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ARSTRACT

This is the first of a series of papers on the use of semi-classical
approximations to find particle states in field theory. The meaning of the
WKB approximation is examined from a functional integral approach.
Special emphasis is placed on the distinction between a true WKB or semi
clasgical approach and the weak coupling approximation to it. Other topics
include the center of mass motion of particle states and some problems
special to field theory such as multiple particle states, statistics and in-
finite volume systems. Ultraviolet divergences are touched on but dealt
with more thoroughly in the following paper where specific models are ex-
amined. The central result of this series is that certain kinds of non-linear
field theories have extended particle solutions which survive quantization.
The most interesting of these objects, which are reminiscent of hadrons,

come from theories with spontaneous symmetry breaking.
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l. INTRODUCTION

This is the first of a series of papers that will present methods
for finding soiutions to field theories which are inaccessiblé to periurba-
tion techniques. We approach this probiem through the quantam action
principle in the Feynman path integral representation, since this provides
the most natural connection between the classical problem and its second
quantized analog.

In particular, it is possible to find solutions to the full non-linear
interacting classical equations of motion of various models, which behave
like bound, stable field configurations in space-time, with particle prop-
erties. The question arises as to whether these solutions survive the pro-
cess of second quantization. In this paper we give a method for answering
that question, the accuracy of which depends both on how rﬁuch one knows
about the classical problem, and the strength of the coupling constant, in
direct proportion.

Our methods are based on the works of Gutzwillerl and Maslov,
who developed a general semi-classical formalism for use in atomic phys-
ics. These techniques are directed toward the computation of energy lev-
els, or particle masses in field theory. They work in such a way that one
never has to construct any wave functions. In field theory this is a great
advantage, since a field theoretic wave function, or more properly, a 1

state functional, is an exceedingly complicated object. Also, since we

start from a lagrangian formalism, any divergences that emerge can be

handled by more or less standard renormalization techniques.
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This paper and the two .following it are organized as follows: In
Section 2 and 3, we develop a functional formulation of the W. K. B. ap-
proximation via path integrals, and castitina form suitable for general-
ization to field theory. The strategy is basically that of Gutzwillerl and
Maslov, 2 whose ideas we follow closely, making only small technical
improvements. We take particular care to distinguish between general
semi-classical methods and their weak coupling approximation. The gen-
eral methods are very complex, but work for strong coupling as well as
weak,

In Section 4 and 5 we clear up two conceptual problems which have
long plagued the idea of identifying particle-like solutions to classical field
theories with quantum particle-s. The first is how to také the center of mass
motion into account and in the process dispose of the annoyance that classical
particle-like solutions always appear to be fixed arbitrarily at some point
in spaée. The other problem is how to handle multiparticle states and some
related formal difficulties which arise in spacially infinite systems.

Section 6 connects weak coupling semi-classical methods to the more
familiar loop expansion of what is essentially the vacuum generating functional
or effective action. This alternative but equivalent point of view is especially
useful when renormalization is necessary.

The second paper is devoted to the stludy of some explicit two dimen-
sional models. We discovered a model which has some very interesting
properties, yet is simple enough so that all calculations can be done analy-

ﬁcall'&. The model has a solution which looks like a two dimensional,



stable, extended hadron, which has a spectrum of excited stateles and
serves as a well which traps and contains fermions.

To follow this work, it is not necessary to have grasped the
present paper in any detail. Some readers may prefer to proceed di-
rectly to the models. Also included in the second paper are methods for
handling fermions. In particular, we develop a set of self-consistent
field equations for coupled scalar and fermi fields which can be trivially
generalized to fou!:' dimensions. |

Finaliy, in the third paper, we treat models in four dimensions,
which require some discussion of analogs in field theory to Type Il super -
conducting metals, and the associated vortex line solutions to the Landau-
Ginsberg equations. In particular we display a rermnarkable classical sol-
ution to the system of a non-abelian gauge field coupled to a scalar field
with a broken Higgs vacuum. This is extended to include fermion fields.

The solution is essentially a closed ball outside of which quanta get a

mass through a Higgs mechanism. Particles are effectively trapped
since in the ball they have zero mass and get heavy if they try to leave
it. This model can be looked a2t as a non-abelian superconductor for a
color Qquanturn number, which in 4-space solves the endpoint problem of

the abelian vortex case. The analog to a metal is the Higgs vacuum itself.



2A. BOUND STATES IN SYSTEMS WITH CNE DEGREE CF IE"RE.'E.DOMl

We compute the bound state energies of a one-dimensional potential
well using path integral methods. To do so, consider the trace of the

propagator

G(E) = tr — {t. 1)

i _1
H-E % E_-
where En is the energy of the ntP bound state. We write

(. 2)

[ o]
GE)=itr [ d1 iw].
0

¥ ol T
-iHT . . . .
Now e is the propagation kernel, which can be expressed directly as

a Feynman path integral, over periodic paths,

tr e BT [ Boin) /D (t.3)
where S stands for the classical action computed along the path x(7):
T ‘
s= [ [$x°-vx] ar. (1. 4)
0

The paths along which one integrates in (1. 3) are all periodic paths with
fixed period 7T. The periodicity condition is the tranalation into path
space of the trace operation of Eq. (l.2).

We now evaluate Eq. (l.3) to leading order in h. This is done
by a stationary phase method: the dominant contribution to the functional
integral comes from those paths which are close to the classical periodic
orbits xc‘(‘r). with period T. Expanding the action around these clas-
sical orbits, the integral becomes:

is (T

tr e HTL ot f.DF:(-r) dx_, (0) iS/h (1. 5)

where
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S = T{l'zl Svrix (N} dT
-_g zx --zx . xc‘ .

The functional integral is taken over the paths x{(7} which satisfy x(0) =

x(t) - 0. The extra measure dxd (0}, the starting point factor, which is

done along the classical orbit,represents the freedom we have to begin the

expansion anywhere along the classical orbit.
The functional integral (I.5) is evaluated by well-known shifting

4 .
methods. We introduce the mapping

T Niw)
yin = x(m - [ =L xip) dp
0 N(u)
and its inverse
T +
x(r) =y + N [ Ty au

0 N%G)

where N is defined by the equation
1"
R =-VN.

Then the expression for tr eﬂHT becomes

. s ,(T)/h
e BTz e 8 [Hym daax, <o>r§ |
i I N(7}
X expt) [3 [ ¥ 2 dr+aly(m + Nmf y(r) 4.
0 0N ('r)

In Eq. {1.10), « is a Lagrange multiplier which inserts the constraint on
y{7) induced by the end point conditions on x{7). The range of integra-
tion of y(T) is then unrestricted. The end point y(0) is still fixed at
zero. The functional Jacobian % | is just [N(T)/N{O)]% since (. 7)!
is a Volterra integral equation.4 The integrations over y and a are

direct and the result is:

. — iS§ (T) z T ?- -3
-iHT i cl
tr e Aoon © N(O) | [fo Z dT] fdxcl(O)

(1. &)

(.7

(1.8

(1. 9

{1. 1.

(1.1



We prove in Appendix A that this reduces to
iHT F (9 £y F if $, (M)/h- =]
tre.: = >t Tl aT e (1. 12)

where Ec1= d Sc!/d‘I‘ is the energy of the classical trajectory.

To complete the sum over paths, we insert {1.12} into (l. 2). How-
ever, we must take into account that each classical orbit can be traversed

n times, so that one has

> = dE_, 3 g (TIHET
G(E) zn*h;;lf I T l exp i 0t -zil. (1.13)

The leading term in s again given by a stationary phase approximation:

the stationary phase point is fixed by

ds

ct
aT = -Ec! = ~E (1. 14)

which determines T as a function of T(E) of the energy E. Defining,

W(E) = Sc! (T(E)) + ET(E) (1. 15)

the stationary phase approximation to (1.13) is

. (o o]
o) = *ZE 5L expli noW(E)/0- ™)

: i T(E) ei W(E)/h (1. 16)
h I+ exW(E)/h
Now if E is a root
m

W(Em) = (Zm+i)rh ’ (1. 17)

then near E = Em’ G goes like
_: '
GI{E) ~ (E - . {1.18)

S

wheré we have used the relation dW (E) / dE T(E). Finally, noting that

x

wE =2[°R(EV) ax ' (2.19)
x
1
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where x and x, are the turning points, one sees that (1.17) is the usual
WKB condition.

Summarizing, there are three ingredienﬁ té this derivation of the
WKB energies. First the approximate evaluation of tr e-iHT to give (1.12).
Secondly, the stationary phase integral over T which converts (l1.12}) into a
factor times eiW and finally the sum over multiple traverses of the basic
orbit which produces a geometric series in ¢=.-w‘r and poles in G. In sys-
tems of many degx;ees of freedom the same steps will appear. The problem
is to find the orbits.

Having shown how h enters the calculation we will henceforth set h= 1,

except occasionally when we wish to emphasize a point.

2B. AN EXAMPLE
It is instriuqtive to see how the general method works in a particular
example. In particular, the following example will illustrate the difference
between weak and strong coupling.

Consider the anharmonic oscillator whose Lagrangian is

i:i_??.‘i)‘ﬁ .(ll
2 2 4 )

where \ is an adjustable coupling constant. The solutions to the classical
equations of motion are all periodic, with the period T and energy E being
related by ' t

+x
T:Zfo' L-- SE o S (L.}
-X

x° A
0 RE-F-2%)



-9.

where + x, are the turning points; i.e. the places where the expression

under the square root sign vanishes. The change of variables x =Ey

gives
+
MY AL Q| S— 019)
- Ex 4
R

from which one sees that T depends only on the product EM. For small
E\, the weak coupling limit, T approaches the harmonic oscillator period
T z 27. As EA increases T decreases steadily approaching zerc like
(17_‘)\)_1/4 in the extreme strong coupling limit. The qualitative behavior
of T as a function of EX is shown by the bottom curve .in: Fig. (1). The
higher curves in Fig. () show the periods which are integral multiples of
tﬁis basic period, corresponding to orbits in which the oscillator runs a-
round the basic loop 2, 3,4 etc. times. ‘

To apply the semi-clasasical method to this example, we first
compute tr e-iHT. To do so we have to find all periodic orbits with per-
iod T. As can easily be seen from Fig. (1), there is a discrete infinity
of such orbits. For example, if T is less than 2n , there is the motion
whose basic period is T and then the multiple traverses of motions whose
‘basic period is an integral fraction of T. Each of these infinitely many
orbits is a stationary phase point in the path-integral for tr e-iHT. In
the semi-classical approximation we get a contribution from each such
stationary phase point and we have

. is ,
tre  HT .3 c e B {1. 20)
n n .
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where n runs over the orbits indicated in Fig. (i), Sn is the action for the
th . . :
n orbit and Cn is a constant evaluated in Sec. 2A.
-iHT
The next step to make a Laplace transform on tr e to get G(E).

Doing the transform by stationary phase we get contributicns from each or-

bit of energy E. This infinite sum produces poles in GI(E) at

+y 2 4
W(E) = 2E GJzu - Y-z—-l‘ff-) = (2n+) W . (1. 21
-y
0

Let us now consider weak couplings starting with a precise definition.

If for a given value of n = n_, Eg.. (l.2l) can be satisfied for a value of E

0’
such that A Ey3/4 is small compared to unity then we are in a weak coup-
ling regime. In this case, the energy levels for n < n, are clearly given
by the harmonic oscillator levels En= (n + 3). This is no surprise since
for weak coupling one is operating on the left hand edge of Fig. (1), where
the periods are almost equally spaced horizontal lines, i.e. where the sys-
tem is acting like a harmonic oscillator.

Since the WKB method is exact for a harmonic oscillator, it will
therefore give good results for weak coupling. We wish to emphasize,
however, that the semi-classical approximation is not basically a weak-
coupling scheme. Indeed, if the potential is not too wiggly, WKB gives
qualitativly correct answers even for very strong coupling. To use WKB
for strong coupling, however one does have to get a handle on the strong
coupling classical problem. In terms of Fig. (l), this means that we wou:ld

really have to compute the curves for T as a function of E rather than

approximating them by straight line as can be done for weak coupling.
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The difficulty in handling the classical theory will be the stumbling block

in the application of semi-classical methods to strong coupling field theory.

2C. WEAK COUPLING

In the case of zero coupling one does not needall the t‘ormal;lsm be-
cause the functional integral for the harmonic oscillator can be done ex-
actly, vyielding

tre BT 22 cos T E . C.22)

For weak coupling we can get the same resuilt by expanding the path in-
tegral around the trivial orbit x = 0 and keeping only quadratic terms in
the Lagrangian which of course; reduces the problern to a harmonic oscillator.

So far we have been ignoring this trivial orbit. We wish now to see
how this orbit and the resulting harmonic oscillator approximation fits into
our genéral scheme. First it should be understood that x = Q0 is an ex-
act periodic solution to the classical anharmonic oscillator for any period
T. It is therefore a stationary phase point in the functional integral for
tr e~iHT. Why then have we been ignoring it? To answer this we will
have to distinguish between the cases of weak and strong coupling.

A stationary phase point in the functional integral corresponding

to a non-trivial orbit makes a contribution proportional to (see Eq. (1.12)).

l .
T(%%:—‘)z etS(T)/h a.23)

where we have inserted factors of h to see the classical limit. One sees

immediately that {1 .23) is a factor of m_} bigger than the corresponding
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term {.22) from the trivial orbit, except for the special case where T is
an integer times 2w and (l. 22) blows up. Referring now to Fig. (1) we
see that for strong coupling one is not interested in orbits with these part-
icular periods. Therefore, for strong coupling the contribution of the trivial
orbit is negligible compared to that of the non-trivial ones.

For weak coupling something else happens. Referring again to
Fig. (1} we see thlat in this case we are interested in only thosé orbits whose
periods are close to an integral mulitiple of 2x. Thgse orbits are, however,
very small excursions away from the trivial one at x = 0. Consequently the
stationary phase pOin.tl corresponding to the trivial and non-trivial orbits
are no longer well separated apd do not make additive contributions to the
functional integral. That is to say, for wealg coupling the Gauésian integral
around the trivial orbit includes the contributibn of tbe non-t;-ivial orbit and
visa-versa. Thqrefoge, for weak coupling one calculates arc:;und one orbit
or the other but not both,

To aummarize:

1) It is consistent to ignore the trivial [time independent) orbit

for either weak or pirong coupling.

2) For weak coupling one has the alternative option of e‘xpandin'_

the path integral around the trivial orbit and treating the system

as a harmonic oq;i_llator.

Finally, we note that if there a-re two time ipdependent solutions

to the classical equations of motion, =x({t) = x. and x(t) = x_, say, they will

1 2

generally represent separate stationary phase points in the path integral
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and their contributions (if reievant at all) must be added. This is 1llustra-
ted by the potential with two minima shown in Fig. (2). If near the two
minirma the potential is sufficiently well approximated by parabalas then
wezk coupling applies and we can e\aluate the path .niegral by expanding
around the two trivial orbits x = x, and x = x,- Their contributions will
2d2 in G{(E} yvielding poles at En'— A% (xl) + n+ -;—l(V"(xl)}% and at En =

V(x 2) +(n+-;- }{V"{xz))%‘ for n=1,2... . We argue in Appendix B that under
the stated conditions of weak coupling this will be a good approximation to

the low lying energy levels. We wiil see that this phenomern of muitipie,

but simple, stationary points occurs in field theory.

2D. SEPARABLE SYSTEMS
In the next section we will discuss the semi-claasical method for
systems with more than ‘éne degree of frcedom. This is in general a dif-
ficult problem simply because the classical mechanics is hard. Separable
systems are simple, however. At this point it will be instructive toc see

how the method works in a separable case.

Consider the systemn defined by the Lagrangian

:Ez sz :l:4 f_z fo_ ﬁ
L= e/ G- NT + 7 -9, 5 2% (1. 24)

where the harmonic oscillator frequencies @ and w, as well as the
couplings ll and XZ are assumed to be different to avoid degeneracies.

In general the motion of this system is multiply periodic with the x _vari-

able having a basic period
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x
0 dx
T=2f = == (1. 25)
-X x x
O\Z(cl-ul Z_Ll 4)
and y having the basic period
+Y0 dy

A y JZ zz_z_ L4.
0 \Rlegmw, - 2, )

where € and €, are parameters whose sum is the total energy E. The
truly periodic motiaons ocour tor the special values of 'I‘l and T?_ such that
= i1. 26
MT1 NT‘2 il. 26)
where M and N are integers. There will in general be one such orbit
for each value of the encrgy E. Note that in the case of one degree of
freedom the periodic orbits (for given E) could be labelled by one integer
(see Fig. (1}); here we need two integers.
-iHT . R .
To compute tr e we have to pick out all truly periodic orbits

of period T. The computation is then a straightforward extension of what

we have already done and one finds that tr e—lHT can be represented as

1 L
. Z 4 s - .
. e~iHT~L;; fl'lr/o.)h‘r fZﬂ/deT &T f‘_l e{lSl(TL)N)[erIT d_eZ_ e(lsz(.lz)MJ
P NJy e 2 14T J0 2l
NT + MT, -
X § (=== - T) 6 (NT -MT,) (. 27)

where Sl{Tl) and SZ(TZ) are the actions for the individual x and y vari-
ables. To compute G(E) we take the Laplace transform and make the sub-
stitution
1 ia(NTl-MTz)
& (NT,-MT,) = "Z-;fda e (1. 28)

which gives after some algebra and collecting constants omitted in (1. 27)
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i E E
. = = _ 1.
G(E) = 5= [da G(5 4+ a) G, (5 - a) (
iw._(z)
iT, e '
ST
l1+e
x 2 4
=2(0 2 x_ x_
W (=) = z_j; [2(z-w/ -\, )] ax.
0
The separate Gi have poles at z = ¢ ibwhe:re wi(en i) = (n-l-% Jr. It is
then straightforward to verify that G has poles at E = ¢ + ¢ n, m=

n,t m,2

I,2... as it should.

We did not learn anything very surprising in this calculation. The
point of it was the following. In the one dimensional case .all classical
ofbits are periodic and it is not surprising that one can find the energy
levéls by concentrating on the periodic orbits. The separable two dimen-
sional system is generally multiply periodic and classical periodic orbits
are the exception rather th.a.‘i'nw!:he rule. Nevertheless, we can get the
energy levels by concentrating on the periodic orbits.

Our previous discussion of weak coupling and trivial {time inde-
pendent) orbits carries over to the present case in an obvious way. We
wish to add only one remark.

To get the correct energy levels one has to be sure to find all
relevant periodic orbits. Suppose we had noticed only the special orbits

vy = 0 with x oscillating with period an integer times T,. One can con-

1

vince himself that summing only over these orbits would have yielded en-

ergy levels E = “n, l+ }mz where as before a is the WKB energy for

n,l

29)
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the x-system. These levels are, in fact, correct if the coupling lz is

small. However, if kz is large the contribution of these orbits is down
]

by a factor of fh)? (as discussed above) and are not the leading terms;

hence they give the wrong energies.

3. MANY DEGREES OF FREEDOM

A. Preliminary Remarks

As has beez; mentioned before, the difficulty in applying a WKB
approach to a general system is one's lack of ability to make any pro-
gress with the classical problemn. There are only two types of multi-
dimensional systems which are analytically tractable. One is a weakly
coupled (harmonic oscillator) system and the other is a separable one.
Both of these cases have already been discussed. Weakly coupled sys-
tems will come up again in Sec. 6. Fortunately there are model field

theories which display new and interesting phenomena in a weak coupling
regime.

There is a conceptual tool that is useful in thinking about the in-
formation that a properly treated WKB requires. The generalization of
the one mode case to systemns with N modes is not straightforward be-
cause of the topological complexity of the allowed types of classical mo-
tions. In a one dimensional example, the total energy is a time invariant
of the system, which restricts the kinds of paths the system evolves !

along; i.e., they must be at least consistent with energy conservation.

The energy eventually gets quantized with the WKB method.
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For a separable system with N degrees of freedom, the N in-
variants fix an N dimensional manifold ina 2N dimensional phase
space. This manifold is called an invariant torus in the literature and
is topologically a complex objectl. Z Quantization conditions emerge be-
cause the torus is multiply connected. Each time one encircles one of
the holes in the torus, the phase of the wave function is constrained to
change by a multiple of 2n. In general one should expect as many quant-
um numbers as there are degrees of freedom. Weak coupling systems are
equivalent to sets of coupled harmonic oscillators. They are separable by
transforming to normal co-ox‘-dinatea. .

In the non-separable case, it has been shown that invariant tori
also exist, and one can in principle give a constructive algorithm for ap-
proximating it. %5 Unfortunately, knowledge of the invariant torus is
equivalent to solving for all the classical motions of the system by quadra-
tures, which for most systems is a hopeless task in practice, and for
field theory hopeless in principle. There is however, one case where
such complete information ia available and bec#use of its importance,
it bears mentioning. There are classes of non-linear wave equations
that support solitary wave solutions, that h;we the property of emerging
unchanged in shape and velocity from a complete non-linear scattering
of two of them. These solutions are called solitons in the lii:eratv.re6
and if a wave equation admits them then there is available an infi:nitg
number of conserved integrals of the motion. In such a case the invariant

torus is completely known and a complete semi-classical calculation
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becomes possible. It remains to be seen whether interesting quantum
field theories support soliton modes.

In what follows we continue to follow a2 Lagrangian-Functional
Integral approach. These methods, which form a natural bridge to
field theory were pioneered by Gutzwiller. As in the previcus section,
the method is based on summing over periodic orbits of the classical
system. For one degree of freedcm there is generally a single pernicdic
orbit for a given energy, where one does not ccunt multiple traverses of
a single orbit as a new orbit. In a system with many degrees of freedorm
there will generally be a discrete infinity of periodic orbits for each
given energy E. With the methods we are using,‘ one has to know all of
these orbits to properly generalize WKB. For separable systems the or-
bits are known and the summation can be carried out by thé methods of
Sec. 2. In the general case one will have to resort to appr@ximations.

B. The Functional Integral

For a system with N co-ordinates x, i=12...N, we define

the Feynman propagation kernel by the functional integral

Kix", x'; T) = [Dx(7) ¢S

(&1)
T .2
§= f[-"—zm- V()] ar
0
where the integration is over all paths satisfying .
:L(O) =x' x (T) = x" . (2.2

The semi-classical approximation to K is known to be

Note: we use x to denote the apace piece of a vector.
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1
) 1
8°s_,tx' , xTH|T IS b L x i T)
K 1 . |l.' -
N T ¢
Cp = . (2-3)

. . 7
This result, which was obtained by Pauli from an approximate integration

of the SchrBdinger equation and by Morette8 from a completeness argument,
can be gotten from a stationary phase approximation to the functional in-
t;e:gral. We sketch the essential ingredients of the computation which is
algebraically complex.

After shifting by the classical solution we get

K=exp[iS_ () ] Jrc(7) exp i S/1) (2. 4)

where the functional integral is now taken over paths such that

x(0) =0 and x(t) =0 and
t : 2
<= 1.2 1 8_Vix(7)
S= fod'r[a.x,1 - Ex % o, o, J. (2-5)

The calculation proceeds in essentially the same way as in Sec. 2. Define

a shift and its inverse by

;
. -1
y (T) = % (7) -_£ N Ny %5 dv (2. 6)
T 1
=N ’ .
x () iJ.(T) jONjk ¥, du (2.7)
where N satisfies:
ERAAY -
Nij e Nkj (2. 8)

After substituting into (2. 3) and some algebra

. T
¥ i - 2
K(xi((}), xi(t)} = expfi Scl(t))fﬂz,riexp(-lz-f(;du Y. (al)
+too T 0 J‘xi 2.9
x f daj exp(i aj Nji(‘r)fo Nik yk(u) du)b,;j-[

-0



where the path space is fixed by v(0} = 0 and y(t) arbitrary. The a
integration is just the incorporation of constraints via a Lagrange multi-
plier, as in the one mode case.

The functional integral is now trivial and we are left with

Y
fd detN(t)‘z

K(x(0), x(t}) = expi S_, (t]) det N(0)

(2.10)
.t
exp(- —‘-f a N_ () Nh[(u) N-l(u) N t) @ gu)
29 1k k, ‘ m? m -
Performing the o integration gives the final forms:

t
Kx(0), x(t) = expli S_, (1)) |N@®N(©)] 2 U‘ lu) N, (u)dup z (2
0

-

Now, let x. =x (T); 0<T17<T
i i - =

;ci . xi(‘?’i,‘} <o . {2.12)

Then, using the Hamiltoh-Jacobi equations, one checks that

'1 azsc!(i. x)
N, = =—w———— (2.13)

ij 8:-{_l axj
satisfies Eq. (2.B). Choosing the particular solution ‘_:3 -5(0) =x!
simplifies the final i:lallculation and noting that x (T} = x" one obtains (2.3).
When [825/ aia{i{ vanishes between 0 and T, additional phases in
Eqg. {2.12) are néeded, in direct analogy to those introduced by the turning
point in one dimension. 1,2 The advantage of the functional integral deriva-
tion lies in the physical interpretation of the correction terms generated
by the determinant in K, Eq. (2.12). As one can see from Eq. (2.3) and
Eq. (2.4}, they represent the effect of small, quantum mechanical fluctu-

ations around the classical orbit. The functional approach alsoc makes the

transition to field theory quite natural.
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C. Periodic Orbits

Proceeding as before, we have

tr e-lHTz fd’.f, K(’.ﬁ' x; T) . (2.14)
The x integration may be done by starionary phase: the stationary phase

point 1s determined by

8s , 3s | pn P o=
o ox - P" - P' =0. (2.15)

lx|=x |~.=x
P

~

As pointed out by C‘mt:zw;uriller,l this stationary phase condition selects clas-
sical periodic orbits. If we label the {discrete) set of orbits with period T

by an integer n, then one has

is_(T)

n
orbits Dn(T) € (2. 16)

with period T

-iHT
tr e -~

wh;sre Sn is the action for the orbit in question and Dn is the product of
the determinant in (2. 3) and a determinant coming from the integration a-
round the stationary phase point.

In principle, we can multiply (2.16) by eiET and do the T integra-
tion by stationary phase to obtain the semiclassical approximation to G(E).
The problem is to find all the periodic orbits.

When all the orbits are not available, a possible approximation to
(2.16) is the following. Suppose that we have access to one family of such
orbits, i.e., one orbit at some fixed energy EO and the set of orbits
swept out as we vary the energy continuously away fron'; E,- The sum in

(2.16) might then be approximated by summing over this one parameter

family of orbits, including of course multiple traverses of the basic orbits.
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The calculation can then be carried out exactly as in Sec. 2. The details
are given by ('Ju.ttzw.v.riller.l To give an example, in the case of a stable
classical urbit of period T of a particle in a two-dimensional potential
well, GI(E) computed this way is

o]

1
= 2 2.1
G(E)=T a Zeindtor I expl(i n W) 2.1

where ¥ is the stability angle. This in turn gives the quantization condi-

tion

W = (2mw + 3 (2p+h)p) (2. 1t
where m and p are non-negative integers. One finds, as expected that
the bound states of the Z-dimensional system are labelied by the two quant-
um numbers m and p. Since sin 4 ny in Eq. (2.17) represents the ef-
fect of amall deviations around the orbit, one expects that the approximation
{2.18) is valid only if p is not too large. Of course, the approximation of
keeping one family of orbits in (2. 16) makes sense only if the coupling to the
tranaverse degree of freedom (represented by the oscillator energies
(p+%)v) is weak. It is not clear whether or not such an approxirmation
could be useful in field theory.

D. Weak Coupling

According to Sec. 2C, for weak coupling, we have the option of ex-

panding around a trivial orbit x(7) =z x

Xo ie a (local) minimum

L
of the potential V. The functional integral in (2.4) is then simple to do

where ;:_'0

and the energy levels are

N
- i
E=Vig,) +HZ=)l ®+i) o 2.
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where [ Pa] = [P1° . .PN] is any set of positive integers and the w _are

he eigenfrequencies of the classical oscillator system defined by the action
2
"Vix,)

X _—"axi o, ] . (2. 20)

fd‘r[%:i.l)ii -3 x

E. Field Theory

Letting the number of degrees of freedom become infinite, the re-
sults of this section carry over directly to field theory. What do we mean
by a periodic orbit in field theory? Consider a theory containing fields
qpi(:;c“. t). [ Note that x now labels space points: the (pi are the co-
ordinates.] A periodic orbit is clearly a solution q)il to the classical

field equations which has the property that
i i
¢E1Q5.t+ T)-—qqui.t}. (2. 21)

We will be particularly interested in particle-like solutions which have a

finite (classical) energy relative to the vacuum. Such solutions must satisfy
i i

li St = .

IJE 2o Yot (f-' t) Prac (2.22)

i . . . .
where Pac 8 the vacuum expectation of the field in question and by = we

mean equal up to a2 syrmnmetry operation. In the simplest theories, (pvac
vanishes and (2. 20) reduces to

. i _ :

f%ET (pc! (E’, t)y =0 (2.23)

In field theory, a trivial orbit is a time independent solution ¢ 0(5 )
to the classical field equations. To have a particle interpretation, ¢ 0(5 )

should be a nonconstant field satisfying the appropriate one of (2.22) or

(2. 23). The weak coupling approximation in field theory leads to formulas like
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(2.18) where the number of oscillators is infinite.

So far, we have been ignoring translational invariance and infinite
volurmne questions which must be faced up to if one is to seriously talk
about applying semi-classical methods in field theory. These are the
topics which will concern us in the next two sections.

In Sec. 6 we will give a more systematic account of the weak coup-

ling approximation in field theory.

4. CENTER OF MASS MOTION

Continuing to work towards our goal of finding particle like solu-
tions in field theories, we note that a conceptionalrproblem arises. Any
classical particle-like solution to a field theory will be both localized in
space and have a definite momentum. This is imposasible in quantum
mechanics. Another indication th;t our formal deveiopmenta‘ have so far
been incomplete is that in cases of real :mterest the spectrum of H is
continuous due to translational invariance. In this section we will fill in
these holes in our formalism.

The same basic problems appeaf in the simpler case of non-
relativistic syatems. Let us first consider the non-relativistic free
particle. Working in one space dimension for simplicity, we discretize
the energy levels by making space finite and imposing periodic boundry
conditions. Classically, this may be done by imagining that the {one
space dimensional) world is a large cloaed l-‘o;:;p with a perimeter of

length L. The mation of a free particle with velocity v is then periodic
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with period
L
T-= v (3.1)
i. e. the time it takes to go once around the loop. The action for a free
2 , 2
particle of mass M is M; T. MZI’JI' Inserting this into the general

formulas of Sec.” 2 gives energy levela

Plzx 2un
E,saw P L 6.2

n=0,1,2.....
which is of course the correct answer for a particle in a periodic box.
We can see already how our conceptional aifficultiles‘ will be re-
solved. The energy levels in Eq. (3.2) correspond to the t';tlzantization

of complete orbits. For these energy eigenstates only the complete or-

bit. has a meaning; the position of the particle along the orbit is meaning-
less quantum-mechanically. Also one sees that as L ; @, Eq. (3.2)
produces the correct coﬁtinuoun spectrum for H.

For multiparticle non-relativistic systems everything generalizes
as expected. Because of Galilean invariance, the center of mass motion
separates from the internal mqtion. Thus we have a separable system of
the type treated in Sec. 2. The energy levels are the sums of internal
" energy ievella computed by ignoring the center of mass motion plu; the
kinetic energy of the center of mass as given by Eq. (3.2).

Moving on now to relativistic problems let us first consider the
free particle. With fhe same periodic boundary conditions, the action

for a relativistic particle with mass M is

S = -M(l - vz)’}'r (3.3)
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where v is the velocity measured in units of the velocity of light. For
future reference, we wish now to compute the trace of the free propaga-
tor, GO(E). Eq. (3.1) gives the period for one trip around the loup; for

n trips the period is nL/v. Summing over these muitiple passes to get

-iHT
Tr e we have j—,
-iHT 1 p MYV T
v-2uitr e ﬁ’? L[M'?-.-"Tm]ae : (3.4}
(l-vn)
' v =2L
n T
where the factor in front of the exponential ias just the ;E- (ﬁr}%}l"f 2 frorm.

our gereral semi-classical formula (1.12). Transforming to G(E}, we

obtain )
.
] ,:L M 1R remfil
Go(E) =3, §de LIF 23/]‘“1“ T(E-MY1-v)) {3.5)
L” (-v)
n '
idw (B _Wo'B
- r 0 e (3. 6)
L <¢E iw, (E) )
I-e
where we have done the integral in (3.5) by stationary phase and
2 2%
W,(E) = L(E"-M")* . (3.7)
Following our general formalism, we sece that Eq. (3.6) has poles of
unit residue at
2 2 2rn
En-\,M +I-"n ’ Pn— L \ (3.8)

n=012,...
as expected.
Armed with the formulas of the preceéeding paragraph we can
now tackle the general problerrf of a comppuite relativistic system. Sup-

pose that we have found a classical particle-like solution which is at rest.
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(n a field theory, an example would be a solution ¢ {(t, x) to the classical
field equations which is bounded in sp#ce. i.e. . @(t,x)—0 as |3§|—-m,
and periodic in time, i.e. @t +7, x) =g (t,z)- Space and time trans-
lational invariance will allow us to find new solutions by taking x—xta
and t— t +b. Also Lorentz invariance allows us to boost the solution to
obtain a particle like object moving with any velocity [v| < I. What hap-
pens when we quantize the system?

For simplicity we again conaider one space dimension and impose
periodic boundary conditions with length L. The periods of translational
motion for a moving object are then T = nL/v where n is an integer.
Because of time dilation the pez:iods of internal motion forlthe particle
mm;ing with velocity v are T =f—9:=z- where m is an integer and T
which has the same meaning as bef;r:., is the period in the rest frame.
Following closely the methodsa used to diacuss separable systems in Sec., 2,

we note that the truly periodic motions satisfy

m7T nL
v

T 3.9

1-v

B

m,n=0,12...... w.
We assume that classical solutions are available for a range of values of
T and since v is an arbitrary number less than one, it is clear that for
each T there is a two fold discrete infinity of orbits satisfying Eq. (3.9).

Now let the action in the rest frame be Si.e.
- 1 -
- 1 [} .
S(r) = j(;i(‘r yar |v=0 (3.10)

and v = nL/T as before sc that (3. 9) becomes



mT=\l-v T (3.1
Then the sum over all periodic orbits which satisfy (3. 9) can be shown

to be

. aS. (n/dr |}
v-2wi tr e-lHTz m.En,ide L}_L_Tﬁ-zi [mAi(ﬂ]% (3.12)

T(l-vn)
im3, (7 s
X e i Gfm‘r-il-v;!'r)

where A im is a determinant independent of m and.n and the index i runs
over the set of all ‘distinct periodic orbits which have a period 7 in the
rest frame. The explanation of the factors in (3.12) is as follows. The
delta function clearly enforces (3.11). Since the action is a Lorentz invar-
iant the total action for motion through m internal periods will be
mS(7) in any frame; hence this quantity appears in the exponent. The
remaining factors come from the factor Dn in '(2- 16). Nofing that
-dS/ d7 is the classical mass one sees that apart from the Lorentz invar-
iant [maA I%. these factors are the same as in (3.5). This is what one
expects: we leave the detailed verification of (3.12) to the reader.

Now inserting

2 1 . 2 :
8 nT -f1-v_ T) = 2—'fdM exp[ iM(mTy1-v_ T)] (3.13)

we see that doing the 7 integration by stationary phase will lead to

Ma-‘&? . (3.14)

Hence (3.12) can be written as '

- -iHT dM |- M | =
V-2zi tee U m 2;)[ 5o LIT(I-V 372 | Gon
n (3.15]

expl -3 My1-v_ T)
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where

GM) = ir@i de[ mAi(‘r)]% exp[ i m(éi('r) -MT7}] . (3.16)

The quaauty C-.'s is, of course, just the thing which we would have com
puzed if we had ignored transicticaa. )2vavic..ce and had worked with a
set of periodic solutions at rest and arbitr«rily localized in space. Note
that G does not depend on the length of space L. We may assume tLat

¢ haes poles, i.e.

- 1
GM) ~
M, -M

which corresponds to the mass spectrron of the theory. Finally, com-

k=12..... (3.17)

paring with (3.5) and (3. 6) one easily sees that

. 2
G(E) = 37 [ G, M. E) GM) aM (3.18)

wilere GO is given by (3.6) and we have explicitly indicated that it de-
pends on M. The M i#fégration picke up the poles of (3.17) and G(E)

consequently has poles at

FZ 2 2w
= » k= LW ] =_.’ j = p dan a0 -
E ]+Mk 1,2 Pj L j» j=L12 (3.19)

which is the desired resuit.

Note that the energy momentum relation did not have to be put
in by hand, but appeared kinematically as a conoeque;zce of the delta
function in (3.12). Evidently, we have lolved'the problem of center of
mass motion in the general, relativistic case. Our remarks about the
complete lack of localization of a particle in a definite energy state ap-
pl;r as before.

We have worked in one spacial dimension, but it should be obvious
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that the result generalizes trivially to three space dimensions.

In the following paper we will look for time-independent solutions
to field theories which have a behavior at spacial infinity, consistent
with a particle interpretation. I particular they wi!l have a finite ~las-
sical energy which we interpret as a first approximation to the mass of
a quanturmn mechanical state. These time independent aolutiqns are like
cthe toivial ortits discussed in connecticn with weak coupiing approxima-
tion. The trivial internal motion of these solutions is periodic for any
period T. Furthermore they can be boosted to cbtain solutions whichk
move. Taking the weak coupling approximation to the general resulta of
Eq. (3.19) tells that if the energy of the time independent solution is M,
then when translational invariance is taken into account the énergiea will
be the expectedJMz+ Pz .

Recall that in weak coupling the energy is the classical energy plus
the energy of zera point oscillations around the trivial {time independent}
orbit. For a translationally invariant system there are always zero fre-
quency oscillationa corresponding to a transiation of the spacial origin.
These oscillations ~  are to be interpreted as small motions of the
center of mass. According to the general results of this section, such-
oscillations can be ignored when computing the mass. Their role is to
give the proper mass energy relation when translational invariance is

properly taken into account.
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5. INFINITE VOLUME SYSTEMS AND STATISTICS

By analogy with statistical mechanics we expect that in field theory
tr e-iHT will be of the form exp(-it F(T)Q) where 1 is the valume of
space and F is a real time analog of the free energy per unit volume. If
we expand the exponential, it is evident that G(E) will contain terms pro-
portional to any power of R. This might appear to be a serious difficulty
in the limit of infinite volume. It is, however, really just a formal prob-
lem which when understood will not cause trouble in practice. In the pro-
cess of resolving this formal difficulty, we will see how particle statistics
and acattering states fall out of our general formalism.

To get a feeling for how the volume independence of G goes, let
us consider a very simple example. Consider a particle in one dimen-
sion with Lagrangian L = iz/Z - V(x) where V is an attractive potential
of finite range. As in the px_-e‘:‘“rioua section, we make space finite and of

N
length L by imposing periodic boundary conditions. There are now two

kinds of periodic orbits which contribute to tr e-iHT. First, there are
negative energy bound orbits which exist only in the region where V is
non-zero. Secondly, there are positive energy orbits (scattering orbits)
in which the particle covers the entire periodic space. The contribution
of the bound orbits is obviously independent of the length of space L:
they clearly give the bound states poles of G in the usual way.

Turning now to the scattering orbits, we note that on passing

through the potential a particle with energy E suffers a time delay 4 (E)

of
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Aﬂnrjhﬁ%ﬂ-ﬁ%dx 4.1

_ where by ""time delay' we mean the additional time required to pass
through the potential over what a free particle would take to traverse
the same distance. Since a free particle with energy E has velocity

VZE , the periods of the periodic orbits are

TE = 5+ AE . 4. 2)
The quantization condition is
W(E) = S(T(E}) + ET(E} = 2vn (4. 3)
n=0,012,...
Now for large L we are interested only in the density of scattering

1]

states g% . Treating n as a continuoua variable in Eq. (4. 3) and dif-

ferentiating yie1d39

_T(E) . A(E) _ LAE) '.
dE_ 2 Z‘I-JZE + 2r = dE b2 3 . ,(4.4)

where dn_o/ dE is the L-dependent free particle density of states and
A (E) contains the effect of the potential. The latter term is L inde-

pendent as it should be. Evidently G(E) is given by

- A(E) g
G(E) = );,EE“ = f Sorh dE' + Gy (E) (4.5)

where E‘.k are the energies of bound states and GO is the free particle
term and is proportional to L. From Egq. (4.5) we learn two things.
First that, in this case, the terms containing interesting physics are
independent of 1 and secondly that our formalism provides us with some

information about the scattering process, nluﬁely the density of states.
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We couid make the above problem translationally invariant by
imagining that we really have two particles with the potential depending
on their separation. In this case the uniuteresting term GO will ke
proportional to Lz. According to what was s::d .n Scc. 4, th: vound
states will acquire a kinetic energy and their contribution to G will go
like L. The same thing will happen to the term containing 4 (E) in
Eq. {4.5). Thus we might guesa that ‘or t-anslationally invariant sys-
tems the interesting parts of G(E) will contain a single power of the
volurne. This, as we shall see, is indeed what happens.

Rather than proceeding directly to field theory, le;: :t;a congider a
non-relativistic system which has essentially the same volume-of-space
properties. We define a non-relativistic system with an i.ndefinite number
of particles by summing tr e 1T ver a one particle space, a two part-
icle space, a three particle space and 8o on. This, of course, is just
what one does to obhtain the grand canonical ensemble in statistical mech-
anics. Indeed in what follows we will simply be describing the real time
version of the cluster expansion in statistical mechanics.

The one particle term thua obtained for G{E) is proportional to

‘the volume 0 and is just that of a free particle. The two particle term
contsine a piece proportional to Qz corresponding to two free particles
and & nontrivial term proportional to @ which containg the bound states
and the density of scattering states as in Eq. (4.5). The three particle
term has 3 93 piece equal to the free G for three particles and a Qz

term coming from processes where two particles interact while the third
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propagates freely. In particular, this Qz term contains the free prop-
agation of particle number 3, say, and a bound states of numbers | and 2.
In addition there will be a term proportional to 2 which, unlike the 123
aad Qz rerms, vields new information. [t will contain the three particle
bound states and information about the three body scattering process.
Going on to four particles, there will clearly be a 04 term where ali four
propagate {ree, a 93 term where one pair interacts, and two kinds of Qz
terma where three particles interact while the fourth propagates freely or
where two separate pairs interact. Finally, the term proportional to
will again be nontrivial giving four particle bound states and scattering
information.

Evidently, the terms in G going like 0" for n> 1 are not inter-
esting since they simply repeat information already known fromn the term

-iHT e-lF(Tm for our model

proportional to Q. Thus, if we write tr e
many particle systern, the interesting pieces of G would be gotten by
Laplace transforming -i F(T) V rather than the exponential. That log
tr e-iHT will actually be proportional to Q in the model is direct con-
sequence of the cluater expansion in statistical mechanics. The reader
who is not familiar with this line of argument may find it helpful to con-
vince himself that if there were no interactions in the model then F({(T)
iS,(T)
would be proportional to e not the free action SO itself. In this !
case, only the one particle term would have a piece going like 2.

Almost by definition, field theory is a many body problem where

the number of particles is not fixed. The proper thing to do in field theory
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is the same as in the above model; work with log tr eﬂHT. Let us see

how this would work in the sort of applications which we have in mind.

For the moment, we will ignore some points related to Bose and Rrmi
statistics. They will be treated later. Suppose that we have found some
particle like solutions to a classical field theory, i.e., fields satisfying
P+ T X =0, (t,x) for some period 7 and ¢ _, (., x} =0 as |x|—~c0.
In the previous section, we saw how such a solution becomes a gquantized
propagating particle when the center of mass motion is taken into account.
The contribution of such a state to tr e-iHT or G(E) is proportional to
Q. Now since our particle like solutions are localized in space we can find
approximate solutions representing two well separated particles, for ex-
ample let the field be, ¢_,(t,x) + ¢_,(t.x + a) where |a| is large. Put-
ting the system in a periodic box we could look for the exact periodic or-
bits which take into account the interaction of the two particles. For large
© we would then get two terms in G(E}, one going like Qz' and the other
like Q. As before, the Qz term will just count the states of two free
particles and is not of interest. The term proportional to will yield
information about the scattering of two particles. Any 'hound' two part-
icle orbits would be added to our original list of single particle solutions.
Similarly, we could in principle construct solutions which display the
scatteringm of three particles, four particles and so on. Each of these

is a stationary phase point in the functional integral for tr e-iHT and

in principle must be kept. The sum over all these classical orbits will be

of the form exp(-iF(T)Q) where -iF(T) Q2 contains two things. First it
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is the sum over propagating particle-like solutions. Secondly, there will

10 Since it is unlikely

be a residual piece from the scattering orbits.
that these scattering orbits wiil be available in cases of interest we can
concentrate on the particle-like solutions. As far as they are concerned,
we are back where we started. Transforming -iF(T)Q to get the inter-
esting part of G is just the same thing as simply examining the localized
one particle solutions and forgetting the whole business of higher powers (.
This is indeed whatl one is supposed to do. The point of all this has only been
to assure ourselves that this physically obvious ansatz is formally correct.
We conclude this section with a brief discussion of how Bose and
Fermi statistics work in the semi-classical approximation. In particular,
we will indicate how particle-like solutions to classical field theory end up,
when quantized, with the proper statistics. We will treat only Bose statis-
tics explicitly, thﬁ generalization to Fermi statistics is straightforward.

Consider a non-relativistic system of two identical bosons. When comput-

. -iHT . .
ing tre we have to include an exchange term, i.e.,

tr e PHT . f,(< xllee-iHTlxlxz> +< xlele-iHTlexzﬂdx‘dxz. 4. 6)
The first term in Eq. (4.6) is the usual one which comes from periodic

orbits in the semi-classical approximation. The same stationary phase
approximation applied to the exchange term in Eq. (4. 6) will pick out ex-
change orbits where if the coordinate and momentum of particle 1 at time
zero are x,, p, and those of particle 2 a.m_’T _12' P, then after time T

the coordinate and momenta of particle l are x P, and for particle 2

2’
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xl, pl. The presence of these exchange orbits will give rise to a new
term in G(E) proportional to one power of the volurme of space 2. This
correction to the density of states is the signature of basons in our for-
malism. We leave to the reader the instructive exercise of verifying
that the classical exchange orbits do indeed gire the correct change in G.
Suppose now that we have a particle iike solution to field theory.
For simplicity we will assume that the solution is time independent in its
rest frame, i.e., @=¢  (x) where ¢, —~0 as |x| —= @, and take space
to be one dimensional. Boosting, gives the moving soluti.o‘r?s Y {y (e+vt))

where 1-1 =y1 - vz . An approxima te two particle solution is given by
V=% (y(x+vt)) + % (y' (x+at+v't)) . 4.7

where v' is in general a different velocity and |a| is large. For a
periodic space of length 1, this solution is periodic with peri.od T if
T=nL/v = ml._,/v' where m and n are integers. In the special case
where v=v' and a = L/2 there are further periodic orbits with period
m +1/2) L/v for any integer n. For these orbits the two terms on the
right of Eq. {4.7) go into each other. They are the analog of the exchange
orbits in the labove example and we will call them by that name. The dif-
ference here is that in field theory the excMge orbits do not have to be
added by hand but already exist armnong the periodic solutions of the clas-
 sical problem. For the exchange ﬁrbitl the value of a is fixed. There- '
forel their contribution to G(E) will contain a single power of L (9- in

the three dimensional case). This change in the density of stites is, as noted
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above, a characteristic of bosons. We leave the details of the calculation
as well as the generalizations to N-particle exchanges, fermions, etc. to

the reader.

6. USING AN EFFECTIVE ACTION

The semi-classical method discussed in the previous sections re-
qQuires an actual knowledge of the dynamics, i.e. orbi:s, of the classical
system. In this section we turn to a different but not unrelated method
which will be seen to be a systematic scheme for improving on the weak
coupling approximations discuased in Sec. 2.

First we will obtain a method for finding the ground state of a
quanturn system. In our later applications to field theory,l we will not
be interested in the ground state (vacuum) but rather excited states
(particles). How the method works for excited states will be discussed
later. For the ground state we will be discussing a methed which is well
known in the literature. 1,1z

Let us start with the simple system with one degree of freedom
defined by the Lagrangian

i:-i-;-‘f(x) . (5. 1)

We assume that V has a unique minimum at x = x4 The classical

“ground state" of this system is simply the particle sitting still at the !

point x = x its energy is V(xo). Because of zero point motion, the r-

quanturn mechanical ground state energy must be higher.

Rather than work with tr e-iHT as we did in previous sections,
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let us set T = -ip and consider the limit of large [ which gives
- -PE
tr e PH 0 (5. 2)
g—~wo
. . -pH .

where EO is the ground state energy. We will compute tr e via
the functional integral in the following way. Define

L= Ly+ L - Vixy)
where

-:EZ rnz 2
LO =_Z > (x—xo) {5.3)
mz = V" (xo}
= ., (n) n

LI = -n;; \' (xo) (x—xO) /nt

Then we have . n 2 mZ 2 :
BVix.) - — 4 — (x-x,.) ©
-fH_ 0 0 2 2 0 1 'JP n
tre " se fﬂxg) e P OLI)
-B(Vixy) +357)
= a + '] (5- 4)

where we have explicitly done the n = 0 term which is just the weak
coupling result. The higher order terms can be done by standard

pH

means and yield the perturbation expansion for tr e in Feynman
diagram form. As is well known, the expansion in Eq. (5.4) contains
both connected and disconnected diagrams. The series can be partially
summed to give the exponential of the sum of connected diagrams, so we
have

tr e P exp(-p[ Vixy + 3 +AE] ) (5. 5)

where -fAE is the sum of all connected diagrams with two or more

closed loops.
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Some examples of these diagrams are shown in Fig. (3). The
single diagram with one closed loop gives the m/2 term in (5.5). It

is well known from statistical mechanics that in the limit of large B,

AE is independent of B and the terms in its expansion are simply ord- -
inary Feynman diagrams in Wick rotated form. The details of the dia-
grams, e.g. combination factors, can be straightforwardly deduced from
functional integral (5. 4).

The diagrams in Fig. (3a} and Fig. (3b) are one particle re-
ducible, i.e. they contain a single particle line which, if cut, would
make the diagram disconnected. The one particle reducible diagrams can
be summed in the following way.

The sum of all tadpole diagrams shown in Fig. 4 where a single
line disappears is equal to the difference between the expectation value
<x> of the operator x in the ground state and its classical value L i.e.
“complete tadpole’” = <x> - Xy If we were to expand the Lagrangian a-
round < x> rather than x,, obtaining in the process a new maasas mz(< x>)=

(4}
{n)
(< x>), then there would be no

V'(<x>) and new n-point vertices V
tadpoles or, equivalently, no one particle reducible diagrams in the per-

turbation series for A E. Of course, we do not know the a Eriori value

of <x>. Nevertheless, let us define a function I'(y) by

-réy) = -pvey) + S T (5.6)
'

where E(y) is the sum of all connected, one particle irreducible dia-

grams computed with the Feynman rules derived from (5.4) using the
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interaction I..l =§ ﬁ V(n) &) (x-y)n and the mass mz(y) = V'"{y) in the

free Lagrangian. It is obvious that I'{(<x>} = E_, the ground state ener-

0
gy- To compute <x> we note that ' {y) = a‘%l“ fy) is the sum of all one
particle irreducible tadpole diagiamo. including a "'bare' tadpole V' {yi.
Now it is obvious that the complete tadpale vanishes if and only if the
one particle irreducible tadpole vanishes. Hence the vanishing of the
complete tadpole is equivalent to the vanishing of I'' and we can there-
fore find <x> by looking for a geroof I''. In fact

Eo .
which is the quantum analog of looking for the minimum of V.

= minyl"(y) _ . 5.7
-'I"he extension ta a system with n degrees of freedam is straight-

forward: I' simply becames a function of n variables  SAERS A In

field theory I' is a functional of the field ¢ conside‘rod as a function

of space co-ordinates at a fixed time. |

Because I' is difficult to compute, Eﬁ. (5.7) is only useful for

weak coupling. In this case, it is easy to see the equivalence of the pre-

sent method and the semi-classical method. For the latter, the weak

- coupling approximation amounts to expanding the functional integral a-

| . round the trivhl orbhit sz x

0
terms in this expansion but the higher order terms could be camputed

. Previously we kept only the quadratic

perturbatively as was done here. In fact, the result would simply be an
analytic continuation to real time of the diagrams for AE. One could
. sum the one particle reducible diagrams by introducing a real time I

and it is easy to convince oneself that, to any finite order in LI" the G(E)
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computed in this manner would have a pole at the energy given by (5.7).

What if we tried the same trick but chose to expand around a
trivial orbit which does not correspond to the classical ground state.

For example, one could try expanding around the higher mi.nimnrn of
the potential shown in Fig. (2).

In Appendix (B) we argue that this procedure will givé good re-
sults for an exci.ted state provided that the coupling arcund the point in
question is reasonably weak and that the perturba.ti'on expansion for I"
is truncated at a low order. It will not give a convergent expansion for
the energy, but this is not likely to be of importance in practice.

Actually for the field theoretic problems which we have in mind,

, there are rigorous methods for using I’ to find excited (particle) states.
One has to arrange thinge in such 8 way that the vacuum state cannot en-
ter the problem. One can do this in two ways.

1) In some field theories (see the following paper) there

are field configurations whose topology is inequivalent

to the field configurations which enter into the vacuum
wave function. The part of functional integral for tr c'pH
which runs over these topologically sbnormial field zonfigaorations
contributes only to excited (particle) states. It follows that
one can find particle states by minimising I" over fields.
with en’abmormal topelogy.
2) Another method is to insist that the state that one is

looking for have non-vacuum quantum numbers or a non-
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zero three momentum. This may be accomplished by
using a Lagrange multiplier p and computing tr e-ﬂ(Hﬂ" Q)
where Q is, say, baryon number or charge. Considering

tr e’ﬂ(Hﬂl Q)

H+pQ as an effective Haﬁiiltonia.n, can be
computed by a path integral and one proceeds exactly as

before. Terms in the effective I" which are independent
of p have to be dropped to avoid the vacuum. In the end

g is adjusted to get the correct quantum numbers. There is

a simple example of this procedure in the following paper.

In situations where we can use Eq. (5.9) or some variant thereof
to find particle states there is an obvious, but perhaps very useful approx-
imation scheme available. That is to compute I' to some finite order and
lock for a minimum. In field theory this turns out to yield a self-consis-
tent field, Hartree type of approximation. In the following paper we show
how this works in a specific example.

The identification of the weak coupling semi-classical method with
the properties of the effective action I' serves another very useful func-
tion in field theory. It is a good guide to how to renormalize when diver-
gences appear.

Finally, the diagramatic methods discussed here can be used to
compute quantum corrections to the general semi-classical method where

we expand arcund periodic orbits. This is discussed in Appendix C. -
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Using the effective action to improve on weak coupling approxima-
tions has one drawback. The role played by translational invariance,
statistics and field-theoretic infinite volume difficulties is not tranapar-
ent. A way to handle these problems, which lie at the heart of any particle
interpretation of a c-number field, was discussed in Sections 4 and 5. By
remembering how the effective action relates to the weak coupling approx-
imation toc WKB, one can reinterpret the results of Sections 4 and 5 in the
context of an effective action. Order by order in perturbation theory this
is a relatively straightforward problem. In paper II we will see how this
goes in the lowest non-trivial order.

One of the authors (B, H.) would like to express his appreciation
to Dr. Carl Kaysen for the hospitality exl‘:ended to him by the Institute for

Advanced Study.
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APPENDIX A
The general solution of Eq. (1. 9) is
» -Z -

N(T) = (afxd du +P) X, (A.1)
where o and § are the two integration conscants. One can then check
that
azs

-1
T, .2,
N[ O N@ T et
N(0) [_fo NP B O TN (a-2)

for any o and §, such that Nz(u) does not vanish for 0 <u < 7. One

then uses the formulas

2 2 2
8 Sc! R 9 wc! 3 wc! 1
8x(0) dx(TY 8E_, #x(0) 3E_ AxD 2
ci
FA
b E
with cd
x(T) ‘
wc! = f  VEITESVY dx = Scl+ Ec!'T
={@Q)
and
BZW |
8Ec‘ ax (T = (M

to a.rzrive at Eq. (1.12). The phase e '™ comes from the fact that
8°s

cd
ax{0) ox(T)
i I

turning point thus introduces the phase e ¢ .

vanishes each time one goes ::rhrough a turning point: each
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APPENDIX B

Consider the two-minimum potential shown in Fig. (2 ). Sup-
pose that each dip in V could, ignoring the other dip, support a bound
state of energy well below the barrier separating the two.l From elemen-
tary considerations the coupling of these two states will then be of order
of the exponential of - f VV-E dx integrated across the barrier. For
reasonable barrier thickness this will be very srmall so that the two atates
are almost decoupled. Therefore the low lying energy levels are almost
entirely determined by the individual shapes of thé two dips. For weak
coupling we replace the wells by parabolas and obtain harmonic oscillator
levels. Low orders of perturbation theory would correct for deviations ©
from a parabolic shape. It follows that a few orders of pg:_-turbation theory
would give good results. Similarly, minimizing I' comﬁxted to a few or-
ders could be a good approximation. This sort of perturbation expansion
cannot, however, be carried to far since it ignores the coupling between
the states. For a calculation based on minimizing I', one can see this
as follows. In lowest order I' is just V and has two well-separated
minima. On the other hand, the exact I'{y) can be shown to be the min-
imum of < ¢ |[H|y > over normalized wave functions such that <y |x|§ >=
y. We can approximately compute I" by setting | = cos © vpl +8in 0 q.-z
where ||.|l and ¢2 are the lowest states in wells one and two respect-

ively. If <"|'iIHMi> =e¢, and <¢ilx.'¢i? =x for i =12 then

i
(since <y lIHI.;. ,> =0 and <¢1|x|¢ S =0 I'ly) = coszefylcl +

.inZO(y)tz when O(y) is determined by y = coaze(y) x, + cinze &) x,-
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Now for weak coupling ¢ = V(xlj and ¢2= V(xz), from which one sees

i

that the true I does not have the hump between X, and x y but rather
connects the minima with a straight line. This effect which does not

occur to low order in perturbé.tion theory need not keep one from using

I" to obtain a useful estirmate of the energies.

)



APPENDIX C

When we compute tr e‘iHT by stationary phase, we expand the
Lagrangian around the periodic classical orbit X 4 (T). Separating the
Lagrangian into terms which are quadratic in (x-xc‘) and those which
are cubic or higher defines a split into an LO and Ll which is anal-
ogous to that in Eq. (5.3). One could expand in powers of I..I obtaining,
in each order of (LI)n. functional integrals which can be computed by a
simple extension of the metheds of Sec. (3) and Appendix (A). This will
lead to a Feynman diagramatic perturbation expansion which has the same
topological and combinational properties as that discussed in Sec. 6. For
example, the set of all diagrams will sum to an exponential of the sum of
all connected diagrams and there will be both one particle reducible and
irreducible diagrams. The one particle reducible diagrams can be summed
as before. Let 3‘!’;(7) be any periodic function. Define a functional I'{y) whe:
y is any period;c function' as I'{y) = S(y) + {the sum of all connected
one particle reducible diagrams obtained by expanding the functional in-
tegral for tr e-iHT around the periodic path y(t) ). The same argu-

iHT _ il (<x>)

ment as was used in Sec. 6 then implies that tr e where

6 _
By - 0 at y(1r) = <xiT)>.

This result, while elegant, is very unlikely to be of any use. For strong

the periodic function <x(7)> is determined by

coupling where one has to use the full semi-classical method, the real

1
problem is to find all the classical orbits which are stationary phase points

in the functional integral.
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FIGURE CAPTIONS

Fig. 1. Periods of the anharmonic oscillator as a function of EX,
the ‘energy times the coupling constant. The higher curves
are integral multiples of the bottom curve.

Fig. 2. A potential with two minima leading to two classes of orbits
in the weak coupling approximation..

Fig. 3. Some typical connected diagrams in the expansion of Egq.
(5.4). Diagrams a and b are one particle reducible while
¢ and d are one particle reducible.

Fig. 4. Some tadpole diagrams.
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