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ABSTRACT 

We discuss the application of semiclassical quantization methods to 

two-dimensional model field theories for which exact non trivial classical 

solutions are known analytically. This yields results which cannot be reached 

by ordinary perturbation methods. In particular, we obtain extended objects 

which can be considered as prototypes for hadrons. We study their quantum 

corrections and renormalization. We also develop a method for including 

fermions 
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SECTION I. - INTRODCCTION --- 

For some time now, it has been known that certain Z-dimensional 

field theories have particular classical solutions which look like ex- 

1) 
tended particles. There has however. not been much progress on the 

question of whether these objects would appear as true particle states 

in the corresponding quantum field theory. In this paper we address 

this problem using the semi-classical functional quantisation scheme 

2) 
developed in the previous paRer. 

The usual way of doing perturbation theory has built into it the 

assumption that the asymptotic states of a field theory are free fields. 

In a functional language, free field modes are just the solution to the 

extreme linearization of the Schwinger equations for the generating 

functional. This is reflected in the Feynman path integral language 

through the instruction to integrate over all possible field histories 

after expanding the interaction functional, either in ascending powers 

of the coupling constant, or topologically, in terms of loop functionals, 

around the free field modes. 

This assumption selects only a sector of admissible solutions 

to the full interacting problem. We will be concerned with those solu- 

tions that pass through the usual functional sieve and are not asymp- 

totically free fields. 

In particular, we want to take as fundamental an exact solution 

to the classical full-nonlinear interacting equations. 
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The bulk of this paper is devoted to the study of a particular 

model that is a remarkable one since all relevant equations can be 

solved analytically. Furthermore it has many interesting properties 

even for weak coupling, a regime where we believe we have control 

over our approximations. In. particular we will display an extended 

particle solution which has many properties reminiscent of hadrons. 

A peculiar feature of the model extended particle is that it 

involves a classical field configuration which has a topology different 

than that of the classical vacuum. This feature serves to stabilize 

the state and we conjecture that it is a general characteristic of 

interesting extended objects. The possibility of topologically unusual 

field configurations appears to be related to spontaneously broken 

symmetry, a discrete one in the present case. In a sense the field 

the,ory becomes a model for a superconductor. 

Our model extended particle also serves as a well which can 

trap and confine fermions. In fact, by turning the solution in one 

space dimension into a (locally one dimensional) thin spherical 

shell, a group at SLAC has independently been able to construct an 

3) 
interesting and perhaps realistic model of hadrons, with confined quarks. 

The methods we have developed for including fermicms, trapped or 

otherwise, in semi-classical calculations are presented in Section 4 

of this paper. Included are a sek of self-consistent field equations, 

which while written for two dimensions, can be trivially generalized 

to four. 
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t\e will compute the first quantum corrections to the masses 

of our extended particles. In doing so we will meet ultraviolet di- 

vergences and in the process of removing them, illustrate some 

renormalization techniques. Generaiizing these methods to arbitrary 

renormalizable interactions is in principle straightforward. In more 

complex models however, the calculations would be extremely difficult. 

There is a persistent conceptual problem associated with the 

identification of a classical particle-like field configuration with a 

quantum particle. It is that the classical extended object has to be 

localized at some point in space. In the previous paper we show how 

this apparent difficulty goes away when semi-classical quantization 

methods are applied consistently. The reader who is troubled by this 

point is referred to Section 5 of the prececding paper. 

The folloving section contains a review of those aspects of our 

:z 
semi-classical functional methods which are needed for the present 

work. We then proceed to the model and the fern-ion techniques 

described above. 
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Section 2. Review of the Semi-Classical Method 

In this section we wish to review those results of the previous 

paper which are directly relevant for the present work. 

Suppose we have a classical field theory described by a field cp 

(more generally a set of fields) and a Lagrangian & (* 1. Suppose 

further that we can find a time-independent solution qo(r) to the tme- 

ihdepcndent Euler-Lagrange equat1.m 

d o 

+ G- = 
(2.11 

We require that the solution be localized in space so tipt the classical 
. . 

energy, given by 

E ct = - p5,,) Qr (2.2) 

for a time independent field, is finite. Note that we are not looking for - 

a new vacuum state which would be a constant rp with a constant energy 

density and hence a divergent energy. 

The classical solution ‘p. is also supposed to be stable in the 

following sense. In the Lagrangian set ~(x, t) = cpo(xl + q(x, t) and 

expand in powers of q keeping only the quadratic terms. (The linear 

term* will be absent because q. satisfies’ the classical equations of 

motion.1 The resulting quadratic Lagrangian should then be reducible to a set 

of independent harmonic oscillators with real frequencies wk (k = 1.. . cn). 

Intuitirely, one would expect this Ibcalized, stable classical 

solution to correspond in some sense to a particle at rest- In first 
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approximation its mass should be E c, with the first quantum correction 

coming from the zero-point energy 
+k 

of the small oscillations 

around (r o. Of course, we wil! have to mbtract the zero point energy 

of the vacuum to make CL, 
k= k 

finite and perhape have to make further 

renormalizations. According to the previous paper, this ia a valid 

pro‘edure for finding new kinds of partxles in field theory provided 

that the coupling constante are small. For etrong coupling,semi-clerical 

approximation methods take a more complicated form akin to the 

usual WKB method in ordinary quantum mechanics. In the next two 

sections we will restrict ourselves to weak coupling. 

If al,(x) is any particle like classical solution so, of course, 

is rpO(x+a) for any epacial translation a. Alao ‘Ed can be Lorents 

transformed to obtain moving solutions. It was shown in the previous 

paper that when these additional degrees of freedom are taken into l c- 

count one obtains a quantum mechanical particle which has the praper 

energy-momentum relation E = p2 + M2 where M can be computed 

as outlined above. The quantized state of zero momentum doea not 

correepond to any one of tbe particular solutions qO(r+a) but rather 

to the whole set of classical soluticma obtained by letting a vary. 

Furthermore, it was shown that states with many of these particlea 

can exist and that tbey will obey Bone statistics if p is a Bose field. 

In the previous paper, it was shown that one can systematically 

improve on the weak coupling semi-claaaical approximation as follows. 



- I- 

in the Lagrangian $. write the quantized field o as dx.t) = 

cp (x) + q(x, t) where q=(x) is a time-independent c-number field 
c 

and q(x, t) is a new quantized field. Separating out the pieces of % 

which are linear and quadratic in q gives a new free lagrangian 

The quadratic terms in 
43 

define a propagator fl(x, x’, t-t’) which 

depends on x and x’ separately, but because cp, is time independent 

the time dependence is the usual one t -t’ . We denote the fourier 

transform of fi with respect to t-t’ as 8(x, x’,o). The part of 

a which is trilinear or higher in ? defines a interaction Lagrangian 

In terrjns of a and 
“I 

one can clearly define a Feynman diagram ex- 

pansion which has exactly the same topological and combinatoric proper- 

ties as the usual one. We tiow introduce a functional %(oc) which is 

defined to be the sum of all connected one-particle irreducible diagrams 

with no external lines. Specifically 

‘fi ((pc) 
h = - j- d”f”c) + 4+ ,(;I dw tr log&w) + . 

(2.3) 

where tr logg(w) is the log of the determinant of X, x’, w ) with 

respect to the variables x and x’ and the omitted terms come from 

diagrams with two or more closed loops and are of order (Iiln with II: 1. - 

Note that the first term in the expansion (2. 3) for c(Vc) is 

just the classical energy. Any stable solution to the classical field 



equation (2.1) is a local minimum of the classical energy. In the 

previous paper, it was shown that a way to improve on the weak coupling 

semi-classical approximation is to look for a local minimum of E in- 

stead of the classical energy. The equations are 

6 ecvc) 

ti cocbd 1 
= 0 

(PC=7 c 
(2.4) 

M = &rncl 

where we denote by Fc the localized field which is supposed to be 

a relativeSmini&* of 5, We note that the particle mass M is just 6 

evaluated at 5 
c . . 

For weak coupling Eqs. (2.4) were justified in the previous paper. 

Except for special ,cases, they do not provide a useful variational method 

for finding particle states. The reason is that a particle-like, localized 

field can at beat be a local minimum of d. The reader who is familiar 

with functional: fnethods will immediately recognize that the absolute 
. 

minimum of c comes at the constant field < Ol(rlO> equal to the 

vacuum expectation value of the quantum field cp. Nevertheless. Eqs. 

(2.4) are useful. For example, they tell ua how to rtnormalise. In a 

renormalizable theory, for every subtraction needed to define the second 

term on the right of Eq. (2. 3) or any of the omitted higher terms there is 

a corresponding counter term which can be added to the Iagrangian in the 

first term. 

For weak coupling where this recipe is useful, the higher order 

terms in (2. 3) ate small and since the; are prohibitively difficult to 
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compute, in practice one will work with the two terms shown explicitly 

in Eq. (2. 3). If one looks for a minimum of 6 (cpc) computed in this 

approximation, the resulting equations lead to an interesting self-consis- 

tent-field Hartree-like approximation. An example of this procedure is 

given in Section (4). For the present, let us content ourselves with an 

iterative solution to the Eqs. (2.4). Let p be expanded as 
C 

(p = 
C 

q)+Eq1+K2q2+... . Clearly the first term (pO is just the classical 

field which is a local minimum of the classical energy. To compute the 

corresponding particle mass through order Ii, we need only insert (p,, 

into Eq. (2. 3 ). The error incurred by neglecting Kql can easily be seen 

to be of order K2 . The particle mass is then : j 

M = - I dx&rp,,) + & IiT dw tr loga (I++ 

= Eel t R ;rr 
4ni F log (w-bQ 

(2.5 1 

where in the second line EcI is the classical energy as before and the 

Yc 
in the second term are the oscillator frequencies define& above. The 

w integral is divergent and in need of regularizatibn and renormalization, 

but an integration by parts shows that it is formally equivalent to the sum 

of zero point energies 



-li)- 

SECTION 3. 

BOUND STA’rES IN A TWO DIMENSIONAL FIELD THEORY MODEL 

We now discuss a simple. soluble example, of the application of 

these ideas to field theory. Our example is the quantization of a classical 

kink-like solution of the field theory described by the Lagrangian density 

2 = -icap Cp)! t + G2 - $ G4 (3.1) 

where $ ic, 7) is a real scalar field. The sign of the m&s term 

generates spontaneous symmetry breaking (the symmetry being 

cp --cp). As will be clear, this is necessary for the existence of our 

solution. 

By making the scaling 

lx 
cp : b- g 

m 

x = m; (3.2) 

the Lagrangian becomes 
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with 

g= -f(aps,2+ &7’ - *cp’ (3.3) 

After this resealing, the limit R - 0 is equivalent to the limit 

him’ - 0, which is the weak coupling limit. Hence, we expect our 

results to be at least valid in the range of validity of ordinary perturba- 

tion theory. 

The classical equation of motion is 

(-aft a)q +cp -cp3.= 0 (3.4) 

The boundary conditions are 1~1 = 1 at infinity. We look for stationary 

solutions. Multiplying(X4)by cp’ and integrating, one obtains, after 

using the boundary condition 

‘p’2 + $ _ ;cp” = + (3.5) 

(We use the notation @ = at(P and rp’ = azcp . ) Besides the solution 

rp = + 1. which represents the ordinary vacuum, we find the solutions 

q7 = +tan+-x0) (3.6) 

These solutions represent “kinks” where the energy density 

vanishes exponentially away from x0. In the following, we shall restrict 

-ourselves to x 
0 

: 0 and the t sign. We also notice that q?(x) a-pproaches 
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two different values as x -+ + 00 , which correspond to the two 

possible vacuum states. Because it is the lowest energy state which 

connects these two vacua. it can be translated, boosted or excited, but 

never decay. Its decay would require flipping the vacuum over an in- 

finite range of space, which requires infinite energy. This persists 

after quantization. It is of course essential that the vacua have the 

same numerical magnitude. 

It is possible to have two (or many) solutions of the type (3.6) 

located around different values of x0 and with alternating signs. 

There is an additive conserved kink number, which can only take 

the values +I, 0, or -1. Such a system is actually a well-known model 

for a one dimensional superconductor, (p being the order parameter. 

This relationship to superconductivity is no accident and will also be 

found in higher dimensional models. 

:. 
We now’turn to the calculation of the quantum mechanical 

energy of such a state, in our W. K. B. approximation. There are 

two contributions: the classical energy and the quantum mechanical 

fluctuations around the fundamental solution. We shall have to subtract 

the ordinary zero point vacuum energy. It will also turn out that 

another subtraction, corresponding to mass renormalization will be 

needed. 

The harmonic oscillator frequencies are the square root of 
2 

the eigenvalues of the differential operator 
‘dx 

d) +l- 3tanh’ 
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It turns out that this problem is soluble in terms of elementary functions. 
4) 

The equation to be solved is 

2 
-d-y+ (1 + u2)y 
dx* 

- 3y tanh* x 
/r =O 

(3.71 

This is an ordinary one-dimension&! Schro?;nger equation for the 

potential 1 - 3 tanh‘ x 
ET 

There are both bound states and scattering 

states. By the change of variables, 

we recognize a particular case of Eq. (12. 3.22) of rgf. (4). The 

2 2 
values of the bound-state energies are w = 0 and w = 2 . 3 The 

2 
continuum begins at w = 2. 

The bound state at w = 0 is recognized as a translation mode of 

the kink. Indeed, its wave function is 

1 d 
x-x 

0 

cash x 
h 

= _- 

kg 
tanh 

I Ji- x0=0 

This is the zero frequency mode mentioned in Sec. (4) of the previous 

paper. It does not contribute to the mass of our kink. Its presence is 

an indication of the fact that if center of mass motion were taken into 
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account the energy momentum relation would be the correct 

The bound state at w = 2 r 2 corresponds to some eigenvibration of 

the kink, which dies off exponentially as one goes away from the center of the 

kink. This vibration, if of small eno>,gh amp!itude. is a harmonic oscillator 

with an excitable spectrum. Its ground state energy contributes $hw to 

the ground state energy of the kink 

We now come to the continuum states. They are defined by a wave 

vector k q c’ (Eq. 12.3. 28 in ref (4)). One finds that there is no 

reflection: all of the incoming wave is transmitted through the potential 

well with a phase shift 6 which turns out to be 

6 =2n-2Arctgk-2Arctgi k. (3.8) 

To compute the total contribution to the energy, we need the 

density of states as a function of k. Putting the system in a very large 

box of length L with periodic boundary conditions makes the modes 

discrete, the n 
th 

mode being given by 

Lk,t 6 : 2nn 

Hence the contribution Econt of the continuum to the zero-point energy 

of the kink: 
-- 
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E 
cant 

(3.9) 

The first term in (3. 9), which is proportional to the volume of the box 

is cancelled by subtracting out the vacuum energy. From (3. 8): 

d6 -~6 (2 + k*)’ 
dk 

(1 + k*,(4 + k*) 

The remaining term in (3. 9) is then still logarithmically ,divergent. 

This divergence is exactly cancelled by the usual mass renormalization 

counterterm. The actual calculation requires a lot of care, in particular, 

because the vacuum energy is linearly divergent, and finite parts can 

easily be missed. The regularization scheme which is best suited 

for this problem is to define the field theory on a lattice in a very large 

box: the number of degrees of freedom becomes finite; one performs the 

calculations and then lets the lattice spacing go to zero and the size of 

the box to infinity. These points are discussed in the Appendix. The final 

result for the energy of the kink ie then 

E= f /z $ t m [- +- + *+I’ + 011) 0.10) 

where the first term is the classical energy, and the second one is the first 

quantum mechanical correction. 
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It is interesting to note that the kink has excited states. As noted 

above, the w = f 

state with n quanta 

bound state is a local oscillation of the kink. The 

in this oscillator will have an energy 

En = Ekink +/$ n (3.11) 

The n = 1 state is below the continuum and is stable. The higher states 

can decay into an unexcited kink and one of the ordinary quanta of the 

theory: They would appear as resonances. 

The kink is vaguely reminicent of a hadron. It is an extended 

object with a ground state and a tower of excited resonances above it. 

-. 
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SECTION 4. 

ADDING FERMIONS 

We can generalize our model by adding to the Lagrangian the terms 

i?iU+gZJIJI (4.1) 

which describe a fermion coupled tu the scalar field j . Note that our 

fermion has no bare mass; its physical mass comes from the vacuum 

expectation value of G =f m . 
6 

Hence, denoting the fermion mass by M. 

we have ,I 

M=i r (4.2) 

The transformation $ - y,$ will reverse the sign of a fermion mass so 

that M can be taken as positive for either sign of < ‘f’ > . 

The resealing 

(4. 3) 

leads to the equation 

i&JJI+GrP$=o (4.4) 

where G is the dimensionless quantity 
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G:$ z $’ (4.5) 

finally. we observe that the “charge” 

(4.61 

is a conserved quantum number and that if we take the representation 

Y0 
1 

= * 
Y 

y ‘L (r (4.7) 
z 

the charge conjugation is simply hermitian conjugation, i.e. 

c +c -1 = ++ (4.8) 

It is of interest to study the solutions of (4.4) in the static kink field of 

Eq. (3. 6). Giving j, a time dependence 

J1 zeiut”, (4.9) 

multiplying (4.4) on the left by i g - G cp$ and using the representation 

(4. 7) yields 

w2” +u” - G*~*U t Cos(1 - qAu = 0 (4.10) 

where primes denote derivatives with respect to x and we have used the 

2 
equation rp’ = 1 - cp , satisfied by the kink. Eq. (4.10). like (3.71, is then 

a Schroedinger equation with a hyperbolic tangent potential and can be solved 
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analytically. The frequencies wn of the bound states are 

2 
w = 2nG - n* ; n = 0, I, . . < G (4.11) 

n 

Note that w. is zero. It is a non-degenerage eigenvalue of (4.4). The 

corresponding wave function U. is real in the representation (4. 7) and 

is therefore a self charge conjugate fermion state which carries no charge 

Q. ” ‘Also, because U o turns out to be an eigenstate of y1 = iaa, the 

density U. U. vanishes, i.e. 

uouo = 0 

The non-zero frequencies come in pairs, w n = tia . The positive 

frequencies are fermions with Q = t 1 while the negative frequencies are 

anti fermions with Cl = -1. The proper normalization for these states is 

I u; u n = 1 ; n=l,2. . ..<G (4.13) 

There is also a continuous spectrum to (4.10). 

So far, all we have done is to introduce some notation and discuss the 

solutions (4.4) in the static kink field (3. 6). Now we would like to see how 

the Brmi field can be incorporated into our general program of looking for 
. 

semi-classical particle-like solutions in field theory. A simple device which 

will be sufficient for our purposes is to observe that the Fermi field enters only 
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bilinearly in the Lagrangian and can be integrated out of a functional integral. 

Doing this will yield, in the standard manner, an effective action for the 

field rp itself; 

kG4 

G-7 dx t+ tr log (il t g:l 

where 

tr log (i g t g ?l = log det (i 1 t g ?l 

(4.141 

(4. I51 

is the log of the Fredholm determinant of the differential operator 

(iii t g zl . The determinant is, of course, divergent and must be 

renormalized. We will return to this later. 

At this point it should be understood that G is now a general 

classical scalar field not the kink field. When ae wish to refer to the 

kink field we will:say so.. ‘If we restrict ourselves to fields.? which are 

independent of time, i.e. ? = z(x) where x is the spatial variable, the 

time part of the trace in (4.15) can be done in frequency space yielding 

5 tr log (ia + g ?I = 2+i / dw tta log (v 
0 w + iy 1 d ax + g;ly y (4.16 

where the symbol tra log stands for the log of the FredhoIm determinant of 

the one-dimensional differential operator (y’w t iy 
1 d 

do t g z) . The factor 

6 (Ol/Zn corresponds to the integration over time in the definition of the 

action S. It will be dropped from now on. 
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An integration by parts in (Eq. 16) yields 

$ tr log (i7 t g ?) = -& .r dw w tr 
1 

yo 

1 
(4.17) 

c y &tly’ -&+ ga 

where the contour C of the w integration remams to be specified. The 

integrand has poles at the bound states of the one-dimensional operator 

01 d 
iyy z + gv” z. The lie on the real axis and (by charge conjugation) 

are symmetric around w = 0. If we assume that 1 G(x) 1 goes to a constant 

1G(Q;)l as 1x1-m. then a free fermion has mass M = g 1 G (m)! and the 

integrand in (4.17) has cuts running from tM to tm, and .I@ to -m. If we 

are interested in a Q q 0 sector of the theory then by charge conjugation, 

& contour C must cross the axis at w : 0 as shown in Fig. (1). To obtain 

the contour for a Q# 0 sector, one proceeds as follow?. Add to the 

Lagrangian a Lagrange multiplier pq y” #, compute as before’ and then adjust 

p to obtain the desired value of Q. Clearly, the effect of the Lagrange 

multiplier is simply to replace w by w +p in the integrand of Eq. (4.16). 

This simply shifts the contour to the right or left depending on the sign of 

P. If we shift to the right passing N poles of the integrand in the process, 

we will be in a sector with Q q N. Conversely, shifting to the left and 

picking up N poles at negative w will put us in a sector with Q = -N. The 

contour for the Q z 2 sector is ehown in Fig. (Za). Fig. (2b) shows this contour 

deformed back into the Q = 0 contour C,, plus a loop around the hvo lowest 

poeitive energy bound states of the Dirac equation. Let ue call the poles in the 

loop occupied states. For the Q = N sector, the N lowest positive energy 
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states wili be occupied and for the Q = -N sector, the N lowest negative 

energy states will be occupied. Having now determined the contour C for 

the general case, the Lagrange multiplier no ionger piays any role and will 

be ignored. 

Let us now look for time independent (static) solution to the 

variational equation for G Varying the effective action (4.14) with 

respeit to the t:me mdependent, but spaci:;l!y varying field G(x), yields 

z- -3 
$3:(x) + t-cl +~(xl - xq (x) + ki Idw <xl ,ti,til $+gG 1 x” * “.1s’ 

C 

where the integrand is the diagonal x-space matrix element of the indicated 

inverse differential operator. This matrix element depends functionally on 

cp. Deforming the contour. to the standard Cl = 0 contour Co and picking up 

any occupied states, we have 

Gto(x) i m2 T(x) -A G3(X)* g c u (&dukGA+ 
kc occ. s&tea 

“Fermion Loop”~ (4.19) 

where 

“Fermion Loop” = & 
1 

fdw<x( X> 

s 
-y”w+iyl k + gii; 

(4.20) 

and we have indicated that the Uk depend functionally on Cp; that is 

they are solutions to the equation -mk y”Uk(G,x) + iyU’k((P.r) + gG(x)Uk(G,x) 

-0. The * sign in Eq. (4.19) takes the, value + for positive energy state3 

and - for negative energy states. The product of wave functions &I 
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also changes sign as so that this term is actirally the same for Q > 0 and 

Q < 0 as it should be from charge conjugation considerations. 

In Eq. (4.19) we have separated the fermion loop from the occupied 

states since the former is a true quantum mechanical correction of order 6 

relative to the terms explicitly shown in Eq. (4.19). Concentrating on the 

explicit terms in Eq. (4.19) it is clear that they define a self consistent 

field, Hartree-like approximation. 
6) 

One could imagine guessing a value 

of ;i;, computing the occupied states U 
k’ 

solving Eq. (4.19) to obtain a new 

field 5 and repeating the cycle until a self consistent solution is obtained. 

One could even contemplate doing this with the fermion loop included, but 

such a problem would be intractable unless some clever approximation 

could be devised. 

While the general problem of solving an equation like (4.19) is very 

difficult, there is a special case which is extremely simple. Recall, that 

with our static kink solution for 7 , the Dirac equation has one solution 

with w = 0. As mentioned above, thi a state carries no charge and has co(kink,x) 

U o (kink, x) = 0. Now, if we occupy only this state, there will be no reaction 

of the Fermi field back on the scalar field 5, and the kink will remain an 

exact self-consistent solution. (Here, we are ignoring the fermion loop. 1 

The particle thus obtained by taking the basic ‘scalar kink and occupying the 

w = 0 fermion state will be a new object in the theory which has Q = 0 but 

otherwise behaves like a fermion. i. e., it will have spin i and obey Fermi 

statistics. To zcroth order in h the mass of this new fermion stat; will be 
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the .same as the mass of the kink. This must be so. since it costs no energy 

to put in a fermion with w = 0. Of course if g is small,wc can find further 

approximate solutions to Eq. (4.19). If we take small g in Eq. (4.19). then 

in first approximation the Uk(;i,x) will simply be Uk(kink. x). The 

solutions of the Dirac equation in the .kink potential weri diacussed above. 

For small g, the mass of a Q : N state composed of kink plus N trapped 

fermions will be 

M(Q q N) : M(kink) + m 

(small g) 

(4.21) 

where G = g J 2/X as before and we must have N < G. We leave it to 

the reader to convince himself of this result. 

It remains to tackle the fermion loop. We assume that~we are talking 

about a particle with Q = 0. either the original kink or the kink with the 

w : 0 fermion state occupied. We wish to evaluate the lowest order 

contribution of the ferrnion loop to the mass of particle. From Eq. 14.171, 

this is simply 

AM= -$ / 
Y0 

did w tr 
s _ you + iy’$ + g ?(kink) 

(4.22) 

Deforming the contour Co to encircle the negative energy pole and cut 

as shown in Fig. (3). yields 

4M= L, 
neg. energy states 

(4.23) 
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where we have imagined the cut to be a series of closely spaced poles. 

The interpretation of (4.23) is simple. It is ths sum of the energies of all 

the negative energy states which, according to Dirac hole theory, should be 

occupied. Recall that for a boson loop we found that AM was given by 

for positive wk which has the interpretation of the zero point 

energy of a set of oscillators. A fermion loop has the opposite sign (the 

Wk 
in (4. 23) are all negative) and a factor of hvo difference in magnitude. 

This change of sign and factor of two are familiar from perturbation theory. 

Here we see that this is a reflection of some rather differ$nt physics. 

To make AM finite we first have to subtract the (infinite) energy of 

the states which would be filled in the vacuum, i. e. , in the absence of a 

kink. Then, 

AM = c pk(kink) - wk(vacuum)l (4. 24) 

neg. energy 
states 

in an obvious notation. The expression is still logrithmically divergent 

but is made finite by a simple mass renormalization, as was the closed 

boson loop. 

The actual computation of AM can be carried out along the lines of the 

Appendix. . As the result is rather complicated and not particularly 

illuminating we will not give it here. 

One of the authors (B. H. ) would like to express his appreciation to 

Dr. Carl Kaysen for the hospitality extended to him by the Institute for 

Advanced Study. 
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APPENDIX -- 

In this appendix, we compute the first quantum mechanical 
. 

correction to the energy of the ktnk of Section 3. The classical energy is 

with v - tauhxl@ 

Hence E =- 
cl :J$ 

(A.. 11 

(A .21 

For the quantum mechanical corrections, one must be very careful 

to appropriately count the modes, and subtract the ‘vacuum energy 

for each mode. The regularization of the theory, both in the infrared and 

in the ultraviolet, is obtained most naturally by putting the system on a 

finite lattice in a box,with periodic boundary conditions. This makes the 

number of degrees of freedom finite. We compute the difference between 

the quantum corrections to the ground state energy of the ordinary vacuum 

and to the ground state energy of the kink. We shall neglect any quantity which 

goes to zero fast enough.when the length L of the box goes to infinity. One 

m.ust follow what happens to the ejgcnmodes of that system when the kink is 

introduced into the box. 

In the absence of the kink, the energy of the vacuum comes only 

from continuum states (travelling waves). When the kink is introduced, the 

first two continuum states disappear to-become bound states with w = 0 and 

Id= The contribution of these hvo states to the energy of the kink. “’ 
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will then be I(0 -flJ t i ( 2 - 
r 

/51. The contribution frm the other states, 

which revain in the continuum in the presence of the kink will be 

Econt = g $ [t; + 4)’ (kh2 + fj (A .3) 

th 
where k is the wave number of the n mode in the continuuy in the 

n 

presence of the kink, and k’” the wave number in the vacuum. They are 

related by the periodic boundary condition: 

Lk + b = Lk’ = 2 nn 
n ” 

with 6 given by eq. (3.8). In the limit L 4 m, the discrete sum of 

(A ,. 3) becomes the integral 

E+j b $dk 
0 

where A is the ultraviolet cutoff, given by the lattice spacing, 

eq. (3. 8) and restoring the dimensiona units, one finds 

m’dk 
E 

cant =r” 

Using 

(A.. 4) 

This expression is now logarithmically divergent only. This rewaining 

divergence is cancelled by the ordinary rnasi renormalization counterterms - 

as follows: 

By computing all the one loop graphs in the ordinary fashion for the 

Lagrangian (3.1). one finds that they become finite if the Lagrangian (3.1) ‘is 
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replaced by 

& 

=- f 
-4 

t bm21 G2- 3 V (A.51 

where 
2 

bm = 

and in which one performs the ordinary shift G + z t m . 
F 

The fact tfut 

this shift remains unchanged generates the tadpole counterterm 

which is precisely needed to cancel the one loop tadpole. For 

the kink, the shift is ? -< + 

Hence the ma9s counterterm contributes to the energy of the kink by the 

amount 

tm 

1 6m2 F.‘.fdx - 2 (tanh2 x 
-0 

Jz -1) * 

which exactly cancels the divergent term of eq. (A.. 4). Collecting all the 

finite tervs. one then arrives at eq. (3.10) . 
j; 
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FIGURE CAPTIONS -- 

Fig. 1. The singularities of the integrand of Eq. (4.17) and the 

integration contour Co fur a charge zero sector of the theory 

Fig. 2. The contour for the charge two sector (a) and its shift to 

Co with two states occupied (b). 

Fig. 3. Contour for evaluating the feimion loop. 
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