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We discuss shape sPomeranchukd instabilities of the Fermi surface of a two-dimensional Fermi system using
bosonization. We consider in detail the quantum critical behavior of the transition of a two-dimensional Fermi
fluid to a nematic state which breaks spontaneously the rotational invariance of the Fermi liquid. We show that
higher dimensional bosonization reproduces the quantum critical behavior expected from the Hertz-Millis
analysis, and verify that this theory has dynamic critical exponent z=3. Going beyond this framework, we
study the behavior of the fermion degrees of freedom directly, and show that at quantum criticality as well as
in the quantum nematic phase sexcept along a set of measure zero of symmetry-dictated directionsd the
quasiparticles of the normal Fermi liquid are generally wiped out. Instead, they exhibit short-ranged spatial
correlations that decay faster than any power law, with the law uxu−1exps−const uxu1/3d and we verify explicitly
the vanishing of the fermion residue utilizing this expression. In contrast, the fermion autocorrelation function
has the behavior utu−1exps−const u tu−2/3d. In this regime we also find that, at low frequency, the single-particle
fermion density of states behaves as N*svd=N*s0d+Bv2/3lnv+¯, where N*s0d is larger than the free Fermi
value, Ns0d, and B is a constant. These results confirm the non-Fermi liquid nature of both the quantum critical
theory and of the nematic phase.
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I. INTRODUCTION

The behavior of interacting Fermi systems near continu-
ous quantum phase transitions is a central problem in the
physics of strongly correlated systems. Although much work
has been done on this subject, there are still many open and
as yet unresolved questions. At present the standard theory of
quantum phase transitions1–3 relies primarily on an analysis
on the effects of fluctuations perturbatively about the results
of Hartree-Fock theory. This analysis proceeds in almost
complete analogy with the theory of classical critical phe-
nomena about its upper critical dimension, and its straight-
forward extension to quantum phase transitions. In practice it
consists of an effective theory for a suitable order parameter
field while other degrees of freedom, including fermions, are
often integrated out at the outset.

In many cases of interest the systems are metallic and
have gapless fermionic excitations. In the standard approach,
their net effect is to introduce damping in the collective
modes associated with the order parameter field. In practice
this results in the introduction of dissipative terms in the
effective action. While much of this is certainly correct, this
approach implicitly assumes that the fermions are largely
unaffected by quantum criticality. Why this should be the
case is far from obvious.

The assumptions of the Landau theory of the Fermi
liquid4–6 are self-consistent and well justified within the Lan-
dau phase which has a sizable basin of stability, except in
one dimensional systems.7–16 However, there is no reason for
these assumptions to hold outside the Landau phase. How-
ever, there is also mounting evidence that these assumptions
may also not hold in a number of phases fand not just at

quantum critical points sQCPsdg, including ferromagnetic
metals33 and nematic phases of Fermi fluids.19,20 The possi-
bility that quantum criticality may lead to non-Fermi liquid
behavior has been a focus of research in recent years, prima-
rily sbut not onlyd in connection with the physics of the
“normal phase” of high temperature superconductors,3,21–23

and with heavy-fermion systems.24

The simplest example where the Landau assumptions on
the behavior of the quasiparticles are violated is the quantum
phase transition from a normal sLandaud Fermi liquid phase
to a nematic Fermi fluid.19 A nematic Fermi fluid is a uni-
form phase of a system of interacting fermions in which the
shape of the Fermi surface is distorted spontaneously, thus
breaking rotational invariance.25 This state is an example of
the fate of a Fermi liquid beyond a Pomeranchuk
instability.26 In this case, the Landau assumptions appear to
be violated throughout this phase, and not just at the quan-
tum critical point.19,20

The clearest experimental evidence to date of a nematic
Fermi fluid phase has been found in very clean two-
dimensional s2Dd electron gases in magnetic fields in ultra-
clean samples.27,28 The striking resistivity anisotropies that
are observed in these experiments can be explained by the
onset of nematic order at low temperatures.29 It has also been
proposed that phases of this type may play a central role on
the physics of high temperature superconductors.30,31 This
charge-ordered state of a strongly correlated system of fer-
mions is the simplest example of an electronic liquid crystal
phase.30

The problem of the fate of the fermions at quantum criti-
cality, and in the “non-Fermi liquid” phases mentioned
above, so far has only been considered within perturbative
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corrections to Hartree-Fock random-phase approximation
sRPAd theory. Oganesyan et al.19 found that the quasiparti-
cles are wiped out as well-defined quantum states. This is
due to the large fluctuations of soverdampedd quadrupolar
collective modes. These authors found, within a Hartree-
Fock and RPA theory, an overdamped collective mode with
z=3 at the critical point. They also found that the fermion
self-energy acquires, at the quantum critical point, an imagi-
nary part with a frequency dependence following the law
v2/3. A similar behavior has been found in the case of the
Stoner transition and in the antiferromagnetic phase.17,33

Oganesyan and co-workers also found that this behavior
holds inside the nematic phase, except along a set of measure
zero of directions determined by the symmetry breaking.32

However, it seems quite likely that such leading order
behavior19,20 may actually signal the complete failure of the
Landau theory of the Fermi liquid. It is clear that to better
understand this problem a nonperturbative analysis of the
behavior of the fermions at the quantum phase transitions
sand beyondd is needed. Chubukov33 has given arguments
which, in the context of the ferromagnetic metallic transition,
suggest that this behavior may persist beyond the lowest or-
der in perturbation theory.

In this paper we will consider the nematic quantum phase
transition in Fermi fluids using the nonperturbative approach
of higher dimensional bosonization.10,12,15 We will not dis-
cuss the simportantd lattice effects here. Bosonization is a
powerful tool to study the nonperturbative behavior of one-
dimensional gapless Fermi systems, the best understood fer-
mionic quantum critical systems.34 As is well known, the
kinematics of one-dimensional systems is so constrained that
the bosonic collective modes completely exhaust the spec-
trum of these fermionic systems, allowing even for a full
reconstruction of the fermionic operators entirely in terms of
bosons. A striking result in the one-dimensional system is
that the electron acquires a nontrivial anomalous dimension
and it is no longer the quasiparticle of these systems, even
for arbitrarily weak interactions. For these reasons one-
dimensional gapless Fermi systems have been termed “Lut-
tinger liquids.” The actual quasiparticles are nontrivial soli-
tons which are orthogonal to a bare electron.35

In dimensions higher than one the physics sand the kine-
maticsd is quite different than in one dimension. Nevertheless
bosonization methods still yield the physics of the Landau
theory of the Fermi liquid correctly.10,12,15 Superficially this
may seem surprising since in dimensions higher than one
there are no longer strong kinematic constraints, and conse-
quently the bosonic collective modes cannot exhaust the
spectrum of an interacting Fermi system. Instead, except for
narrow regimes in which the collective modes are stable
quantum states, they exhibit Landau damping, reflecting their
decay into particle-hole pairs. It is a key check of the validity
of higher dimensional bosonization that it gets the physics of
Landau damping.13

One appealing feature of higher dimensional bosonization
is that it is actually a theory of the quantum fluctuations of
the shape of the Fermi surface. It is thus a natural approach
to study quantum phase transitions associated with Pomeran-
chuk instabilities, and in particular the nematic state.36 More
specifically, we focus on the nematic case for spinless fermi-

ons and compare with the work of Oganesyan and
co-workers19 based on RPA and Hartree-Fock. We find that
the physics of the bosonic collective modes is the same in
bosonization and in RPA, and thus our results agree with
those of Ref. 19 in the Landau phase, in the nematic phase,
and at the quantum critical point. Perhaps this is not so sur-
prising since at long wavelengths RPA becomes asymptoti-
cally exact and this is the regime in which bosonization is
correct sfor a more thorough discussion, see Ref. 37d. In
particular we derive the effective action near the quantum
critical point and find that it does have a Hertz-Millis form
with dynamic critical exponent z=3, consistent with the find-
ings Oganesyan and co-workers,19 and by Nilsson and Castro
Neto,38 but in disagreement with the results of K. Yang.39

We further use bosonization methods to obtain the fer-
mion propagator. This result is well beyond the Hartree-
Fock/RPA theory and thus it allows us to study the fate of the
fermions nonperturbatively. We find striking violations of the
Landau assumptions for Fermi liquids. Thus, the equal-time
behavior of the fermion propagator at the quantum critical
point sat zero temperatured is found to fall off faster than any
power, decaying instead with a law 1/ ux u exps−const uxu1/3d
as a function of distance. The same behavior is found in the
nematic phase except along symmetry-determined directions.
We also verify explicitely from this expression the vanishing
of the fermion residue as expected from this kind of behav-
ior. In contrast to the equal-time behavior, at quantum criti-
cality the fermion autocorrelation function behaves as
1/ ut u exps−const u tu−2/3d, with a similar albeit anisotropic law
in the nematic phase as well. We also find that the low en-
ergy behavior of the one-particle density of states N*svd ex-
hibits an enhancement to a zero frequency value N*s0d which
we find to be larger than Ns0d, its noninteracting value. At
finite but low frequency we further find that this one-particle
density of states behaves as N*svd=N*s0d+Bv2/3ln v sB is a
constantd, i.e., a cusp at v=0.

Thus, our bosonization results confirm that the nematic
phase of a Fermi fluid is a non-Fermi liquid. However, its
behavior is more complex than the predictions of the
Hartree-Fock/RPA theory. Recently Chubukov33 has exam-
ined the behavior of the fermion self-energy in perturbation
theory at the ferromagnetic quantum critical point and found
that the frequency dependence is not changed by higher or-
der corrections. Our results for the autocorrelation function
are consistent with his results, as well as with Refs. 19, 20,
and 40. However, we also find that the equal-time propagator
sthe “one-particle density matrix”d has a very different be-
havior than what is predicted from these diagrammatic meth-
ods.

The paper is organized as follows: In Sec. II we derive a
theory of the nematic QCP via higher dimensional bosoniza-
tion. Here we present a theory of the quantum phase transi-
tion to the nematic Fermi fluid, Sec. II A, and show that it
reproduces the analog of Hertz-Millis theory for this prob-
lem. In particular we give a detailed analysis of the spectral
functions of the collective modes, Sec. II B, and derive the
effective action valid in the vicinity of the quantum phase
transition, Sec. II C. In Sec. III we use bosonization methods
to calculate the fermion propagator. Here we extract the full
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diagrammatic perturbation theory of the fermion Green func-
tion from bosonization, and use it to calculate the fermion
self-energy. Here we check that the bosonization formulas
reproduce correctly the non-Fermi liquid behavior found
within the Hartree-Fock/RPA theory.19 We then use the full
bosonized expression for the fermion propagator. Here we
find large violations to Fermi liquid theory both at quantum
criticality and in the nematic Fermi fluid phase. As an appli-
cation we give a calculation of the fermion one-particle den-
sity of states. Finally, in Sec. IV we draw our conclusions. To
help keep this paper self-contained, in Appendix A we give a
short review the extension of bosonization to D-dimensional
Fermi systems. sFor a more in-depth review, see Ref. 16d. In
Appendix B we summarize details of the effective quadrupo-
lar interactions, including fermion screening and Landau
damping effects. In Appendix C we discuss the effects of the
suncondensedd s-wave channel on the effective theory for the
nematic. The details of the calculation of the boson propaga-
tors are given in Appendix D.

II. THE NEMATIC QUANTUM PHASE TRANSITION AND
THE ORDER PARAMETER

In this section, we consider the boson theory, obtained via
an extension of bosonization to greater than one dimension,
near a nematic sPomeranchukd instability of a translationally
invariant fermion system. In the notation of Appendix A, we
take the following action for the bosons:

S0 =
Ns0d

2 o
S
E d2xdtf− ]twSvS · ¹wS − svS · ¹wSd2g

s2.1d

and forward scattering interactions

Sint =
Ns0d

2 o
S,T
E d2xd2x8dt

3FS−Tsx − x8dvS · ¹wSsxdvT · ¹wTsx8d . s2.2d

Here, S labels the patch defined by coarse graining the Fermi
surface, and the density of quasiparticles in a patch may be
obtained from the boson field wSsx , td via the relation
dnSsx , td=Ns0dvS ·¹wSsx , td. FS−Tsx−x8d is therefore the in-
teraction between particle-hole pairs in patches S and T.

We begin by analyzing our bosonized theory for a con-
stant field configuration and reproduce Pomeranchuk’s result.
Consider configurations such that dnS is constant in space
and time over some particular range of time T. The resulting
action is

Sshape = −
VT

Ns0d
s1 + F0dsm0

+d2

−
VT

2Ns0d o
,.0

N/2

s1 + F,dssm,
+d2 + sm,

−d2d , s2.3d

where we have expanded dnS as

dnS =Î 2

N
o
,=0

N/2

fm,
+coss,uSd + m,

−sins,uSdg s2.4d

and introduced the Fermi liquid parameters via

FS−T =
1

N
F0 +

2

N
o
,.0

F,cos , suS − uTd . s2.5d

Hence, for arbitrary m,
±, we find that any F,,−1 will desta-

bilize the Fermi liquid. The point F,=−1 we shall call the
Pomeranchuk snematic for ,=2d quantum critical point
sQCPd. Though Fermi liquid theory breaks down at this
point, Luttinger’s theorem is still obeyed.

It should also be noted that in the above analysis we could
have included interactions involving large angle scattering
swhich may lead to charge density/spin density wave insta-
bilitiesd, corrections to the linearized dispersion, three- or
four-body interactions, and BCS processes in the bosonized
theory. However, except for BCS processes, these effects are
irrelevant in the Fermi liquid phase though some become
important near the nematic critical point to be discussed be-
low.

For simplicity, in the rest of this section, we shall special-
ize to the ,=2 instability in two-spatial dimensions, the 2D
quantum nematic liquid crystal, though the results generalize
easily.

A. Saddle point expansion near the nematic QCP

To study the nematic QCP, originally considered by
Oganesyan et al.,19 we set all F, to zero for ,Þ2. This is
reasonable since these other modes are not critical and their
effect is only to introduce finite renormalizations of the pa-
rameters in the effective theory of the critical squadrupolard
modes ssee belowd.

On the broken symmetry side si.e., F2,−1d, the quadratic
action is no longer stable. So, in order to make the theory
consistent, we need sat leastd a quartic term in the bosonized
action. Here, as a specific example, we consider the quartic
interaction that arises from corrections to the linearized dis-
persion in the bosonized form given in Ref. 36,

S4 =
gNs0d

4! o
S
E d2rdtsvS · ¹wSd4. s2.6d

This term can be found by a direct extension of our en ex-
pansion of sA12d to third order, noticing that it is an expo-
nential series in idnSen / fNs0d"vFg. An estimate of g may
therefore naturally be obtained from the equations of motion
of either the boson or fermion pictures. However, this is not
the only quartic contribution to the action since an eight-
fermion interaction term sthat is quartic in densitiesd also
contributes at this level with a more general form similar to
the Fermi liquid interactions. Nevertheless, this will give us a
flavor of the broken symmetry phase.

Since this effective theory is no longer quadratic in the
bosonic fields, we will examine its behavior within a semi-
classical approximation, which means that we will first find
the extremal configuration and then expand our action about
it. Thus, we write
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dnS = Ns0dvS · ¹w = dnS
cl + jS, s2.7d

where dnS
cl is the solution of the classical equations of motion

at a uniform, mean field level

dnS
cl +

2

N
F2s0do

T

cosf2suS − uTdgdnT
cl +

g

3 ! Ns0d2 sdnS
cld3 = 0,

s2.8d

where as stated earlier, we set F,s0d=0 for ,Þ2. Because
the nonlinear term is cubic, we seek solutions of the type

dnS
cl =

1
ÎN

o
,=−N/2

+N/2

m,ei,uS, s2.9d

where m,Þ0 for ,= h±2, ±6, ±10, . . . j. In terms of the m,’s,
the equation of motion becomes

m, + F2sm2d,,2 + m−2d,,−2d +
g

3 ! Ns0d2N
o

,1,,2

m,1
m,2

m,−,1−,2

= 0. s2.10d

We first observe that for F2ù−1, the only possible solution
is m,=0 for all ,, as expected for the isotropic case. If F2
,−1, there exits a whole set of nontrivial solutions involv-
ing, in general, all harmonics ,= h±2, ±6, ±10, . . . j obeying
particle hole symmetry. Nevertheless, when we are near the
phase transition, i.e., F2&−1, one can find the set of solu-
tions analytically with

m2m−2 =
1

2
ssm2

+d2 + sm2
−d2d =

2

g
Ns0d2Nu1 + F2s0du

s2.11d

using the notation of s4d and for the higher harmonics

um4k+2u2 ~ Ns0d2NS 2

g
u1 + F2s0duD2k+1

, s2.12d

so that in the limit F2→−1 we can neglect the higher har-
monics.

From this calculation, we conclude that near the F2=−1
nematic QCP, the Fermi surface takes the simple shape

dnS
cl = Ns0dÎ2u1 + F2s0du

g
coss2us − ad , s2.13d

where a picks out the major axis of the ellipse that is spon-
taneously chosen. Without loss of generality, from now on
we will set a=0. We also conclude that further away from
the critical point, the anharmonic quartic terms generically
introduce higher harmonics to this shape. From this point of
view, for example, the Fermi surface in the nematic phase
may become increasingly flatter away from the critical point
leading to an additional instability towards a smectic phase,
breaking translational order in one direction. However, this
phase transition cannot be seen within our forward scattering
only model and all that happens deeper into the phase here is
that the shape becomes more anharmonic. It should also be
noted that the other harmonics, ,= h0, ±4, ±8, . . . j, appear
when particle-hole symmetry is broken, e.g., when a cubic

term in the action is introduced sS3d, corresponding to the
addition of quadratic terms to the fermion dispersion.

B. Theory of the quadrupole moment density

The next step beyond mean field theory is to formulate an
order parameter theory. To that end, in this section we are
interested in focusing on describing the behavior of the quad-
rupole moment density, m2

±sq ,vd. Again, for our present pur-
poses we shall keep only F2sqd. However, in Appendix C we
show that by keeping also F0sqd, the additional effects of the
noncritical modes do not change our results in any essential
way.

Now, our goal here is to obtain an action entirely in terms
of m2

±. This can be easily accomplished by following Ref. 16
and using a Hubbard-Stratonovich transformation to aid the
diagonalization. In the end, however, both the auxiliary fields
and m,

± for ,Þ2 shall be integrated out.
In momentum space, our free action can be written as

S0 =
1

2o
S
E d2qdv

s2pd3 sxS
0d−1sq,vddnSsq,vddnSs− q,− vd ,

s2.14d

where

xS
0sq,vd = Ns0d

vS · q

v − vS · q
= Ns0d

cos uS

s − cos uS
s2.15d

is the density-density response function in the “small q” limit
of patch S with s=v /qvF. sNote: when needed, we regularize
the denominator by letting s→s+ ie signssd according to the
usual time-ordering prescription.d

The interactions, described by the quadratic action Sint, cf.
Eq. s2.2d, become diagonal in the angular momentum basis,
i.e., in terms of the multipole densities m,

±sq ,vd. In particu-
lar, the contribution to Sint from the ,=2 squadrupolard den-
sities, is

Sint =
1

2
E d2qdv

s2pd3 f2sqdfum2
+sq,vdu2 + um2

−sq,vdu2g ,

s2.16d

with f2sqd defined as usual in Fermi liquid theory through
F2sqd=Ns0df2sqd. The contributions from the other angular
momentum channels have a similar form sin terms of the
respective Landau parametersd.

To aid the diagonalization, we split up the free part of the
action, S0, using the Hubbard-Stratonovich transformation,

S0 = −
1

2o
S
E d2qdv

s2pd3 fxS
0sq,vdsSsq,vdsSs− q,− vd

+ „sSsq,vddnSs− q,− vdsSs− q,− vddnSsq,vd…g
s2.17d

and then switch over to the angular momentum basis,
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S0 = −
1

2 o
h=±

o
,,,8

E d2qdv

s2pd3 fsx,−,8
0 + hx,+,8

0 ds,
hs,8

h

+ 2sd,−,8,0 + hd,+,8,0dss,
hm,

hdg s2.18d

In the large-N limit, we have

x,
0 = Ns0dE

0

2p du

2p

cos u

s − cos u
ei,u. s2.19d

Here we have Fourier transformed with respect to
q̂= scos f , sin fd, that is, u=uS−f.

Now, we will integrate out all the m,
± densities, except for

,=2. This can be easily done since S0 is a linear function of
these fields, while they are absent in Sint. This is so for this
model with only a quadrupolar interaction, i.e., we have set
their corresponding Fermi liquid parameters to zero. sIn the
vicinity of the nematic transition it is straightforward to in-
clude the effects of the ,Þ0 channels. Their net effect is to
give rise to simple renormalizations of the effective theory
we are about to derive. A detailed analysis is given Appendix
C.d The result is a delta function for the s, fields, allowing us
to also integrate them out with the net result to simply set
s,

±=0 for all , except ,=2. This gives us the following
simple expression for the effective free action:

S0 = −
1

2 o
h=±

E d2qdv

s2pd3 fsx0
0 + hx4

0dus2
hu2 + 2ss2

hm2
hdg

s2.20d

and we now have an action entirely in terms of the quadru-
pole moment density.

The final step is to integrate out the s2
± fields. This is

easily accomplished and we obtain the Gaussian level of the
order parameter theory, including the effects of the interac-
tions Sint. The action of the effective theory is

S2fm2
+,m2

−g =
1

2
E d2qdv

s2pd3 F 1

x2
+ um2

+u2 +
1

x2
− um2

−u2G ,

s2.21d

where x2
±ss ,qd is the dynamical correlation function ssuscep-

tibilityd of the quadrupolar densities

x2
±ss,qd =

x0
0ssd ± x4

0ssd
1 − f2sqd„x0

0ssd ± x4
0ssd…

s2.22d

and

x2,
0 = Ns0dF− d,,0 + K0ssdS1 − K0ssd

1 + K0ssdD
,G , s2.23d

with

K0ssd =
s

Îs − 1Îs + 1
. s2.24d

Naturally, this is just RPA quadrupolar susceptibility of Ref.
19.

We should stress that the effective action S2 of Eq. s2.21d
does not include the effects of the nonlinear interactions rep-

resented in S4, cf. Eq. s2.6d, which are crucial to stabilize the
nematic state past the nematic QCP ffor F2s0d,−1g. As we
discussed above, these nonlinear terms do mix the different
angular momentum channels. However, provided there is no
condensation for ,Þ2 it is still possible to integrate out
these degrees of freedom, at least perturbatively. Thus, suf-
ficiently close to the nematic QCP, the effects of the higher
angular momentum channels will remain perturbatively
small.

Furthermore, should we have decided to integrate out the
density fields, m2

± in favor of the auxiliary fields s2
±, we

would have found the propagators of the s,
± fields to be the

RPA effective interaction

V 2
±ss,qd =

f2sqd
1 − f2sqdfx0

0ssd ± x4
0ssdg

. s2.25d

The action of the s,
± fields is precisely that found by Ogane-

syan and co-workers19 also obtained through a Hubbard-
Stratonovich transformation but performed directly in the
fermion theory. We shall find that understanding this interac-
tion is the key to understanding the physics of the nematic
QCP.

C. Order parameter theory of the nematic QCP

The theory with the action given by Eqs. s2.1d and s2.2d
seemingly describes the quantum mechanics of a fluctuating
surface. This suggests that the effective degrees of freedom
ought to be long-lived bosonic modes of the fluctuations of
the shape of the Fermi surface. In other terms, this bosonized
theory would seem to be entirely described by stable collec-
tive modes. However, these bosonic excitations are not gen-
erally stable due to Landau damping effects, represented by
the branch cut singularities in s2.23d.19,41

We will examine this problem more closely. It is useful to
introduce the following quadrupole density spectral func-
tions:

S2
±sq,sd ; − 2 sign ssdImx2

±sq,sd

=−
2 sign ssdImV 2

±sq,sd
f2sqd2 ;

B2
±sq,sd

f2sqd2 , s2.26d

where B2
±sq ,sd denotes the spectral function of V 2

±sq ,sd, the
correlation function of the s2

± fields.
The analysis is greatly simplified upon recognizing that

V 2
±sq ,sd is a polynomial function of K0ssd. For ,=2 the de-

nominator of V 2
+sq ,sd is a cubic function of K0, whereas for

V 2
−sq ,sd it is quadratic in K0. In Appendix B we show that

V 2
±sq ,sd have the partial fraction expansions

V 2
±sq,sd =

1

Ns0dob
Zb

±sqd

d b
±sqd − K0ssd

, s2.27d

where b=a ,b ,c for V 2
+, and b=a ,b for V 2

−. We can there-
fore view V 2

±sq ,sd as a sum of terms each of the form of the
RPA s-wave channel effective interaction, renormalized
by a residue Zb

± and with an effective interaction fb
±sqd

= f1−d b
±sqdg−1. Details of these expansions are given in

Appendix B.
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Near the nematic QCP, where uF2s0d+1 u !1, upon defin-
ing the quantity d2sqd,

d2sqd =
1 + F2sqd

F2sqd
= 1 +

1

F2s0d
− kq2, s2.28d

the effective interactions V 2
±sq ,sd become simple and we

obtain

V 2
+sq,sd <

1

2Ns0dF 1
d2sqd

2 − K0ssd
−

1/4

s2 − 1/2G , s2.29d

V 2
−sq,sd <

1

4Ns0d
1

s2 +
d2sqd

4

. s2.30d

Thus, near the critical point we find a propagating mode with
dispersion vq= s1/Î2dqvF sa z=1 moded, represented by the
pole in the second term for V 2

+ fsee Eq. s2.29dg, and another
one with dispersion vq= sÎd2sqd /2dqvF sa z=2 moded, given
by the pole in V 2

− fsee Eq. s2.30dg. Furthermore, we also find
an overdamped mode, given by the pole in first term of V 2

+

fsee Eq. s2.29dg, with a dispersion relation of s=−id2sqd /2,
and dynamic critical exponent z=3. For q sufficiently small,
and asymptotically close to the nematic quantum critical
point, we find that this overdamped mode dominates the
spectral function over the other two spropagatingd modes.

In Fig. 1 we present a plot of the spectral function
S2

+sq ,sd<B2
+sq ,sd=−2 sign ssdImV 2

+sq ,sd. It shows that, as
the QCP is approached from the Fermi liquid side, there is a
large transfer of spectral weight in the quadrupolar spectral
function to the low frequency end of the spectrum, associ-
ated with the emergence of the overdamped z=3 mode. This
mode thus controls the quantum critical behavior.

Conversely, normal Fermi-liquid behavior is obtained if
d2s0d is finite so that z=1. On the other hand, if the over-
damped mode were to be absent, the dynamic critical behav-
ior would be controlled by propagating mode with z=2 dis-
cussed above. The trend is thus opposite to what one might
naively expect: the higher the z, the higher the effective di-
mension D+z, the stronger the divergence of the over-
damped mode. Recently, Yang39 proposed that the transition
to the quantum nematic state should have dynamic critical
exponent z=2. The analysis we just presented shows that this
is not the case.

As a result of the above analysis, we obtain the following
effective action for the quadrupole density near the nematic
QCP:

SQCP =
1

2Ns0d E d2qdv

s2pd3 ff2iusu − 1 − F2sqdgum2
+u2

+ f4s2 − 1 − F2sqdgum2
−u2g

−
g

8Ns0d3N
E d2xdtsm2

+2 + m2
−2d2. s2.31d

The order parameter field is

m2
+sq,vd =Î 2

N
o

S

dnSsq,vdcos 2suS − fd ,

m2
−sq,vd =Î 2

N
o

S

dnSsq,vdsin 2suS − fd , s2.32d

where, again, f is the direction of q=qscos f , sin fd. This
action is therefore very similar to Hertz’s action for the fer-
romagnetic quantum phase transition in itinerant fermionic
systems,1 but here within the context of the formation of
nematic order sand similar actions may also be obtained for
higher ,d. Recently, Nilsson and Castro Neto38 derived this
action using Fermi liquid theory methods.

Now, let us look on the broken symmetry side, in the
nematic phase. As in any theory with an Os2d symmetry,
here we will find that the order parameter will spontaneously
pick a direction. As a result, it is no longer useful to Fourier
transform with respect to f in Eq. s2.32d. Rotating back and
after the saddle point expansion about the classical configu-
ration s2.13d, we find the quadratic action on the nematic
side

SQCP
nematic =

1

2Ns0d E d2qdv

s2pd3 m2sq,vd · x2
−1 · m2s− q,− vd

s2.33d

where m2sq ,vd= fm2
+sq ,vd ,m2

−sq ,vdg and

x2
−1 = fiusu − kq2 − u1 + F2s0dugS1 0

0 1
D + iusu

3Scos 4f sin 4f

sin 4f − cos 4f
D − u1 + F2s0duS1 0

0 − 1
D

s2.34d

in the reference frame in which the nematic order parameter

FIG. 1. The snormalizedd quadrupole density spectral function

Sg2
+sq ,sd=S2

+sq ,sd /Ns0d, Eqs. s2.26d and s2.29d for qÞ0, very close
to the nematic quantum phase transition from the Fermi liquid
phase, F2s0d→−1+. As the QCP is approached, there is a large
increase of spectral weight in the z=3 overdamped quadrupolar
mode at very low frequency. Notice the delta function contribution
of the propagating mode with z=1 discussed in the text. The propa-
gating mode with z=2 gives a similar delta function contribution
swith smaller spectral weightd to S2

−sq ,sd.
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is diagonal, i.e., its principal axes, whose orientation is de-
termined spontaneously. The difference between this action
and the previous one discussed above for the symmetric
phase is the emergence of the last term which originates from
the nonlinear squarticd term in the effective action. This term
ruins our ability to rotate f out of the action.

Noting that the off-diagonal terms are higher order in s,
we may write this in the simplified form

SQCP
nematic =

1

2Ns0d E d2q

s2pd2 E dv

2p
ff2iusucos2s2fd − 2u1

+ F2s0du − kq2gum2
+u2 + f2iususin2s2fd − kq2gum2

−u2g .

s2.35d

We see that now m2
+ is the amplitude mode, which has

z=1, while m2
− is the nematic Goldstone mode which contin-

ues to have dynamic critical exponent z=3 even in the nem-
atic phase.19

The last point is to discuss how this affects the original
boson theory. If we bring back all the integrated out angular
momentum channels, we find that the free action on the bro-
ken symmetry side has

xgS
0sq,vd = Ns0d

vS · q

v − vS
g · q

, s2.36d

with a weakly renormalized Fermi velocity

vS
g = f1 + 4u1 + F2s0ducos2s2uSdgvS. s2.37d

Hence, spontaneous symmetry breaking essentially produces
a Goldstone mode that continues the critical, z=3 behavior
into the nematic phase while leaving the rest of the theory
virtually untouched until deep into the broken symmetry
phase.

III. FERMIONS IN THE CRITICAL REGIME

In the past sections we discussed the behavior of the col-
lective modes near the nematic quantum phase transition.
Much of what we discussed in the previous section on the
behavior of the collective modes is indeed in complete agree-
ment with the RPA treatment of this theory.19 This should not
be a surprise since RPA is asymptotically exact at low ener-
gies and at low frequencies. This is also the reason while
bosonization works in the same regime.

We will now turn our attention to the behavior of the
fermionic degrees of freedom near the nematic QCP and in
the nematic phase. This is very different problem. In Ref. 19
the behavior of the fermion Green function was studied per-
turbatively and a startling non-Fermi liquid behavior was
found already at the lowest s“Fock”d order. However, this
very finding raises questions on the applicability of perturba-
tion theory for the fermion propagator. In this section we will
use bosonization methods to address this problem.

Here we will use bosonization to compute the fermion
propagator. Within this approach one has a theory for the
bosonized degrees of freedom and a set of operator identities
relating observables of the fermionic theory to those of the

bosonic theory. For a summary see Appendix A. There are
two important issues to keep in mind. One is that the
bosonized theory is exact for a fermionic theory with a lin-
earized dispersion and forward scattering interactions si.e.,
those described by Landau parametersd. The other is that one
has, within this theory, an operator to represent the fermion.
Corrections to the linear dispersion as well as other snonfor-
ward scatteringd interactions are represented by nonlinear
terms in the action of the bosonized theory. The expressions
that we will derive below apply strictly speaking to the fixed
point theory, in which these perturbations are not included. It
turns out that corrections due to the nonlinearities of the
fermion dispersion and other such terms are irrelevant sboth
in the Landau phase and at the quantum critical pointd. As
such they will affect the results at high energies and at mo-
menta but their effects become negligible in the low energy
limit. Please note that one such operator, discussed in the
previous section, stabilizes the nematic phase, i.e., it is a
prototypical dangerous irrelevant operator.

The boson Green function may be found from our action
in a similar way as we found the above density-density cor-
relation functions, that is, using a Hubbard-Stratonovich ap-
proach. The result is

GBsS,Tdsx,td = GBsS,Td
0 sx,td

+ iE d2kd«

s2pd3 GFsSd
0 sk,«dVS,Tsk,«dGFsTd

0 sk,«d

3seisk·x−«td − 1d , s3.1d

where GBsS,Td
0 is infrared divergent unless x ivS and S=T. On

the same patch, GBsS,Sd
0 sx , td is given by the standard expres-

sion

GBsS,Sd
0 sx,td = kwSsx,tdwSs0,0dl − kwSs0,0d2l

= − lnS n̂S · x + ivFt + ia sign t

ia
D , s3.2d

where a is a short-distance cutoff. In Eq. s3.1d we have de-
noted by VS,Tsq ,vd the effective interaction

VS,Tsq,vd =
1

Ns0d o
,,,8

eif,suS−fd+,8suT−fdgks,sq,vds,8s− q,− vdl ,

s3.3d

which for the quadrupolar case, becomes simply

VS,Tsq,vd = V 2
+sq,vdcos 2suS − fdcos 2suT − fd

+ V 2
−sq,vdsin 2suS − fdsin 2suT − fd ,

s3.4d

where the relative angle, uS−f appears here fsee Eq. s2.18dg.
We also have used in s3.1d the free fermion Green function

GFsSd
0 sq,vd =

1

v − vS · q + ie sign svd
. s3.5d

We will now use the bosonized form of the fermion operator
fsee Eq. sA20d of Appendix Ag to give us the fermion Green
function of the form
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GFsx,td = o
S,T

S− i

N
DkTcSsx,tdcT

†s0,0dleikS·x s3.6d

;
1

N
o

S

GFsSdsx,tdeikS·x, s3.7d

for which we find the explicit expression

GFsSdsx,td = GFsSd
0 sx,tdexpFiE d2kd«

s2pd3 GFsSd
0 sk,«dVS,Ssk,«d

3GFsSd
0 sk,«dseisk·x−«td − 1dG . s3.8d

This expression has many similarities with the bosonization
formulas usually obtained in one dimension. In particular,
the free-fermion prefactor also arises there. However, the
exponential factor, which in one dimension yields an anoma-
lous dimension for the fermion operator, plays a very differ-
ent role in dimensions higher than one.

A. Diagrammatic expansion for the bosonized theory

We will first show that the bosonized formula of Eq. s3.8d
is consistent with the perturbative results of Ref. 19. To do
that we will expand the exponential and Fourier transform to
momentum space to find its diagrammatic expansion. The
result will be a series of convolutions since in real space they
are products. The first order term is

dGF
s1dsq,vd = iE d2kd«

s2pd3 sGFsSd
0 sq − k,v − «d − GFsSd

0 sq,vdd

3fGFsSd
0 sk,«dg2VS,Ssk,«d , s3.9d

which does not look like it obeys the Feynman rules for the
perturbation theory of nonrelativistic fermions. However, we
may utilize the following identity:

fGFsSd
0 sq − k,v − «d − GFsSd

0 sq,vdgGFsSd
0 sk,«d

= GFsSd
0 sq − k,v − «dGFsSd

0 sq,vd s3.10d

and use it again through

GFsSd
0 sq − k,v − «d = GFsSd

0 sq − k,v − «d − GFsSd
0 sq,vd

+ GFsSd
0 sq,vd s3.11d

to obtain

dGF
s1dsq,vd = ifGFsSd

0 sq,vdg2E d2kd«

s2pd3 sGFsSd
0 sq − k,v − «d

+ GFsSd
0 sk,«ddVS,Ssk,«d . s3.12d

The second term is actually the shift in the chemical poten-
tial, SskF ,0d, and is zero by the effective particle-hole sym-
metry of this theory swith a linearized fermion dispersiond.
We therefore obtain

dGF
s1dsq,vd = ifGFsSd

0 sq,vdg2E d2kd«

s2pd3

3GFsSd
0 sq − k,v − «dVS,Ssk,«d , s3.13d

which is the correct result since, as usual, the Hartree term
vanishes.

Using the same tricks and assumptions, the second-order
contribution can also be worked out sthough it is much more
workd. The series to second order is shown in Fig. 2; please
keep in mind that the interaction, VS,S is the full bubble
summed RPA interaction. Higher dimensional bosonization
therefore keeps all diagrams in perturbation theory that con-
tain up to simple bubbles while neglecting more complicated
bubbles as is usual in the RPA sin the Landau theory of the
Fermi liquid, these irrelevant operators contribute subdomi-
nant potentially nonanalytic temperature and frequency de-
pendent terms to physical quantities18d.

Some time ago, Kopietz and Castilla42,43 used a somewhat
different sand in principle equivalentd form of bosonization
and discussed the effects of a quadratic term in the fermion
energy dispersion. However, instead of using an operator
identity sand thus not exploiting the nonperturbative charac-
ter of bosonizationd they chose to make contact with pertur-
bation theory, and proceeded to propose a modified form for
the fermion propagator directly. It gave an exponential factor
similar to the one appearing here except the fermion Green
functions that appear in the exponential include the quadratic
terms in there energy dispersion. However, these Green func-
tions do not satisfy the criterion SskF ,0d=0 so that in addi-
tion to the exponential, they include a preexponential factor
that is necessary, for example, to cancel the second term of
Eq. s3.12d. As a result, order-by-order in VS,S, one needs to
keep precisely the right preexponential factor to cancel the
additional terms. A calculation with their method can there-
fore only be carried out to a small finite order, and one can
no longer think of the exponential factor as separate from the
preexponential factor. In contrast, we have seen here that the
bosonized expressions, when treated consistently, yield exact
results which agree with those of perturbation theory order
by order, albeit only in the low energy limit, including the
singular behavior.

B. Perturbative results

Before computing the full nonperturbative form of the
fermion Green function, let us verify that our bosonized
theory, reproduces the perturbative results of Oganesyan et
al.19 near the nematic QCP. We shall be interested, therefore,
in the integral

FIG. 2. Bosonization’s Feynman diagram series.
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SS
s1dsq,vd = iE

PS

d2kd«

s2pd3 GFsSd
0 sq − k,v − «dVS,Ssk,«d .

s3.14d

Here VSSsk ,«d is the effective interaction mediated by the
collective modes, cf. Eqs. s2.29d, s2.30d, and s3.4d. The main
contribution to the self-energy is due to the overdamped
Goldstone modes, as noted in Ref. 19. Thus we take a ge-
neric interaction of the form

VS,Ssk,«d =
1/Ns0d

dskd − K0ssd
, s3.15d

noting that cos2f2suS−fdg, which should appear as a coeffi-
cient in the nematic case, only introduces irrelevant contri-
butions to the integral and is therefore left out of this analy-
sis. Here, at the QCP, dskd=−kk2 /2 but as a check we may
characterize the Fermi liquid phase by letting dskd=d, a con-
stant.

Before computing SS
s1dsq ,vd, we should note that this ex-

pression gives the clearest definition of the patch. Given the
ultraviolet cutoff kF−l /2, uk u ,kF+l /2, the patch is de-
fined so that in comparison to the original theory

Ss1dsk = kS + q,vd < SS
s1dsq,vd, q P PS, s3.16d

and therefore the patch width is of order

L , ÎkFl , s3.17d

dictated by the curvature of the Fermi surface alluded to
earlier.

Now, to simplify our calculation, let us focus on the fer-
mion lifetime near the Fermi surface

2GSsq,vd = − 2 sign svdImSSsq,vd . s3.18d

This can most easily be expressed in terms of the spectral
function, B2sq ,sd, derived from the imaginary part of
VS,Ssq ,sd as in Eq. s2.26d and Eq. s3.4d safter setting the
angular factors to 1d,

2GSsq,vd = E
−L/2

L/2 dkt

2p
E

qn−uvu/vF

qn dkn

2p
B2Sk,

v − vFsqn − knd
kvF

D ,

s3.19d

where qn=vS ·q /vF. Here we note that this integral is domi-
nated by the contribution of the overdamped mode, which
enters in B2

+sq ,sd. sThe other contributions, associated with
the propagating collective modes, only yield regular depen-
dences in the fermion frequency.d Setting qn→0 and looking
at the limit v→0 we obtain

GSsvd =
1

2p2E
0

v/vF

dknE
0

L

dktB2
+SÎkn

2 + kt
2,

kn

kt
D ,

s3.20d

using normal and tangential coordinates. From here, we first
integrate over the tangential momenta, look at small qn and
obtain the long wavelength behavior. We find that in the
Fermi Liquid phase fdskd=constg

GSsvd ,
1

Ns0d
S v

vF
D2

ulnv/LvFu , s3.21d

while at the nematic QCP, using d=−kk2 /2,

GSsvd ,
1

Ns0d
S v

kvF
D2/3

. s3.22d

In the Fermi liquid, the energy of the quasiparticle is propor-
tional to v and we classify them as long lived. However, at
the nematic QCP, one can show via Kramers-Kronig that the
real part of the self-energy also goes like uvu2/3. Hence at the
nematic QCP, the lifetime of a quasiparticle is not well de-
fined and to try to understand it as a perturbation about a free
theory of long-lived quasiparticles is meaningless.

Thus, the bosonized theory reproduces the results found
earlier on perturbatively by Oganesyan and co-workers19

ssee also Refs. 20 and 40d. It should be noted that the v2/3

law was also found to appear in the perturbative calculation
of the fermion self-energy in a model of holes interacting via
a forward scattering Us1d gauge interaction with a similar
form to s3.15d in the context of high temperature
superconductors,44,45 and in the perturbative treatment of the
quantum critical point in a ferromagnetic metal.33

C. Nonperturbative results

We now return to the nonperturbative bosonized expres-
sion for the fermion propagator of Eq. s3.8d, which we will
write as

GFsSdsx,td = ZSsx,tdGFsSd
0 sx,td . s3.23d

In the Fermi liquid phase and at long distances and low
frequencies, the factor ZS approaches a constant value,
ZS=ZF,1, i.e., the quasiparticle residue of the Fermi liquid
state. Our goal here is to investigate the behavior of ZSsx , td
near the nematic QCP and in the nematic phase. However,
given the complexity of the full analytic expression, in this
paper we will consider only on the equal-time, t=0, behavior
ssometimes called the “one-particle density matrix”d and the
equal-position, x=0, dynamical correlation function, and
only at zero temperature. We will discuss its full behavior
elsewhere.

1. The equal-time fermion propagator

As in the perturbative calculation, it is convenient to ex-
press ln Z as an integral over the spectral functions B2

±sq ,sd.
Once again, at the nematic QCP, the important contribution
is due to the overdamped collective mode in B2

+sq ,sd, and we
will neglect all other contributions. fThis is an approximation
which gives the longtime behavior accurately. An expression
valid for all times also includes the contribution of B2

−sq ,sd.g
Since we have set t=0 here, the result is quite simple,

ln Zsxn,0d = E
0

l/2 dkn

2p
I2skndfcossknxnd − 1g , s3.24d

where
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I2sknd = E
−L/2

L/2 dkt

2p
E

0

` dv

2p

B2
+sk,v/kvFd

sv + vFknd2 . s3.25d

We find, both from a numerical computation and from an
analytic estimate, that

I2sknd =
1

Ns0dvF

f2skn
Îkd

skn
Îkd4/3

, s3.26d

where f2skn
Îkd is a regular function of its argument. From

this analysis, we conclude after performing the final Fourier
transformation,

ZSsxn,0d = CPexpH−
b

Ns0dvF
ÎkU xn

ÎkU
1/3J , s3.27d

valid for uxn u @Îk. Here b=0.0658 and CP is a constant fac-
tor resulting from subdominant terms in I2sknd. This sharp
decay of ZSsxn ,0d, faster than any power law, introduces a
scale ssimilar to a correlation length arising from a gap in the
spectrumd and dominates over the Fermi liquid behavior at
low energies. From the above expression, the correlation
length is of order j,ÎkskF

Îkd3 which is much longer than
length of the interactions, Îk.

Let us also compute the behavior of ZS on the nematic
phase by focusing on the effect of the Goldstone modes.
Recalling our discussion of the order parameter theory, we
replace s3.15d with

VS,Ssk,«d =
sin2s2uSd

Ns0d
1

− kk2/2 + iususin2s2fd
, s3.28d

which is the contribution from the Goldstone mode
sK0ssd<−i us u d. In the limit, kn→0, that is on the Fermi sur-
face, f→uS+p /2 and therefore, we simply have

VS,Ssk,«d =
1

Ns0dS−
kk2

sin2s2uSd
− K0ssdD−1

, s3.29d

so that the difference between this and the symmetric side is
simply that k→k / sin2s2uSd. Hence, we may directly write
down ZS

ZSsxn,0d = CPsSdexpH−
busins2uSdu4/3

Ns0dvF
Îk U xn

ÎkU
1/3J ,

s3.30d

where b is the same constant of Eq. s3.27d. In Eq. s3.30d we
have not included the subdominant contributions which be-
come the leading terms along the symmetry-dictated direc-
tions, the “nematic axes,” along which the angular factor
vanishes. Along the nematic axes the behavior of the equal-
time correlation function has a more Fermi liquid-like long
distance behavior as shown by Oganesyan et al., but due to
the introduction of patches, we cannot accurately capture this
behavior here.

Thus, we see that on the broken symmetry side, we
have special points at uS=np /2 where the Goldstone mode
weakens and subdominant behavior takes over. At these
points, ZS=CPsSd=ZF,1 and the quasiparticles become long
lived. It is interesting to note that the angular dependence

shown here with a power of 4 /3 is similar to that of the
perturbative calculation using the same transformation of
k→k / sin2s2uSd on Eq. s3.22d and it agrees with the results
of Ref. 19.

2. The fermion residue

One simple calculation we can do with the above result
for ZSsxn ,0d is the fermion residue following Migdal:46

Zq = nskF − qd − nskF + qd s3.31d

=E dv

2p
sGFskF − q,vd − GFskF + qddeiev, s3.32d

where the exponential factor tells us to close the contour in
the upper half plane. This expression may be written in terms
of the real-space, real-time fermion Green function, at time
t=−e. Inserting our expression for GF within Bosonization
and neglecting interpatch scattering swhich should produce
analytic in q /L contributions hered, we obtain

Zqn
=

2

p
E

0

`

dxn
sin qnxn

xn
ZSsxn,0d . s3.33d

In the Fermi liquid phase, we find ZSsxn ,0d=Z,1 in the
long distance limit and this leads directly to Zqn

=Z when
qn→0 as expected.

At the nematic QCP and into the nematic phase away
from the nodal points discussed earlier, ZSsxn ,0d is short
ranged and we may expand to leading order in qn and obtain

Zqn
<

12

p
qnj s3.34d

with the correlation length j=ÎksÎkkF /2pbd3. Thus the fer-
mion residue vanishes linearly similar to how it would in a
Fermi liquid at finite temperature where temperature makes
the correlations short ranged. It should be noted, however,
that because Zssxn ,0d decays slower than e−axn in the long
distance limit, this series expansion that we have used is
poorly defined at higher order with the coefficient of qn

2j+1

growing so rapidly that the Taylor expansion has zero radius
of convergence in the complex-qn plane. Thus Zqn

is not
analytic in qn and the Fermi surface may still be defined as a
singular point in nskd. The same behavior occurs in the nem-
atic phase for generic momenta, except along the directions
of the nematic principal axes where a finite residue is ob-
tained.

3. The fermion autocorrelation function

This case turns out to be more complicated than the equal-
time expression and we present a full analysis in Appendix
D. By a simple integration by parts, we found that the double
pole of Eq. s3.25d may be reduced to a single pole and that
the integrals involved were less singular by a full power
fdiverging like 1/kn

1/3, unlike Eq. s3.26dg but with logarithmic
corrections. From that analysis, we found the general form of
ZS to be
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ZSs0,td = CPexpH− As1 − iÎ3d
lnsvFt/Îkd
svFt/Îkd2/3J . s3.35d

In contrast with our result for the equal-time correlation
function, Eq. s3.35d approaches a constant at long times.
However, it decays to that constant much more slowly than
in a Fermi liquid where we would expect the exponent 2 /3 to
become 2. As a result, the nonperturbative effects are here
less important and, consequently, this time dependence ap-
pears to exhibit the same power-law behavior as the lifetime
calculated perturbatively in Sec. III B.

The coefficient of the exponential was found to be
A~1/ skFlkd and deserves some attention. In a Fermi liquid,
we would find A~l /kF!1 and the time dependence would
present a small correction from the Fermi liquid behavior.
However, A need not be small if 1 /k@kFl,L2, where L is
the patch width fcf. Eq. s3.17dg. Due to the emergence of L
here, this limit occurs precisely where the Fermi-surface cur-
vature begins to matter, and where the interaction length
scale is still quite small skF

−1!Îk!L−1d.
In the nematic phase, again letting k→k / sin2 2uS, we

find

ZSs0,td = CPsSdexp5− As1 − iÎ3d

3usin 2uSu4/3

lnSvFt
Îk

usin 2uSuD
svFt/Îkd2/3 6 , s3.36d

so that the angular dependence is similar to that of the equal-
time behavior.

4. The one-particle density of states

We close this section with an application of these results
to the calculation of the one-particle density of states sDOSd
in both the Fermi liquid and the nematic phases, and at the
nematic sPomeranchukd quantum critical point.

The one-particle DOS is defined by the standard expres-
sion

N*svd = − signsvd
1

p
Im GFsx,x;vd . s3.37d

In Fermi liquid phase, using ZSs0, td=CF, a constant de-
pendent upon the Fermi liquid parameters that goes to 1 for
the noninteracting case, as expected we find

GFsx,x,vd = o
S

1

N
CFE dtGFsSd

0 s0,tdeivt

= CFE dt
Ns0dvF

− vFt + ia sign std
eivt

= − ip sign svdCFNs0d , s3.38d

so that here, N*svd=CFNs0d as expected. Note: CF is not the
fermion residue and may be greater than 1.

At the nematic QCP, we have instead

GFsx,x,vd = o
S

1

N
E

−`

`

dtCPeivt

3expH− As1 − iÎ3d
lnsvFt/Îkd
svFt/Îkd2/3JGFsSd

0 s0,td ,

s3.39d

so that N*svd=CPNs0dIsv̄d with

Isvd =
2

p
ReE

0

` du

u
sinsv̄udexpH− As1 − iÎ3d

ln u

u2/3J ,

s3.40d

with v̄=Îkv /vF, valid for v!vFminhk−1/2 ,lj. Notice that
we have used throughout these expressions only the long
time limit of the exponential factor. At shorter times the be-
havior of the exponential should be dominated by high en-
ergy effects which are insensitive to whether the system is in
a Fermi liquid, a quantum critical point, or in a nematic
phase. Thus, the time integrals have an implicit short dis-
tance cutoff swhich we have denoted by “0”d. In any event,
we are only interested in the low frequency behavior which
is dominated by the long time part of the integration range.

By inspection we see that the exponential factor ap-
proaches unity squite rapidlyd for large u@1. Thus, the main
effect of this factor is a correction to Isvd away from its
value at zero frequency i.e., Is0d=1. The leading finite fre-
quency behavior, as v→0, is obtained by expanding the ex-
ponential factor in Eq. s3.40d

Isvd = 1 −
2A

p
E

0

` du

u

sin v̄u

u2/3 ln u + ¯

= 1 + A
3Î3

2p
Gs1/3dSÎkv

vF
D2/3

lnSÎkv
vF

D + ¯ ,

s3.41d

where the last line is accurate for Îkv /vF!0.1. The ellipsis
in Eq. s3.41d represents subdominant contributions at low
frequencies, which vanish faster than v2/3ln v as v→0. As a
result, the v2/3 behavior of the inverse lifetime Gsvd calcu-
lated perturbatively, appears here as a cusp in the DOS swith
a logarithmic correctiond. Unlike the lifetime, though, here A
depends on the product of the patch width cutoff ÎkFl,L
and Îk while Gsvd depends only on the product of kF and
Îk.

Thus we find that the low frequency oneparticle density of
states has the form

N*svd = N*s0d + Bv2/3ln v + ¯ , s3.42d

where N*s0d=CPNs0d.Ns0d, since we found the constant
CP.1 fsee Eq. sD17dg, and B=ACPNs0ds3Î3/2pdGs1/3d
fsee Eq. sD18dg. Hence, the zero frequency value of the den-
sity of states is larger than the Fermi liquid value. As the
frequency increases, the one-particle density of states de-
creases from its zero frequency value according to the
v2/3ln v correction term. This is a cusp singularity at v=0. It
is important to stress that we obtained these expressions
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upon expanding the exponential factor in the autocorrelation
function. This is consistent since this factor asymptotically
sand rather rapidlyd approaches 1 at long times. This also
implies that, in this regime, our results should be consistent
with the behavior of the fermion Green function found in
perturbation theory around Hartree-Fock/RPA.19,20,33,40

In the nematic phase, an angular average of Eq. s3.36d
enters our expression for N*svd. In the long time limit, when
the argument of the exponential is much less than one, we
expect that for low frequencies

A → kusin 2uSu4/3lA < 0.58A . s3.43d

Hence, in the nematic phase, the Goldstone modes continue
the critical behavior of this function in only a mildly weaker
form.

In summary, in this section we used bosonization to com-
pute the nonperturbative behavior of the fermion propagator
using the bosonized form of the fermion operator. We first
checked that the non-Fermi liquid behavior of the nematic
QCP and in the nematic phase, which were obtained earlier
using conventional diagrammatic sperturbatived methods,19,20

is recovered here upon expanding the bosonized expression
to leading order in VSS, i.e., a single boson exchange. How-
ever, upon a closer examination of the full bosonized result
we found that the equal-time fermion correlation function
has a much more singular behavior that could have been
predicted in perturbation theory. In contrast, the fermion au-
tocorrelation function sand hence the oneparticle density of
statesd is seemingly consistent with the perturbative analysis
of the quantum critical behavior.

We note here that Chubukov33 has analyzed the quantum
critical behavior of ferromagnetic Fermi liquids and claims
that the v2/3 behavior, found at lowest order, persists to all
orders in perturbation theory. The results of this section for
the fermion autocorrelation function appear to agree with
those of Chubukov and co-workers. However our results for
the equal-time fermion correlator apparently disagree with
these results. Clearly, a more detailed analysis of the
bosonized expression for this propagator is warranted. We
will discuss this problem in a separate publication.

IV. CONCLUSION

In this paper, we have utilized the method of high dimen-
sional bosonization to study nonperturbatively the quantum
phase transition from a Landau Fermi liquid state to a nem-
atic phase, a nematic sPomeranchukd instability. For this pur-
pose, we have constructed an order parameter theory from
the boson theory by integrating out noncritical modes and
verified that this boson theory is equivalent to RPA. We then
turned to studying the bosonization form of the fermion
propagator and found its diagrammatic expansion, proving
the correctness and clarifying the arguments leading up to
that expression. This diagrammatic expansion keeps all dia-
grams up to the simple bubble in the spirit of RPA as applied
to the density-density propagator and shows, in specific, that
bosonization goes beyond the self-consistent Born approxi-
mation to include vertex corrections. We then found explic-
itly that bosonization reproduces the results of Hartree-Fock

with an RPA interaction by showing that the lifetime com-
puted in this limit also has an uvu2/3 dependence as originally
found for the case of the nematic QCP by Oganesyan and
co-workers.19

Lastly, we calculated the fermion propagator nonperturba-
tively and found the dramatic effect of the overdamped criti-
cal mode that induces short-ranged spatial correlations that
decay nearly exponentially s1/ ux u de−const uxu1/3, while the au-
tocorrelation function exhibits a milder non-Fermi liquid be-
havior of the form s1/ ut u dexps−const u tu−2/3d. From this
short-ranged behavior of the equal time Green function, we
verify that the fermion residue vanishes at the critical point
and into the nematic phase except at four special points.
We also calculated the one-particle sfermiond density of
states N*svd. We found the low frequency behavior N*svd
=N*s0d+Bv2/3ln v fwith N*s0d.Ns0dg both at the quantum
critical point and into the nematic phase. Thus, the fermion
propagator exhibits unexpected behaviors which could not
have been anticipated by the existing perturbative
results.17,19,20,33,38 In a separate publication we will present a
more detailed analysis of the fermion spectral function in
both phases and at finite temperature.

Two recent papers, one by Yang39 and another by Nilsson
and Castro Neto,38 also study Pomeranchuk nematic insta-
bilities in two-dimensional Fermi systems. Yang also derives
an order parameter theory within high dimensional bosoniza-
tion. However, contrary to our results, concludes that the
critical mode has z=2 and is undamped. While we agree that
a z=2 propagating mode does exist at the critical point, we
find that the spectral function is completely dominated by the
overdamped z=3 mode. This effect is due to Landau damp-
ing, a consequence of the curvature of the Fermi surface, and
dominates the low energy behavior of the theory at the criti-
cal point. The reason for this disagreement is that in Ref. 39
the effects of Landau damping are ignored. We find that
these effects are crucial.

On the other hand, Nilsson and Castro Neto38 approach
the nematic quantum phase transition within the more tradi-
tional methods found in the Fermi liquid theory literature.
They first find an order parameter theory by constructing a
path integral, whose classical equations of motion give the
collisionless Boltzmann equation as in high dimensional
bosonization, and integrating out the noncritical modes.
Their results, however, agree with ours in all essential de-
tails, including the existence of a z=3 mode. They then cal-
culate the fermion lifetime using the Bethe-Salpeter equa-
tions and Fermi’s Golden rule, finding that t−1~e2/3, as in
s3.22d, and agree with us, in the perturbative regime, in con-
cluding that this represents both a breakdown of Fermi liquid
theory and perturbation theory.
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APPENDIX A: SUMMARY OF BOSONIZATION IN
D-DIMENSIONAL FERMI SYSTEMS

Consider the Fermi liquid theory of spinless fermions in-
teracting via a short but perhaps finite range forward scatter-
ing interaction living in a translationally invariant
D-dimensional world. This is a low energy theory and as
such, following Landau, we shall linearize the energy disper-
sion near the Fermi surface, though corrections to this may
be considered when necessary. To this end, let us build a
construction in which we linearize within N equally sized
patches approximating the Fermi surface. For this construc-
tion to be reasonable, our end result should be relatively
insensitive to the details belonging to this partitioning. Keep
in mind, however, that a remarkable property of Fermi liq-
uids is that they only require a few of the lowest angular
momentum Fermi liquid parameters to understand a wide
range of phenomena.

The number of patches, N, approximating the Fermi sur-
face will naturally be inversely proportional to its curvature.
As such, if the density, n→` then N→` and the construc-
tion becomes exact. An exact solution to leading order in N
of this linearized theory is therefore equivalent to the
asymptotic low energy limit as dictated by the renormaliza-
tion group. More specifically, the number of patches N and
the patch width L,ÎkFl, where l is the energy cutoff, must
be related by the condition 2pkF=NL, required for the Fermi
system to a have a finite density of states and curvature ssee
belowd. Consequently, the number of patches N must scale as
N,2pÎkF /l. Clearly N→` in the infrared limit l→0.
Many of the results of this paper can be understood in light
of this basic reasoning.

Under our construction, the fermion annihilation operator
becomes

ĉsxd = o
k

ĉk
eik·x

ÎLD
= o

S
o

qPPS

ĉkS+q
eiskS+qd·x

ÎLD
= o

S

ĉSsxd
eikS·x

ÎN
,

sA1d

where S labels the patch, PS is the volume in k space around
the point kS and the new fermion operators, cSsxd, obey the
canonical commutation relations

hcSsxd,cT
†sx8dj = dS,Td

Dsx − x8d . sA2d

It is also important to note the Fourier transform normaliza-
tions within the construction

dDsx − x8d = d t
D−1sxt − xt8ddsxn − xn8d

= SN o
uqtu,

L
2

eiqt·sxt−xt8d

LsD−1d DS o
uqnu,l

2

eiqnsxn−xn8d

L D ,

sA3d

where we have introduced L to characterize the tangential
width of the patch sNL is the area of the Fermi surfaced and
l as an ultraviolet cutoff about the Fermi surface.

Now, in terms of our fermion operators, the linearized
Hamiltonian is

:Ĥ ª = o
S
E dxsHS

0sxd + HS
Intsxdd , sA4d

where the free Hamiltonian density is

H0sxd =
"

2i
vS · s:f¹ĉS

†sxdgĉSsxd − ĉS
†sxd ¹ ĉSsxd:d sA5d

and the forward scattering interactions are described by

HS
Intsxd = o

T
E dx8FS−Tsx − x8ddn̂Ssxddn̂Tsx8d . sA6d

Here, the density fluctuations are defined by

dn̂Ssxd ; :n̂Ssxd: = :ĉS
†sxdĉSsxd: , sA7d

and throughout this description we have been using the usual
normal ordering procedure for any operator O

:O:uGl = 0 → O = :O:− kGuOuGl , sA8d

where we take the filled Fermi sea as our ground state

uGl = p
S

p
hqPPSuvS·q,0j

ĉq,S
† u0. sA9d

It was shown by Haldane,10,11 Castro Neto and
Fradkin,12–14 and Houghton and Marston15,16 that this Hamil-
tonian can be entirely described in terms of the electron den-
sity operators, dn̂Ssxd in the high density limit and it is qua-
dratic in these operators. A fermion operator may then be
constructed following well-known one-dimensional s1Dd
bosonization techniques and so the theory can be solved ex-
actly. sThis represented a major step forward since the intro-
duction of RPA by Bohm and Pines.4d Here we shall outline
the proof of this solution, but with the traditional approach of
point-splitting regularization, commonly used in the one-
dimensional case ssee, for example Ref. 47d.

The expectation value of the density operator n̂Ssxd in the
ground state of the Fermi sea is clearly divergent if we send
the density of fermions to infinity. As a result, in the high
density limit we are interested in, it is poorly defined. To
control this divergence, we introduce the point-split operator

n̂S
esxd ; ĉS

†sx + e/2dĉSsx − e/2d = :n̂S
esxd:− kGun̂S

esxduGl .

sA10d

Here, by short distance it is meant a length scale short com-
pared with the separation of all operators of interest but long
compared with physical short length scales, i.e., It should be
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noted that physically point-splitting can be thought of as a
means of ux u @ ue u @l−1.

The divergent part may be computed explicitly

kGun̂S
esxduGl =

N

LDo
qt

o
qn,0

e−iq·e

= d t
D−1setdE

−`

0 dqn

2p
e−iqnen+qn/l

=
id t

D−1setd
2psen + il−1d

, sA11d

where we have implemented the ultraviolet cutoff, l, as a
soft cutoff e−uqnu/l. This is a highly anisotropic expression in
e. It vanishes if we first send en→0, looking along a tangen-
tial direction suet u @L−1→0d but diverges if we first send
et→0 looking along en@l−1→0. Therefore, to capture the
basic physics of the density operator we must choose the
latter limit as the definition of the point-split operator. Keep-
ing in mind that dts0d=AF / s2pdD−1=2p"vFNs0d, where AF

is the sD−1d-dimensional Fermi surface area and Ns0d is the
density of states at the Fermi surface, we obtain

n̂S
ensxd = −

iNs0d " vF

en
+ dn̂Ssxd +

ien

"vF
HS

0sxd + ¯

sA12d

to leading order in en@l−1 and where we kept the expansion
of :n̂S

ensxd: to first order noticing the useful emergence of the
free Hamiltonian density operator.

Now that we have a controlled definition of the density
operator, we proceed with computing its commutator,

fn̂S
ensxd, n̂T

en8sx8dg

=
iNs0d " vF

en + en8
dS,Td t

D−1sxt − xt8dsdfxn − xn8 − sen + en8d/2g

− dfxn − xn8 + sen + en8d/2gd . sA13d

Expanding both sides of this equation in powers of en and
equating like powers gives us the following result:

fdn̂Ssxd,dn̂Tsx8dg = − i " Ns0ddS,TvS · ¹dDsx − x8d ,

sA14d

fdn̂Ssxd,HT
0sx8dg = − i " vS · ¹dn̂SsxddDsx − x8d .

sA15d

Using these commutators, we may compute the equation of
motion for the Heisenberg operator dn̂Ssx , td,

]tdn̂Ssx,td + vS · ¹dn̂Ssx,td + vS

· ¹o
T
E dx8FS−Tsx − x8ddn̂Tsx8,td = 0, sA16d

where FS−T=Ns0dfS−T. This is the linearized collisionless
Boltzmann equation in operator form found by Castro Neto
and Fradkin in the context of a coherent state formalism.12

We also notice through this derivation that we may let

HS
0sxd =

1

2Ns0d
dn̂S

2sxd sA17d

and obtain exactly the same answer. Hence, the Hamiltonian
may be expressed entirely in terms of the density operator
dn̂Ssxd.

A natural consequence of sA14d is that the density opera-
tor may be expressed in terms of a chiral boson field,

dn̂Ssxd = Ns0dvS · ¹ŵSsxd , sA18d

with a canonically conjugate momentum

p̂Ssxd = − Ns0dvS · ¹ŵSsxd . sA19d

These chiral bosons are a direct extension of the right/left
chiral bosons in the context of 1D bosonization. Following
this extension then, we may express the fermion operator as
a vertex operator

ĉSsxd = hSsxtdÎNs0dvFl:e−iŵSsxd/": , sA20d

where hSsxtd is a set of Klein factors responsible for ensuring

that ĉSsxd obey the proper anticommutation relations within
the patch and on different patches. The relation between this
fermion operator and the original ĉSsxd operators will be
made precise in Sec. III A via direct comparison of the per-
turbation series in FS−Tsx−x8d obtained in the bosonized

theory. ĉSsxd, therefore, is equivalent to ĉSsxd in the free case
and in the interacting case, it is this operator projected onto
the high-density subspace. Hence, this is an effective low

energy theory of a dense Fermi system and ĉS
†sxd can be

viewed as actually creating Landau quasiparticles in the
Fermi liquid phase.

The canonical structure of the bosonized theory also al-
lows us to directly write down a path integral formulation of
the problem, including interactions described by a set of
Landau parameters sfor a derivation using coherent states,
see Ref. 12d. The action for the bosonized theory has the
general form

S =
Ns0d

2 o
S
E d2xdtf− ]twSvS · ¹wS − svS · ¹wSd2g

+
Ns0d

2 o
S,T
E d2xd2x8dt

3FS−Tsx − x8dvS · ¹wSsxdvT · ¹wTsx8d . sA21d

This action is a quadratic form in the Bose fields. Here we
have not included higher order terms ssuch as those dis-
cussed in the body of the paper, in the context of the nematic
instabilityd. Such terms are generally present due to nonlin-
earities in the fermion dispersion relation, as well as many-
body effective interactions.36 We have also not included
“vertex operators” such as those associated with pairing
sBCSd interactions.12,16 We shall find it more convenient to
work within this path-integral formulation when constructing
a theory of the nematic quantum critical point.
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Before leaving our discussion of high dimensional
bosonization, we should make a final comment on its valid-
ity. As discussed in the main body of the paper, the boson
theory here completely recovers the random phase approxi-
mation sRPAd in the long wavelength limit. This should not
be surprising since, in the asymptotic low energy limit, both
RPA and bosonization saturate the f-sum rule and are sfor-
mallyd exact. This is a well-known established property of
bosonization, extensively discussed in the literature since the
1970’s.

APPENDIX B: Analysis of V 2
+ and V 2

−

Here we present the partial fraction expansion of the ef-
fective interactions V 2

+ and V 2
− and their behavior near quan-

tum criticality.

1. Partial fraction expansion of V 2
+
„q ,s…

In terms of the function K0ssd we may write V 2
+ as

V 2
+sq,sd =

1

Ns0dfd2sqd − K0ssds1 + s 1−K0ssd
1+K0ssd d2dg−1

=
1

2Ns0dF s1 + xd2

x3 −
d2

2 x2 + f1 − d2sqdgx −
d2sqd

2
G , sB1d

where x=K0ssd. The denominator is thus a cubic polynomial
in K0ssd and solving for the poles, x=d b

+sqd, we find

d b
+sqd = H1

6
Fd2sqd +

d2sqd2 + 12d2sqd − 12

einp/3h„d2sqd…

+ einp/3hsd2sqddGUn P h− 1,1,3j , sB2d

where

hsxd = f12Î12 − 36x + 42x2 + 3x3 − xsx2 + 18x + 36dg1/3,

sB3d

and we assign b= ha ,b ,cj to each of these three poles. The
partial fraction expansion is

V 2
+sq,sd =

1

Ns0d o
b=a,b,c

Zb
+sqd

d b
+sqd − K0ssd

, sB4d

with residues

Za
+sqd =

1

2

s1 + d a
+d2

sd a
+ − d b

+dsd a
+ − d c

+d
,

Zb
+sqd =

1

2

s1 + d b
+d2

sd b
+ − d a

+dsd b
+ − d c

+d
,

Zc
+sqd =

1

2

s1 + d c
+d2

sd c
+ − d a

+dsd c
+ − d b

+d
. sB5d

For ud2sqd u !1 these formulas simplify to

d a
+ < i, d b

+ < − i, d c
+ < d2/2, sB6d

Za
+ < i/2, Zb

+ < − i/2, Zc
+ < 1/2, sB7d

as a result we may write near the nematic QCP

V 2
+sq,sd <

1

2Ns0d3 1

d2sqd
2

− K0ssd
−

1/4

s2 − 1/24 . sB8d

2. Partial fraction expansion of V 2
−
„q ,s…

We may write V 2
−sq ,sd as

V 2
−sq,sd =

1

Ns0dfd2sqd − K0ssds1 − s 1−K0ssd
1+K0ssd d2dg−1

=
1

f4 − d2sqdgNs0dF 1

s1 + xd2x2 − 2
d2sqd
4 − d2

x −
d2

4 − d2
G .

sB9d

The denominator is simply quadratic and we find poles at
x=d b

− with

d a
−sqd = −

Îd2sqd
Îd2sqd + 2

, d b
−sqd = −

Îd2sqd
Îd2sqd − 2

.

sB10d

Hence, we can now expand in partial fractions to obtain

V 2
−sq,sd =

1

Ns0d
S Za

−sqd

d a
−sqd − K0ssd

+
Zb

−sqd

d b
−sqd − K0ssd

D ,

sB11d

with residues

Za
− =

1

4 − d2
F s1 + d a

−d2

d a
− − d b

− G, Zb
− =

1

4 − d2
F s1 + d b

−d2

d b
− − d a

− G .

sB12d

Again, these formulas simplify for ud2 u !1,

d a
− < −

Îd2

2
, d b

− <
Îd2

2
, sB13d

Za
− < −

1

4Îd2

, Zb
− <

1

4Îd2

. sB14d

Thus, near the nematic QCP we can write

V 2
−sq,sd <

1

4Ns0dS 1

s2 +
d2sqd

4

D . sB15d

APPENDIX C: INCLUSION OF F0„q…

Here we calculate VS,T for the case when both F0
and F2 are present and we let F2 approach the nematic QCP
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sF2→−1d. We shall find, however, that the critical behavior
is utterly independent of F0! Now, let

FS−Tsqd =
2

N
sF0 + F2sqdcosf2suS − uTdgd . sC1d

Returning to the s,
a theory, whose correlators are the RPA

interaction VS,T, we find in this case

Ss = −
1

2
E d2qdv

s2pd2 fs+sq,vd · sV+d−1 · s+s− q,− vd

+ V 2
−us2

−u2g , sC2d

where s+= ss0
+ ,s2

+d and

sV+d−1 =12Sx0
0 −

1

F0
D 2x2

0

2x2
0 x0

0 + x4
0 −

1

F2

2 . sC3d

As a result, V 2
− is completely unaffected by the presence of

F0 due to the fact that there is no s0
− field and opposite

“signs” decouple.
Again, we may write this expression as a function of

x=K0ssd and taking the inverse, we find

V+ =
1

x3 + ax2 + bx + c
Wsxd , sC4d

where

Wsxd =
1

2d0 + d2 − 4

3S− x3 + sd2/2dx2 − s1 − d2dx + d2/2 xs1 − x2d
xs1 − x2d d0s1 + xd2 D

sC5d

and

a =
s2 − d0dd2

2d0 + d2 − 4
, b =

2d0 + d2 − 2d0d2

2d0 + d2 − 4
, c =

− d0d2

2d0 + d2 − 4
,

sC6d

with d0=1+1/F0 and d2=1+1/F2. Again we find that the
polynomial is cubic. Hence, the addition of F0 only compli-
cates the algebra, but not the general structure of the solu-
tion. We therefore continue as in Appendix B.

Solving the cubic equation in sC4d leads to an algebra-
ically complicated result. However, it simplifies near the
nematic QCP and we find to lowest order in d2,

d a
+ = iÎ d0

d0 − 2
, d b

+ = − iÎ d0

d0 − 2
, d c

+ = d2/2,

sC7d

which return to our previous result if we let F0→0 or
d0→`. Notice that, to lowest order d c

+ is independent of F0,
as it should since the s-wave mode is noncritical and this
“pole” precisely represents the critical behavior. Expanding
in partial fractions leads to the expression

V =
1

Ns0d o
b=a,b,c

Zb
+

db − K0ssd
, sC8d

with residue matrices

Za
+ =

i

2
Î d0

d0 − 21
1

d0sd0 − 2d
d0 − 1

d0sd0 − 2d
d0 − 1

d0sd0 − 2d
1 +

i
Îd0sd0 − 2d

2 ,

Zb
+ =

− i

2
Î d0

d0 − 21
1

d0sd0 − 2d
d0 − 1

d0sd0 − 2d
d0 − 1

d0sd0 − 2d
1 −

i
Îd0sd0 − 2d

2 ,

Zc
+ =

1

2
S0 0

0 1
D , sC9d

which again returns to the previous result if we let F0→0.
Notice that Zc

+ is independent of F0 to this order in d2. Con-
sequently, the critical behavior of the fermions, s3.27d, is
unaffected by the inclusion of a noncritical mode such as F0.

APPENDIX D: Equal-Position Boson Propagator

Here we are interested in the quantity

GBsS,Sds0,td = GBsS,Sd
0 s0,td + iE d2kd«

s2pd3 GFsSd
0 sk,«dVS,Ssk,«d

3GFsSd
0 sk,«dse−i«t − 1d , sD1d

the equal position part of Eq. s3.1d. In particular, we focus on
the second term, labeling it ln ZSs0 , td. We begin by writing
the interaction in terms of its spectral function:

VS,Ssk,«d =E d«8

2p

Bsk,«8d
« − «8 + ie8 sign «8

, sD2d

where

Bsk,vd = B2
+sk,vdcos2f2suS − fdg + B2

−sk,vdsin2f2suS − fdg
sD3d

and f the direction of k. Note: in the appropriate scaling
within a patch, f→uS+p /2 so that the cosine factor scales
to 1 while the sine factor scales to 0 driving the B2

−sk ,vd
contribution irrelevant sthis has been checked explicitlyd.

This allows us to do the « integration immediately and
rewrite our expression in a more physical form. The result is
safter letting e8→0d,
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ln ZSs0, utud = E
−L/2

L/2 dkt

2p
E

−l/2

l/2 dkn

2p
E

0

` d«

2p
Bsk,«dR1skn,«, utud

+ E
−L/2

L/2 dkt

2p
E

0

l/2 dkn

2p
E

−`

` d«

2p
Bsk,«dR2skn,«, utud ,

sD4d

which we have written directly in terms of the patch coordi-
nates. The residue of the single pole is

R1skn,«, utud =
e−i«utu − 1

s« − vFkn + ie sign «d2 sD5d

=
1

vF

d

dkn
F e−i«utu − 1

« − vFkn + ie sign «
G , sD6d

and the residue of the double pole is

R2skn,«, utud = −
1

vF

d

dkn
F e−iknutu − 1

« − vFkn + ie sign «
G , sD7d

so that it is clear that an integration by parts removes the
double pole altogether, leaving us with an integral only over
a single pole. One can view this as a cancellation of the
double pole’s contribution to the integral and expect the re-
sult to be less singular than the equal-time case.

Using the symmetries of the spectral function, we may
rewrite Eq. sD4d as

ln ZSs0, utud = E
−`

` dkt

2p
E

0

` dkn

2p
E

0

` d«

2p
Bsk,«dfR1skn,«, utud

+ R1s− kn,«, utud + R2skn,«, utud − R2skn,− «, utudg .

sD8d

Performing the integration by parts, and a quick change of
variables allows us to separate the time dependence in terms
of the following integrals:

ln ZSs0, utud =
1

Ns0dvF
ÎkF− 2E

0

`

dnSIn8s− nd −
1

lÎk
fIns− nd + In8

s1ds− ndgD
+ E

0

`

dunSIu8s− und + Iu8sund −
1

lÎk
fIus− und + Iusund + unIu8s− und + unIu8sundgDe−iunut̄u

+ E
0

`

dnSIn8s− nd − In8snd −
1

lÎk
fIns− nd − Insnd + In8

s1ds− nd − In8
s1dsndgDe−inut̄uG , sD9d

where we have sent the cutoffs to infinity, keeping the lowest
order correction in l shaving checked that higher orders are
non-singulard, and where the various integrals are

Insnd =
1

4p3PE
0

`

dutE
0

`

dun
Bsu,nd
n − un

, sD10d

In8snd =
1

4p3PE
0

`

dutE
0

`

dun

d

dun
Bsu,nd

n − un
, sD11d

In8
s1dsnd =

1

4p3PE
0

`

dutE
0

`

dun

un
d

dun
Bsu,nd

n − un
, sD12d

Iusund =
1

4p3PE
0

`

dutE
0

`

dn
Bsu,nd
n − un

, sD13d

Iu8sund =
1

4p3PE
0

`

dutE
0

`

dn

d

dun
Bsu,nd

n − un
. sD14d

In this latest form of ln ZS, we have defined u=kÎk,
n=«Îk /vF, t̄=vFt /Îk due to the form of the spectral func-
tion at a nematic instability

Bsk,«d =
«kvF

«2 + k2vF
2k6/4

=
nu

n2 + u6/4
, sD15d

where we have only included the effects of the overdamped
mode since it is responsible for the leading singular behavior.
Here we have replaced the angular factor cos2s2uSd by a
constant of order unity. sThis is consistent since we will be
interested in the angular-averaged fermion Green function
and the angular factor in the exponent vanishes only on a set
of measure zero.d

Table I shows the low frequency-long wavelength limit of
these integrals computed numerically. Two basic forms
emerge: a ln2snd divergence and a n−1/3 power-law diver-
gence swith logarithmic correctionsd, each form occurring at
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different scales. However, the ln2snd contributions all vanish.
With these limits in mind, we perform the final integral and
obtain

ZSs0, utud = CP expH− As1 + Î3id
lnsbut̄ud

ut̄u2/3 J , sD16d

valid for ut̄ u @1. In this expression,

CP = expH 1

Ns0dvF
ÎkS0.0476 +

0.0391

lÎk
+ ¯ DJ . 1,

sD17d

A =
0.00724

Ns0dvFkl
~

1

kFlk
, sD18d

b = − 4.95 + 1.51i , sD19d

where the numbers calculated for CP were also computed
numerically.
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