y) 
denote the closed ball of radius R centered at y. A self-similar tiling 7" has the unique 
composition property if and only if there exists R > 0 such that, for any y e R d and 
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any legal patch covering BR(y), there is a unique way to compose (some of) its tiles 
into a legal superpatch covering BR'-R (y) and with all supertiles intersecting BR'-R (y). 
Equivalence of this property to unique composition is rather straightforward, see Lemma 
2.5 for details. 

Theorem 1.1. A self-affine tiling has the unique composition property if and only if it 
is nonperiodic. 

Remarks. 1. One direction--that unique composition implies nonperiodicity--is well 
known, see Chapter 10 of [GS] or Theorem 5.3 of [Se]. Although the set-up in these 
books is slightly different from ours, the proof remains virtually the same. 

2. Baake and Schlottmann [BS] introduced the notion of tilings with inflation- 
deflation symmetry which seems to generalize self-similar tilings with the unique compo- 
sition property. A tiling ~ is said to be locally derivable from ~ if there is a translation- 
invariant local rule which allows tiles of T2 to be recovered if the tiling Tt is known in 
the neighborhood of some fixed radius. If, in addition, Tt is locally derivable from 
the two tilings are called mutually locally derivable (MLD). Tilings T1 and T2 are said 
to belong to the same MLD class if there is a tiling T 2' locally isomorphic with 7-2 and 
MLD with ~ .  Finally, a tiling 7- is said to have (local) inflation-deflation symmetry 
with expansion go if 7- and goT" belong to the same MLD class. It is plausible that the 
main result can be generalized to this setting, that is, if 7" is locally derivable from some 
tiling in the LI class of goT-, and if 7- is nonperiodic, then 7" has the inflation-deflation 
symmetry. 

3. Goodman-Strauss [G, Appendix A.7] gave an example showing that unique compo- 
sition may break down if the original tiling has markings that are absent in the supertiling. 
We certainly require that if a tile T 6 7- has a marking, then this marking is retained for 
the tile goT ~ ~p'T. 

4. Strictly speaking, our result applies only to tilings that have superprototiles equal 
to inflated prototiles. However, it easily extends to, e.g., the kite-and-dart Penrose tiling, 
since it is MLD with a self-similar Penrose tiling having triangular tiles. 

5. Since we assume translational finiteness, tilings such as the Conway-Radin pin- 
wheel tiling [R 1 ] are excluded from consideration; in fact, our methods do not seem to 
work in that case. The statement (nonperiodicity implies unique composition) might still 
be true though. 

Next we discuss the more general case, when the tiling may have non-trivial periods. 

Definition. Let 35(T) = {x E R d : T + x = T}. This is a subgroup of R a called 
the translation symmetry group of 7". If 35(T) = {0}, the tiling 7" is nonperiodic. If 
rank 35(T) = d, that is, if 35(7") is a lattice, 7" is crystallographic. 

Clearly, the translation symmetry group is the same for all members of the LI class 
2(.a,~o. The next result can be interpreted as the "unique composition property modulo 35"' 

Theorem 1.2. Let 35 be the translation symmetry group for ,'~'.a.o~. Then, for any two 
tilings b{ and l/!' in X~oA,~o, 

Sbt = S~t' ~ bt' = Lt + g for some g ~ 35. (3) 
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Fig. 2. A self-affine tiling with nontrivial periods. 

Remarks .  1. Theorem 1.1 is the special case of  Theorem 1.2 when/G = {0}. 
2. For x 6 /G and T 6 X.a,,o we have 

w ( T )  = w ( T  - x )  = ~ ( T ) -  ~x. 

Since the translation symmetry group does not depend on a tiling in X.,t.o~ we get that 
p/G C /C. Clearly,/G is isomorphic to Z n for some 0 < n < d, and pK~ is a subgroup 
of finite index [/C : p/C]. Tilings from X~.a,o, have the translation symmetry group p/C, 
so according to Theorem 1.2, the nonuniqueness of  composition is measured by IC/p1G. 
The local meaning of unique composition modulo K~ is, roughly, that a legal patch can 
be composed into a legal superpatch in [/~ : ~p/G] essentially distinct ways, at a certain 
distance from the patch's boundary. 

3. The set of  tilings X.Xo~ can be equipped with a metric [RW] making it a compact 
space. It can be deduced from Theorem ! .2 that w is a homeomorphism in the nonperiodic 
case, and is a covering map with the fiber 1C/pIC in general. 

Example  3. The tiling in Fig. 2 is self-affine, with the expansion map p dilating by a 
factor of  2 in the x-direction and by a factor of  �89 ( 1 + -v/5) in the y-direction. There are two 

prototiles: the square 1 • 1 and the shaded rectangle ! • �89 (-v/5 - I). The prototiles and 
the substitution rule are indicated in the figure. This tiling is just a product of  a trivial Z- 
periodic one-dimensional tiling and the self-similar one-dimensional "Fibonacci" tiling. 
The translation symmetry group is Zex where ex is the unit vector in the x-direction. 
According to Theorem 1.2, this tiling has the unique composition property modulo Zex. 
We have pZ% ---- 2Zex, so [Zex : pZ%] = 2. Notice that there are a great many ways to 
compose tiles into supertiles, but if we require the superpatch to be legal, there are just 
two essentially distinct options. 

Theorem !.2 has implications for the spectral theory of tiling dynamical systems. 
We mention one result, which improves on Theorem 5.1 of  [So]; the proof  will appear 
elsewhere. 

Theo rem 1.3. All measurable eigenfunctions for the uniquely ergodic dynamical sys- 
tem, arising from the R#-action on XA.~ by translations, can be chosen to be continuous. 
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The rest of the paper is organized as follows. Section 2 contains more definitions 
and several lemmas; some of  them may be of  independent interest. Then in Section 3 
we prove Theorem 1.2 for self-similar tilings. The generalization to self-affine tilings is 
fairly straightforward but technical. We illustrate the required changes in a key lemma, 
leaving further details to the reader. 

2. Lemmas 

We introduce some notation and terminology. Consider a tiling T of  R d. For a set 
F C R d, we write 

[ F ] 7 " = { T  E T :  T N F r  ]F[7-----'{T E T :  T C F } .  

For T 6 T the patch [T] 7- is called the T-corona of  the tile T.  Two tilings TI and 
are said to agree on a set F C R a if [F]  Z = [F]  ~ .  The following simple observation 
is useful: 

[F]  7" = [F  + x] ~-+x -7 x for x E R d. (4) 

The next result is well known, see, e.g., [LP]. 

Lemma 2.1. Let (Jl., 09) be a finite prototile set with a primitive substitution. Then there 
exist no E N and To ~ X~t:o such that wn~ = To. 

We assume that w has a f ixed point, that is, a tiling T 6 Pc'~t.o~ such that w ( T )  = 7 .  
This does not lead to loss of  generality in the nonperiodic case, since we can replace 
~o with w n~ (if w n~ is one-to-one, then so is 09). In the case of  nontrivial periods minor 
adjustments need to be made; they are discussed at the end of the paper. 

Observe that the "inflated tiling" ~oT has tiles composed of  T-tiles (in [K] and [So] 
and some other papers just the fixed point T was called self-affine). The tiles of ~o~T are 
called supertiles of  order k. There is a natural subdivision operation which we denote by 
S. It acts from 2r to ~ - , . a . ,o ,  as well as on superpatches. We have S(~okT) = ~ok-lT 
andoJ = Sog0. 

By the definition of  a self-similar tiling b / ~  X.4.o~ and by primitivity of  09, every b/- 
patch occurs in some wk(A~), up to translation. It follows that for any R > 0 there exists 
x c R a such that T - x  agrees with L/on the ball Be (0). We have T - x  = co ( T -  ~0-1x). 
Letting R --+ oo and using a diagonalization argument (essentially, compactness of X.a.o~ 
in the natural topology), yields that w: X.a.o~ ~ X.a:o is onto [LP], [AP]. Of  course, 
S = 09 o ~p-l is onto as well. 

Definition. A tilingLt issaidtoberepetitiveifforanyH-patch P thereexists R = R( P) 
such that any ball Be (y) contains a U-patch which is a translate of P. We call L/strongly 
repetitive if we can take R ( P )  = C diam(P),  with the constant C independent of  P. 

Lemma 2.2. A self-affine tiling Lt ~ XA:o b repetitive. 
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Proof. The proof is well known but we provide it for completeness. Fix a H-patch P. Its 
translate must occur in some cok (A0.  By primitivity, there exists k0 ~ N such that cok~ i 
contains a translate of A l for all i < m. Then the patch P occurs in cok+k~ for all i and 
so in any supertile of  order k + ko. Since the decomposition map S is onto, H = Sk+k~ ' 
for some H'  ~ PC'~k§ For every/,/ ' - t i le,  its decomposition S k+~~ contains a translate 
of  P, and the desired property follows (with R(P) equal to the maximal diameter of  a 
/../'-tile). [] 

The repetitive property means that every patch occurs in H with "bounded gaps" (note 
that repetitivity was called "local isomorphism" in [RW] and [So]). It is equivalent to 
the minimality of  translation action on ,'g~t,,o [RW]. 

Now we restrict ourselves to self-similar tilings, assuming that lifo (x)II = ~-Itx II, with 
~. > 1, and prove that they are strongly repetitive (this, in general, fails for self-affine 
tilings). Griinbaum and Shephard [GS, Theorem 10.5.4] showed that in the Penrose tiling 
the minimal distance between two occurrences (translates) of  the same patch is bounded 
by a constant times the diameter of  the patch. Their proof essentially establishes strong 
repetitivity and easily extends to the general case of  self-similar tilings. 

L e m m a  2.3. A self-similar tiling bl ~ X'A,o~ is strongly repetitive: there exists C > 0 
such that for every H-patch P, any ball of radius C diam(P)  contains a translate of P. 

Proof. It is enough to prove that 7- is strongly repetitive, where co (7-) = 7". By (1) and 
the repetitive property, there exists CI > 0 such that every ball of  radius C~ contains all 
7.-coronas, up to translation. Again using translation finiteness, C2 > 0 can be found 
such that, for any 7.-tiles Tl and T2, 

dist(TI, T2) < C2 ~ Tl N T2 5 ~ 0. 

This implies that a set F C R d of diameter less than C2 is covered by the 7.-corona 
of any tile it meets. Since ~0 is a similarity with expansion constant ~. > 1, the same 
properties hold for the tiling ~okT. with Ci and C2 replaced by ~.kCl and ~kC2. 

Now let P be a 7.-patch. Find k ~ N so that )~k-lc2 ___ d iam(P)  < ~.kC2. Then P 
is covered by some ~okT.-corona. Every ball of  radius ~.kCl contains a translated copy 
of this ~0kT.-corona whose Sk-decomposition contains a translate of  P (here we use that 
co(7.) = 7- so S~(~okT.) = 7-). Since 

JkkCI )~kCi LCI 

diam(P)  - ~.k-IC2 C2 

we are done. [] 

An important step in Moss6's proof [M] is the theorem that a nonperiodic primitive 
substitution is "N-power  free" for some N, that is, it does not contain v N for any word v. 
The tiling analog is that in a nonperiodic self-similar tiling, two occurrences of  the same 
(large) patch cannot be too close to each other. (These patches are allowed to overlap; 
"not too close" means that they cannot overlap too much.) This contrasts with strong 
repetitivity. 
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Lemma 2.4. 
exists N > 1 such that, for any x, y E R d, if 

Let/4 be a self-similar tiling with translation symmetry group IC. There 

P C Lt, P + x C/4,  Br (y) C supp (P),  

then 
r 

Ilxll < -  =~ x ~ K .  
- N  

In particular, if~4 is nonperiodic, then IIx II <_ r / N implies x = O. 

Proof. Let dM denote the maximal diameter of  a/4-tile, and let 77 > 0 be such that 
every/,/-tile contains a ball of  diameter i / in its interior. We prove the statement of  the 
lemma for 

N >_ C(3q-tdM + 1), (5) 

where C is the strong repetitivity constant from Lemma 2.3. 
Let P be a U-patch such that P + x C b /and  supp(P) contains a ball of radius r, 

with IIx II -< r /N.  We need to show that/d + x = / d ,  by the definition of/C. Observe that 
/4 -I- x = / 4  is equivalent to the implication T e / d  =* T + x 6 /4 .  Fix a/4-tile T and 
consider the patch 

~r(T) = {T} U [T + x ]  u. 

We have d i am( r  tJ (T + x)) _< Ilxll + d M ,  hence diam(rr(T)) ___ Itxll + 3dM. By 
Lemma 2.3, every ball of radius C(llx II + 3dM) contains a translate of  zr(T). Suppose 
that x r 0, otherwise there is nothing to prove. Then llx II > o, else having both P C / 4  
and P + x C / 4  is impossible (a/d-tile and its translate by a vector less that ~7 in norm 
will have intersecting interiors). Then by assumption and (5), 

r > NIIxII >_ C(30-1dM + 1)llxll _> C(llxll + 3dM). 

Since supp(P)  contains a ball of  radius r, it contains a ball of  radius C (llx II + 3dM), hence 
a translated.copy of  rr(T), say, zr(T) + g C/4 .  This patch contains the tile T '  = T + g. 
We have T'  e P,  so T'  + x E P + x C/4 .  Moreover, T '  + x 6 zr(T) + g since 

T'  + x  = T + x  + g C supp(zr(T)) + g. 

It follows that T + x = (T'  + x) - g e rr(T) C /4 .  Since T was an arbitrary/./-tile, the 
proof is finished. [] 

We conclude this section with a restatement of the unique composition property in 
local terms. It is not used in the paper but, perhaps, helps the reader to understand what 
unique composition means. 

Lemma 2.5. The tiling T = o) (T) has the unique composition property if and only if 
there exists R > 0 such that, for any x and y in R d, 

[Bn(x)] 7" = [BR(y)] 7- + (x -- y) =~ [Bl(X)] ~7" = [Bl (y)]eT- + (x -- y). (6) 

In other words, q)T is locally derivable from T.  
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Proo f .  First we show that (6) implies the unique composition property. Suppose that 
SH ----- SH' for some H and H'  in Pt'~.a,,o. Choose a sequence R, -+  cx~. Since every patch 
of a tiling from Xr occurs in r we can find x,z and y,, so that tpT- - x~ and ~o7- - y~ 
agree with H and U',  respectively, on the ball BR,, (0). Then S (~o7-- x~) = 7 - -  x ,  agrees 
with SH and S(q97- - y~)  = 7- - y~ agrees with SU' = SH on BR,,(0). Now (6) and 
(4) imply that c,07- - x ,  agrees with co'/" - yn on BR, , -R(O),  hence L/agrees  with/.4' on 
BR,,_I~(O). Letting n ~ c~ yields/.4 = L/', as desired. 

Now we prove the converse. Suppose that (6) does not hold. Then, by (4), there exist 
R~ --+ o0 and xn, y,, E R d such that 7- - xn agrees with 7- - y~ on BR,, (0) but ~p'T - x~ 
does not agree with ~pT-- y~ on BI (0). Using a diagonalization argument, we can assume 
that ~0T - x,  and ~pT - y~ "converge," respectively, to some tilings H and/.4' in A'~.a.o~. 
Since S(~o7- - x~)  = 7- - x,, and S(~o7" - y~) = 7- - y ,  agree on BR~ it follows 
that SLt  = SLt ' .  On the other hand, c o7- - x~ does not agree with ~07- - y,, on Bl (0), so 
H -~ H',  a contradiction with the unique composit ion property. [] 

3. Proof of the Main Theorem 

Here we give a proof of  Theorem 1.2 assuming that w has a fixed point and that the 
expansion map ~0 is self-similar. At  the end of  the section we indicate the changes 
needed to deal with the general case. We emphasize once again that the proof is modeled 
after [M]. 

Let /C be the translation symmetry group for 2(ut.o~. Suppose that 7- is a self-affine 
tiling with expansion map % satisfying w(7-) = 7-. If H 6 P(~.a,,o and b/' = /.4 + g 
for some g 6 /C, then Sb/' = SH + g = SH since Sb/ 6 X~t.o~. This proves the easy 
implication of  Theorem 1.2. 

Now we turn to the converse. Recall  that ~o/C C / C  and the quotient/C/~o/C is finite; 
let F C /C  be a complete family of coset representatives mod ~o/C. 

L e m m a 3 . 1 .  S u p p o s e t h a t t h e r e e x i s t s r  > O s u c h t h a t ,  f o r a n y  R > r ,  i f T - - x a g r e e s  

w i t h  T - y on  BR (0),  t h e n  tpT- - x a g r e e s  w i t h  q~5 r - y - g on  BR/2 (0) f o r  s o m e  g E F.  

T h e n  7- sa t i s f i e s  (3). 

P r o o f .  The proof  is required only for the implication "=:~" in (3). It is analogous to the 
corresponding part of  Lemma 2.5. 

Suppose that SH = SH' for two tilings /./ and Ltr in P(~t,o~. We want to show that 
L/' = L / +  g for some g E/C. Choose a sequence Rn --+ c~. We can find xn, y,, E R d so 
that ~pT - xn and ~oT - y,, agree with H and b/', respectively, on the ball BR,, (0). Then 
S ( ~ o T  - xn)  = T - x~ and S ( ~ o T  - Yn) = T - -  yn agree with S b / =  SL/' on BIt,, (0). By 
assumption, ~oT - xn agrees with ~oT - y ,  - gn on BR,,/2(O) for some g,, e F. Since F 
is a finite set, passing to a subsequence, it can be assumed that gn ---- g ---- const. Since 
~ o T -  y, agrees with L/' on BR,, (0), the tiling ~ o T -  y ,  - g agrees with L/' - g on BR,,/2 (0),  

as long as R , / 2  > IIg II. Thus, L/agrees  with H '  - g on BR,,/2 (0) for n sufficiently large. 
Letting n --+ c~ yields U = L/' - g, as desired. [] 
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Proof of  Theorem 1.2. Suppose that (3) does not hold. Then, by Lemma 3.1 and (4), 
R > 0, arbitrarily large, and x, y 6 R d can be found such that 

[BR(x)] 7- = [BR(y)] 7- + (x -- y), (7) 

but 

~07. -x  does not agree with t p T x - y - g  on BR/2(O) for any g 6 F .  (8) 

Now we assume that tp is self-similar: II,;xll = ;~llxll for all x E R d. Let k = k(R) E N 
be such that 

Lk(2N + 6)dM < R < ~.k+l(2N + 6)dM, (9) 

where N > 1 comes from Lemma 2.4 and dM is the maximal diameter of  a 7.-tile. 
Consider ]BR(x)[ ~*~-, the collection of  supertiles of  order k contained in BR(x). We 
have 

]BR(X)[~kT"= ~pkE forsome E C 7-. 

Similarly, 

]BR_xkdM(y)[~k~r= ~okF for some F C 7-. 

Since ~.kdM = max{diam(tpkT) : T 6 7"}, it is clear that 

supp(tpkE) D BR--~?dM(X), supp(q)kF) D BR-2~)dM(y). 

Observe that )~k diam(E) ----- diam(~okE) < 2R, so, by (9), diam(E) is bounded by a 
constant independent of  R. The same bound holds for diam(F).  Condition (1) implies 
that there are finitely many possibilities for E and F,  up to translation. 

Now we repeat the whole construction for Rn ~ c~, yielding x,,, y,,, k,,, E,,, and F,,. 
There exist i and j such that Ej is a translate of  Ei and Fj is a translate of  F/, with 
Rj > ).R i. To simplify notation, we let 

(x, y, R, k, E, F)  : =  (xi, Yi, Ri, ki, Ei, El) 

and 

(x' ,y' ,  R' ,k ' ,  E', F') : =  (xj,yj, Rj,kj, Ej, Fj). 

The choice of  i and j implies that E '  = E + zt and F '  = F + z2, for some zl and z2 in 
R d. Let l :=  k' - k. The analog of  (9) is 

Xk+t(2N + 6)dM < R' < Lk+t+l(2N + 6)dM. (10) 

Since R' > ~.R, we have l > 1. The analogs of  (7) and (8) for x ' ,  y ' ,  R' are referred to 
as (7') and (8'). The situation can be summarized as follows: 

]BR(x)[r ~7- = ~0kE, 

]BR'(X')[ ~~ = ~ok +l ( E -[- Zl), 

] BR_X~dM (y)[ ~~ = tp k F, 
] BR,_Xk+,dM (y,)[~k+,~r = ~pk+t (F  + z2). 
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Ql :=  Sk~ ot'+t F + qJ(x - y )  + ~J'+txl, 

Q2 : :  Sktl )k+l F -t-~ok+lz2 a t- (x'  -- y') ,  

PI : =  S tQI ,  (11) 

Pz :=  StQ2 . (12) 

Now we make two claims about the patches P I , / 2 ,  Ql,  and Q2, finish the argument 
assuming that they are true, and then prove the claims. 

Claim 1. We have 

and  

PI C ]BR,(x')[  7- (13) 

[BR'--2~.k+tdM (X')] T Q P2 Q ]BR'--Xk+'aM (X')[ 7"- (14) 

It is clear from (11) and (12) that P2 = Pl + h and Q2 = Ql + h where 

h = qgk+lz 2 "~ ( X  t - -  y')  -- ~ot(x - y)  - ~ok+lz I . 

Assuming Claim 1, we conclude from (13) and (14) that 

BR'--Z~.k+~dM (X') + h C BR, (x'), 

hence 
Ilhll _< 2L~+tdM. (15) 

We can apply Lemma 2.4 since P2 C 7" and Pz - h = PI C 7", the support of  the patch 
P2 contains a ball of  radius R' - 2~k+tdM by (14), and 

Ilhll <_ 2)~k+tdM < (R'  - 2Lk+tdM)/N,  

by (10). Thus, h E K~. 

Claim 2. We have 

and  

Qi D [BR,/2(x')] ~~ (16) 

Q2 + (y' - x ' )  ~ [BR,/2(y' + h)] ~~ (17) 

Assuming Claim 2, we obtain 

[Bg,/2(x')] ~7- C S t-I QI = [S t - l Q 2  + (Y' - x')] + (x' - y ')  - h 

D [BR,/2(y')] ~~ + (x'  -- y ')  -- h 

~__ [BR,/2(Xt)] tp'T+x'-y'-h ' 

using (4) in the last equality. This implies that ~o7- - x '  agrees with ~o7- - y '  - h on 
[BR,/2(0)]. Since F contains all coset representatives rood ~oK:, there exists g E F such 
that h - g ~ ~o/C. Then ~o7- - y '  - g = qg"T - y '  - h agrees with q97- - x '  on BR,/2(O). 
This is a contradiction with (8'). 

To complete the proof it remains to verify Claims 1 and 2. 
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Proof of  Claims 1 and 2. We often use the following simple facts: 

S[F] ~r D [F] 7- and S]F[r ]F[ ~-. 

We have ]BR_zkd~ (y)[r 9kF, hence Sk~okF C ]Be-x~a~ (y)[7-. By (7), 

SkgkF + (x - y) C ]BR--XkdM(X)[ T 

C [BR--~)dM (X)] T 

Q Sk[BR-X, dM (x)] ~~ 

c ]B~(x){r S ~ / E .  

Hence 

Q I = ~Pt ( Sk ~pk F + ( x - y ) )  + ~o~ +t z l C 9t Sk ~ok E + 9k +t Z l 

= Sk(q)k+t(E + zi)) 

= Sk]Bz(x')[; o~+'7- 

C ]BR,(x')[ r 

It follows that PI = StQ1 C ]BR,(x')[ 7-, and (13) is verified. Next, 

~ok+t F + 9k+t z2 = ]Be,_xk+,d M (y,)[~+'7-, 

therefore, 

(18) 

[Be'-2x~+,dM (y , ) /7"  C Skgk+tF + ~ok+tz2 C ]BR'--Xk+'dM (y,)[~dT. (19) 

Applying S t we obtain 

[Be'--2Xk+'dM (y,)]7" C Sk+t~O ~+t F + 9k+lZ2 C ]Be'-~+'dM (y,)[T. (20) 

By (7'), ]Be,(y')[7-+(x ' - y') = ]Be,(x')[ 7, so translating (20) by (x' - y') yields (I4). 
Now we turn to Claim 2. Recall (18) that Qi c ]Be,(x')[ ~~ so to prove (16) it 

remains to check that supp(Ql) D Be,/2(x'). However, 

supp(QI) = supp(Pl)-= supp(P2)-  h D Be'--2Xk+'d,u(X')- h D BR'--a~.k+IdM (X'), 

by (14) and (15). Since R' - 4Lk+/dM > R'/2  by (10), the inclusion (16) follows. 
Finally, (17) is implied by the left inclusion in (19) and the inequality R' - 2tk+ldm 
> R'/2 + h. [] 

Both Claims 1 and 2 have been verified, and the proof of the theorem is finished. [] 

Self-Affine Tilings. The scheme of the proof of Theorem 1.2 remains the same, but 
instead of the balls Be(0), we have to work with sets of the form ~0kV for some fixed 
neighborhood of the origin V. We do not repeat the whole proof; rather, the required 
changes are illustrated by proving the analog of Lemma 2.4. 

Fix V, a ball centered at the origin, such that every tile contains a translate of V in its 
interior. 
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L e m m a  3.2. Let T be a self-affine tiling with translation symmetry group IC and ex- 
pansion map ~o. There exists N E N such that, for  any l E N and x, y E R a, if 

P C T ,  P + x C T ,  ~ot V + y C supp( P ), 

then 

x E ~ot-Uv ~ x E IC. 

Proof. As above, we assume that w ( T )  = T .  Positive integers n l ,  n2, n3 with the 
following properties can be found: 

(a) For any T 6 T and any z E T, 

T C z+~on'V.  

(b) For any z 6 R d there exists a T -co rona  E such that 

V + z C supp(~0 ''~- E) .  

(c) For any z 6 R a, the set z + ~o "3 V contains all T-coronas,  up to translation. 
Notice that (c) holds by the repetitive property which was proved for self-affine tilings 
(Lemma 2.2). Applying the map ~o k in (a)-(c) ,  we obtain analogous properties for ~0kT - 
tiles and patches. 

Recall that If~0x II -> Z0 IIx II, with L0 > 1. Let s be such that ~ > 2. We claim that the 
statement of the lemma holds with N = nl + n2 --1- n3 -k- s. 

Suppose that P C T ,  P + x  C T ,  qgtV + y C supp(P) ,  a n d x  ~ ~ot-Nv. We want 
to show that T + x = T ,  that is, for any T- t i l e  T, its translate T + x is again a T-t i le .  
It can be assumed that l > N since a translate of any tile by a vector in V will have an 
interior intersecting the tile itself. P ick  any tile T and a point c(T)  E T. Consider  the 
T-pa tch  

rr(T) = {T} U [c(T) + x] 7 .  

We have 

supp(zr(T)) C (c(T)  + ~o ~ V) U (c(T)  + q)t-N V + q)"' V) C c(T)  + go t -u  V + q)"' V. 

Observe that V C ~o i V for i > 0, hence ~o i V C ~pJ V for i < j ,  so 

go i V -F ~o j V Q 2~o i+j V Q ~i+j+s V. 

Thus, 

supp(zr(T)) C c(T)  + ~pt+"'+s-Uv. 

Now we use property (b) to find a T -co rona  E such that 

supp(rt (T))  C supp(~p t+'' '  +,2+.~-N E) = supp(~o t- ' - '  E).  

By assumption, q)tV + y C supp(P) ,  so by property (c), supp(P)  contains all ~01-"~T - 
coronas, up to translation. It follows that P contains a translate ofzr (T) as a subpatch, say, 
z c ( T ) - g  C P . T h e n T - g  E P a n d T '  = T - g + x  E P.Fur ther , (T+x)Asupp(rr (T) )  
0, hence 

T + x = T '  + g e rr(T) C T .  

The proof is complete.  [] 
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When  w Has  N o  F ixed  Points. All the proofs in Sect ions  2 and 3 readily extend to this 

case. We still have that co and S are onto. Instead of  the ti l ing 7-, sat isfying co(T)  = 7-, 

and tpkT-, we can work with an arbitrary ti l ing H ----- L/0 6 P(.~,o~ and any sequence  o f  

ti l ings Hk c X~kA.,o satisfying SL/k : L/k-i, for  k > 1. The  detai ls  are straightforward.  
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