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ARSTRACT 

This is the first of a series of papers on the use of semi-classical 

,: 
approximations to find particle states in field theory. The meaning of the 

WKB approximation is examined from a functional integral approach. 

Special emphasis is placed on the distinction between a true WKB or semi 

classical approach and the weak coupling approximation to it. Other topics 

include the center of mass motion of particle states and some problems 

special to field theory such as multiple particle states, statistics and in- 

finite volume systems. Ultraviolet divergences are touched on but dealt 

with more thoroughly in the following paper where specific models are ex- 

amined. The central result of this series is that certain kinds of non-linear 

field theories have extended particle solutions which survive quantization. 

The most interesting of these objects, which are reminiscent of hadrons. 

come from theories with spontaneous symmetry breaking. 

*Research sponsored in part by the Atomic Energy Commission, Grant No. 

AT(ll-I)-2220. 
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1. INTRODUCTION 

This is the first of a series of papers that will present methods 

for iinding solutions to field theories which are inacLessibl6 to per;urba- 

tl,.,n techniques. We approach this pr:)biem through the quantum action 

principle in the Feynman path integral representation, since this provides 

the most natural connection between the classical problem and its second 

quan’.ized analog. 

In particular. it is possible to find solutions tC; the full non- linear 

interacting classical equations of motion of various models, which behave 

like bound. stable field configurations in space-time, with particle prop- 

erties. The question arises as to whether these solutions survive the pro- 

cess of second quantization. In this paper we give a method for answering 

that question, the accuracy of which depends both on how much one knows 

about the classical problem, and the strength of the coupling constant. in 

direct proportion. 

Our methods are based on the works of Gutzwiller’ and Maslov. 
2 

who developed a general semi-classical formalism for use in atomic phys- 

ics. These technjques are directed toward the computation of energy lev- 

els, or particle masses in field theory. They work in such a way that one 

never has to construct any wave functions. In field theory this is a great 

advantage, since a field theoretic wave function, or more properly, a , 

state functional. is an exceedingly complicated object. Also, since we 

start from a Lagrangian formalism, any divergences that emerge can be 

handled by more or less standard renormalization techniques. 
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This paper and the two following it are organized as follows: In 

Section 2 and 3, we develop a functional formulation of the W. K. B. ap- 

proximation via path integrals, and cast it in a form suitable for general- 

ization to field theory. The strategy is basically that of Cutawiller’ and 

Maslov. 
2 

whose ideas we follow closely. making only small technical 

improvements. We take particular care to distinguish between general 

semi-classical methods and their weak coupling approximation. The gen- 

eral methods are very complex, but work for strong coupling as well as 

weak. 

In Section 4 and 5 we clear up two conceptual problems which have 

long plagued the idea of identifying particle-like solutions to classical field 

theories with quantum particles. The first is how to take the center of mass 

motion into account and in the process dispose of the annoyance that classical 

particle-like solutions always appear to be fixed arbitrarily at some point 

in space. The other problem is how to handle multiparticle states and some 

related formal difficulties which arise in spatially infinite systems. 

Section 6 connects weak coupling semi-classical methods to the more 

familiar loop expansion of what is essentially the vacuum generating functional 

or effective action. This alternative but equivalent point of view is especially 

useful when renormalization is necessary. 

The second paper is devoted to the study of some explicit two dimen- 

sional models. We discovered a model which has some very interesting 

properties, yet ir simple enough so that all calculations can be done analy- 

tically. The model has a solution which looks like a two dimensional, 
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,, 

stable, extended hadron. which has a spectrum of excited states and 

serves as a well which traps and contains fermions. 

To follow this work. it is not necessary to have grasped the 

present paper in any detail. Some readers may prefer to proceed di- 

rectly to the models. Also included in the second paper are methods for 

handling fermions. In particular, we develop a set of self-consistent 

field equations for coupled scalar and fermi fields which can be trivially 

generalized to four dimensions. 

Finally, in the third paper, we treat models in four dimensions, 

which require some discussion of analogs in field theory to Type II super - 

conducting metals, and the associated vortex line solutions to the Landau- 

Ginsberg equations. , In particular we display a remarkable classical sol- 

ution to the system of a non-abelian gauge field coupled to a sialar field 

with a broken Higgs vacuum. This is extended to include fermion fields. 

The solution is essentially a closed ball outside of which quanta get a 

mass through a Higgs mechanism. Particles are effectively trapped 

Since in the ball they have zero mass and get heavy if they try to leave 

it. This model can be looked at as a non-abelian superconductor for a 

color quantum number. which in 4-space solves the end@oint problem oi 

the abelian vortex case. The analog to a metal is the Higgs vacuum itself. 
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2A. BOUNDSTATESINSYSTEMSWITHONE DEGREE~F FREEDOM' 

We compute the bound state energies of a one-dimensional potenlial 

well using path integral methods. To do so, consider the trace of the 

prtipagatnr 

1 
G(E) = tr H-E 1z r- 

n En-E 
(1.1) 

where E We write 
” 

is the energy of the nth bound state. 

(f dT 
G(E) = i tr J - exp[ i (E-t’T ] . 

0 h 
(1.2) 

Now e 
-iHT . 

IS the propagation kernel, which can be expressed directly as 

3 
,: 

a Feynman path integral, over periodic paths, 

tt e -iHT= J ts;rc7, =i S/h 
(1. 3) 

where S stands for the classical action computed along the path x(7): 

T 

S = j- [~k*-V6)] d7. 

0 
(1.4) 

The paths along which one integrates in (1.3) are all periodic paths with 

fixed period T. The periodicity condition is the translation into path 

space of the trace operation of Eq. (1. 2). 

~‘. We now evaluate Eq. (1.3) to leading order in h. This is done 

by a stationary phase method: the dominant contribution to the functional 

integral comes from those paths which are close to the classical periodic 

orbits x~~(T). with period T. Expanding the action around these clas- 

sical orbits, the integral becomes: 

- -XT 
tre =e O-5) 

where 
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The functional integral is taken over the paths X(T) which satisfy x(O) = 

X(T) - 0. The extra measure tic, (0). the starting point factor, which is 

done a!ong the classical orbit,represents the freedom we have to begin the 

expansion anywhere along the classical orbit. 

The functional integral (1. 5) is evaluated by well-known shifting 

methods. 
4 

We introduce the mapping 

y(~) =X(T) - nimbi dv 

and its inverse 

x(r) = Y(T) t N(T) ; w 

0 N’(P) 

Y(P) dp 

where N is defined by the equation 

fl E -V”N . 

Then the expression for tr e 
-iHT 

becomes 

(1. 7 

(1.8 

(1. 9 

tr e 
-iHT= 

e iscf (T)‘hJ&y(~) da dxcl (0) & 1 

(1.1, 

d7 t o(y(T) + N(T)J TNx Y(T) dT)] . 

0 N*(T) 

In Eq. (1.10). (I is a Lagrange multiplier which inserts the constraint on 

y(7) induced by the end point conditions on X(T)- The range of integra- 

tion of Y(T) is then unrestricted. The end point y(0) is still fixed at 

zero. The functional Jacobian 1 is just [ N(T)/N(O)]’ since (l-7)! 

is a Volterra integral equation. The integrations over y and ~1 are 
- 

direct and the result is: 

tr e 
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We prove in Appendix A that this reduces to’ 

tr e-if-% 
kT,>r ;I SC,(T)+ ~1 

(1.12) 

where E cl= d Scl/dT is the energy of the classical trajectory. 

To complete the sum over paths, we insert (1.12) into (1.2). How- 

ever. we must take into account that each classical orbit can be traversed 

n times, so that one has 

G(E) &$,rF Tfn%I’exp i n[q- j. (1.13) 

The leading term in h 
-1 : 

IS again given by a stationary phase approximation: 

the stationary phase point is fixed by 

d scf 
7 =-E 

Cl 
= -E 

which determines T as a function of T(E) of the energy E. 

W(E) = Scl (T(E)) t ET(E) 

the stationary phase approximation to (1.13) is 

G(E) = iyx exp(i n(W(E)/fi- *)I 

= -F 

i W(E)/% 

1 teeiW(Et/h * 

Now if E is a root 

W(E,) = (2mtlbh 

then near E = Em, G goce like 

G(E) - (E m-E)-’ 

(1. 14) 

Defining. 

(1.15) 

(1.16) 

(1. 17) 

Q. 18) 
,:. ,(. “’ 

wher.$ we have used the relation dW(E)/dE = T(E). Finally. noting that 

W(E) = 2j2&m dx (1.19) 

=I 
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where x 
1 

and x 
2 

are the turning points, one sees that (1.17) ie the usual 

WKB condition. 

Summarizing, there are three ingredients to this derivation of the 

-iHT 
WKB energies. First the approximate evaluation of tr e to give (1.121. 

Secondly. the stationary phase integral over T which converts (1.12) into a 

factor times e 
iW 

and finally the sum over multiple traverses of the basic 

orbit which produces a geometric series in e 
iW 

and poles in G. In sys- 

tems of many degrees of freedom the same steps will appear. The problem 

is to find the orbits. 

Having’shown how h enters the calculation we will henceforth set h : 1, 

except occasionally when we wish to emphasize a point. 

28. AN EXAMPLE 

It is inst+ive to see how the general method worka in a particular 

example. In particular, the following example will illustrate the difference 

between weak and strong coupling. 

Consider the anharmonic oscillator whose Lagrangian ia 

(1. 1 

where X is an adjustable coupling constant. The solutions to the classical 

equations of motion are all periodic, with the period T and energy E being 

related by I 

(1. 1 
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where tx 
- 0 

are the turning points; i.e. the places where the expression 

under the square root sign vanishes. The change of variables x =drEy 

gives 

T : 2 j+” 
-Y. FZ$ y4) 

(1. 19) 

from which one sees that T depends only on the product EA. For small 

ok, the weak coupling limit, T approaches the harmonic oscillator period 

T = ZT. As EX increases T decreases steadily approaching zero like 

m.) 
-l/4 

m the extreme strong coupling limit. The qualitative behavior 
,: 

of T as a function of EX is shown by the bottom curve in Fig. (1). The 

higher curves in Fig. (1) show the periods which are integral multiples of 

this basic period, corresponding to orbits in which the oscillator runs a- 

round the basic loop 2,3,4 etc. times. 

To apply the semi-classical method to this example. we first 

-iHT 
compute tr e . To do so we have to find all periodic orbits with per- 

iod T. As can easily be seen from Fig. (l), there is a discrete infinity 

of ruch orbits. For example, if T is less than 2n , there is the motion 

whose basic period is T and then the multiple traverses of motions whose 

basic period is an integral fraction of T. Each of these infinitely many 

orbits is a stationary phase point in the path-integral for tr e 
-iHT. In 

the wemi-classical approximation we get a contribution from each such 

stationary phase point and we have 

iS 

tr e 
-iHT 

(1.20) 
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where n runs over the orbits indicated in Fig. (I). S, is the action for the 

th 
n orbit and C is a constant evaluated in Sec. ZA. 

n 

The next step to make a Laplace transform on tr e -i1iT to get G(E). 

Doing the :ransform by stationary phase we get contributicns from each or- 

bit of energy E. This infinite sum produces poles in C,(E) at 

W(E) = 2E / fyG/q = (Zntl) n . (1. 21 

-y0 

Let us now consider weak couplings starting with a precise definition.. 

If for a given value of n = nO, Eq.. (1. 21) can be satisfied for a value of E 

such that A Ey;/4 is small compared to unity then we are in a weak coup- 

ling regime. In this case, the energy levels for’ n < n,, are clearly given 

by the harmonic oscillator levels En= (n t g). This is no surprise. since 

for weak coupling one is operating on the left hand edge of ,Fig. (l).where 

the periods are almost equally spaced horizontal lines, i.e. where the sys- 

tern is acting like a harmonic oscillator. 

Since the WKB method is exact for a harmonic oscillator, it will 

therefore give good results for weak coupling. We wish to emphasize, 

however, that the semi-classical approximation is not basically a weak- 

coupling scheme. Indeed, if the potential is not too wiggly, WKB gives 

qualitati* correct answers even for very strong coupling. To use WKB 

for strong coupling, however one does have to get a handle on the strong 

coupling classical problem. In terms of Fig. (1). this means that we would 

really have to compute the curves for T’ & a function of E rather than 

approximating them by straight line as can be done for weak coupling. 
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The difficulty in’ handling the classical theory will be the stumbling block 

in the application of semi-classical methods to strong coupling field theory. 

2c. WEAK COUPLING 

In the case of zero coupling one does not needall the formalism be- 

cause the functional integral for the harmonic oscillator can be done ex- 

actly, yielding 

tr e -iHT=(Z-2cosT)-b. (1. 22) 

For weak coupling we can get the same result by expanding the path in- 

tegral around the trivial orbit x q 0 and keeping only quadratic terms in 

the Lagrangian which of course. reduces the problem to a harmonic oscillator. 

So far we have been ignoring this trivial orbit. We wish now to see 

how this orbit and the resulting harmonic oscillator approximation fits into 

our general scheme. First it should be understood that I 3 0 is an ex- 

act periodic solution to the classical anharmonic oscillator for any period 

T. It is therefore a stationary phase point in the functional integral for 

-iHT 
tre . Why then have we been ignoring it? To answer this we will 

have to distinguish between the cases of weak and strong coupling. 

A stationary phase point in the functional integral corresponding 

to a non-trivial orbit makes a contribution proportional to (see Eq. (1.12)). 

dE 1 + 
T~=T;) = 

iS(T)/h 
0.23) 

,- 
where~ we have inserted factors of h to see the classical limit. One see8 

immediately that I 1 -23 ) is P factor of (tJ -# . bigger than the corresponding 
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. 

term (. 22) from the trivial orbit, except for the special case where T is 

an integer times 2s and (1.22) blows up. Referring now to Fig. (1) we 

see that for strong coupling one is not interested in orbits with these part- 

icular periods. Therefore, for strong coupling the contribution of the trivial 

orbit is negligible compared to that of the non-trivial ones. 

For weak coupling something else happens. Referring again to 

Fig. (1) we see that in this case we are interested in only those orbits whose 

periods are close to an integral multiple of 2n. - These orbits are. however, 

very small excursions away from the trivial one at x = 0. Consequently the 

stationary phase points corresponding to the trivial and non-trivial orbits 

are no longer well separated and do not make additive contribution8 to the 

functional integral. That is to say, for weak coupling the Gausrian integral 

around the trivial orbit include, the contribution of the non-trivial orbit and 

visa-versa. Thqrefote. for weak coupling one calculates around one orbit 

or the other but not both. 

To summarize: 

1) It is consistent to ignore the trivial (time independent) orbit 

for either weak or strong coupling. 

2) For weak coupling one har the alternative option of e’xpanding 

the path integral around the trivial orbit and treating the system 

as a harmonic oscillator. 
” . .~, . . ! 

Finally, we note that if there are two time independent solutions 

to the classical equations of motion, x(t) = xl and x(t) t x 2. tay. they will 

generally represent l epatats stationary phase points in the path integral 
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and their contributions (if relevant at all) must be added. This is iliustra- 

ted by the potential with two minima shown in Fig. (2). If near the two 

minima the potential is sufficiently well approximated by parabolas then 

weak coupling applies and we can e\ aluare t!;e path .nLegrai by expanding 

around the two trivial orbits x = xI and x = x2. Thiir contributions will 

add in G(E) yielding poles at En’ V(x,) t (n t 5 JN”(‘l)Jt and at E = 
n 

L 
\-[x2) +(ntj)(V(x2))” for n L 1. 2.. . . We arg-e in Appendix B ihat under 

the stated conditions of weak coupling this will be a good approximation to 

the low lying energy levels. We will see that this phenomerm of multiple, 

,: 
but simple, stationary points occurs in field theory. 

2D. SEPARABLE SYSTEMS 

In the next section we will discuss the semi-classical method for 

4 
systems with more than one degree of freedom. This is in general a dif- 

ficult problem simply because the classical mechanics is hard. Separable 

systems are simple, however. At this point it will be instructive to see 

how the method works in a separable case. 

Consider the system defined by the Lagrangian 

.2 2 

L=~++J+ 2 4 it -,& -A,< 0.24) 

where the harmonic owzillator frequencies o 1 
and o 

2 
as well as the 

couplings )r 
1 

and A 
2 

are assumed to be different to avoid degeneracies. 

In general the motion of this system is multiply periodic with the x -vari- 

able having a basic period 

. 
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T,:: zp -___ _____--- 
2 

-xo 2(e1-w, i- A, ?I 
J-7? - 

(I. 25) 

and y having the basic period 

‘T2= 
+y0 

2.1 - dy 2 
J- 2L-A 

4 
-y0 

(e2-Y2 2 2 
L) 

4 

where e 
1 

and e The 
2 

are parameters whose sum is the total energy E. 

tru!y peritidic n~oti.& occur :or the special values tif T, and T2 such that 

MT1 = NT2 il. 26) 

where M and N are integers. There will in general be one such orbit 

for each value of the energy E. Note that in the case af one degree of 

freedom the periodic orbits (for given E) could be labelled by one integer 

(see Fig. (1)): here we need two integers. 

To compute tr e 
-iHT 

we have to pick out all truly periodic orbits 

of period T. The computation is then a straightfonvard extension of what 

we have already done and one finds that tr e 
-iHT 

can be represented as 

NTI+ MT2 

x at 
2 

- T) 6 (NTl-MT21 (1. 27) 

where S,(T,) and S2(T2) are the actions for the individual x and y vari- 

ables. To compute G(E) we take the Laplace transform and make the sub- 

stitution ! 

6 CNT~-MT~) 5 

ia(NT,-MT2) 

s- __ 
(1. 28) 

which gives after some algebra and collecting constants omitted in (1.27) 
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G(E) = daGl(+l G2(F- a) 

iTi e 

iWi(z) 

G;(z) = - 

1te 

iWi (Z) 

(1. 291 

The separate Gi have poles at a = en i where Wi(en i) = (nt$ hr. It is 
, 

then straightforward to verify that G has poles at E = e 
Il.1 , 

+ cm 2 Il. m- 

1. 2.. . as it should. 

We did not learn anything very surprising in this calculation. The 

point of it was the following. In the one dimensional case all classical 

orbits are periodic and it is not surprising that one can find the energy 

levels by concentrating on the periodic orbits. The separable two dimen- 

sional system is generally multiply periodic and classical periodic orbits 

are the exception rather t&h the rule. Nevertheless, we can get the 

energy levels by concentrating on the periodic orbits. 

Our previous discussion of weak coupling and trivial (time inde- 

pendent) orbits carries over to the present case in an obvious way. We 

wish to add only one remark. 

To get the correct energy levels one has to be sure to find all - 

relevant periodic orbits. Suppose we had noticed only the special orbits 

y = 0 with x oscillating with period an integer times Tl. One can con- 

vince himself that summing only over these orbita would have yielded en- 

ergy levels E = en 1+ 4 o 2 where aa before 4 
n. 1 

ia the WKB energy for 
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the x-system. These levels are, in fact, correct if tk coupling A is . 
2 

small. However, if X2 is large the contribution of these orbits is down 

by a factor of fijt (as discussed above) and are not the leading terms; 

hence they give the wrong energies. 

3. MANY DEGREES OF FREEDOM 

A. Preliminary Remarks 

As has been mentioned before, the difficulty in applying a WKB 

approach to a general system is one’ s lack of ability to make any pro- 

gress with the classical problem. There are only two types of multi- 

dimensional system: which are analytically tractable. One is a weakly 

coupled (harmonic oscillator) system and the other is a separable one. 

Both of these cases have already been discussed. Weakly coupled sys- 

tems will come zp again in Sec. 6. Fortunately there are model field 
I . 

theories which display new and interesting phenomena in a weak coupling 

regime. 

There is a conceptual tool that is useful in thinking about the in- 

formation that a properly treated WKB requires. The generalization of’ 

the one mode case to systems with N mode6 ie not straightforward be- 

cause of the topological complexity of the allowed types of classical mo- 

tions. In a one dimensional example, the total energy is a time invariant 

of the system, which restricta the kinds of paths the aystem evolveg 
1 

8long; i.e., they muat be at least consisteni with energy conaervrtion. 

The energy eventually geta quantired with the WKB method. 

. 
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For a separable system with N degrees of freedom, the N in- 

variants fix an N dimensional manifold in a ZN dimensional phase 

space. This manifold is called an invariant torus in the literature and 

2 
is topologically a complex object. Quantization conditions emerge be - 

cause the torus is multiply connected. Each time one encircles one of 

the holes in the torus, the phase of the wave function is constrained to 

change by a multiple of 2~. In general one should expect as many quant- 

um numbers as there are degrees of freedom. Weak coupling systems are 

equivalent to sets of coupled harmonic oscillators. They are separable by 

,: 

transforming to normal co-ordinates. 

In the non-separable case. it has been shown that invariant tori 

also exist, and one can in principle give a constructive algorithm for ap- 

proximating it. 
2.5 

Unfortunately, knowledge of the invariant torus is 

equivalent to solving for all the classicai motions of the system by quadra- 

tures, which for most systems is a hopelebs task in practice, and for 

field theory hopeless in principle. There is however, one case where 

such complete information is available and because of its importance, 

it bears mentioning. There are classes of non-linear wave equations 

that support solitary wave solutions. that have the property of emerging 

unchanged in uhapc and velocity from a complete non-linear scattering 

of two of them. There solutions are called solitons in the literature6 

and if a wave equation admits them then there is available an infinite 

number of conserved integrals of the motion. In such a case the invariant 

torus is completely known’and a complete semi-classical calculation 
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becomes possible. It remains to be seen whether interesting quantum 

field theories support soliton modes. 

In what follows we continue to follow a Lagrangian-Functional 

Integral approach. These methods, which form a natural bridge to 

field theory were pioneered by Qtzwiller. As in the previous section, 

the method is based on summing over periodic orbits of the classical 

system. For one, degree of freedcm there is generally a single periodic 

orbit for a given energy, where one does not count multiple traverses of 

a single orbit as a new orbit. In a system with many degrees of freedom 

there will generally be a discrete infinity of periodic orbits for each 

given energy E. With the methods we are using. one has to know all of 

these orbits to properly generalize WKB. For separable systems the or- 

bits are known and the summ ation can be carried out by the methods of 

Sec. 2. In the general case one will have to resort to approximations. 

B. The Functional Integral 

For a system with N co-ordinates xi i = 1. 2.. . N. we define 

the Feynman propagation kernel by the functional integral 

Kk”. x,’ : T) = Ia% eis 

S q $+- V(~(T))] dr 

. 
where the integration is over all paths satisfying 

x_(O) =x’ x_(T) ~=&I . 

The semi-classical approximation to K is known to be 

Note: we use f to denote the space piece of a vector. 

t 

(2.2: 



Kfx’ , x”: T) : CN - u I 
a2sc,cg , 23 x :T) 

4 
\S k’,x”;T) 

CP - 

ax’ ax” 
e 

- - 

cN 
= (azjN. 

(2.3) 

This result. which was obtained by Pauli’ from an approximate integration 

t 
8 

of he Schrsdinger equation and by Morette from a completeness argument, 

can be gotten from a stationary phase approximation to the functional in- 

tegral. We sketch the essential ingredients of the computation which is 

algebraically complex. 

After shifting by the classical solution we get 

K = exp[ i Scf (t) ] &X(T) exp[ i z/h] 

where the functional integral is now taken over paths such that 

x_(O) = 0 and x (tl = 0 and 
- 

2 

:‘- j dT[$s; - $xi xj aax;$z” 1. 

0 1 J 

(2.4) 

The calculation proceeds in essentially the same way as in Sec. 2. Define 

a shift and its inverse by 

(2-S) 

yi(T) = xi(~) - j-hi, N;; xj du 

‘0 

xi (T) = Nj (7) j d 9 k du 

0 Jk 

where N satisfies: 

Nij = Vyk Nkj . 

After substituting into (2. 3) and some algebra 

K(xiPJI, xi&)) = exp(i Scl (t)) Iayierp&JTdu j ; 6-1)) 

0 

tm 

X -f duj exp(i aj Njii~)jNij );k(u) du)gGl 
-al 0 J 

(2.6) 

(2.7) 

(2.8) 

(2. 9) 



where the path space is fixed by y(O) = 0 and y(t) arbitrary. The Q 

integration is just the incorporation of constraints via a Lagrange multi- 

plier, as in the one mode case. 

The functional integral is now trivial and we are left with 

+cm 

K(x(Ol. x(t)1 = exp(i Scf(t)) I da. 1 
det N(t) ) 

, det N(O) I 
-0) 

t 

exP(-+j- o.N. (t) N;;(u) N;;(u) Nml(t) mm du). 
oJJk 1 1 

(2.10) 

Performing the 0 integration gives the final form: 

K(x(O), x(t)) = expfi SclIt) ) IN(t)N(O) I-$ ) /N&J N;i’(u)du 1 -a (2 

Now. let xi = xi(T); 0 5 7 5 7 

Xi = +,.; < 0 . 

Then, using the Hamiltoh-Jacobi equations. one checks that 

aZScf G. xl 

riijl = - 
axi ax. 

J 

(2.12) 

(2.13) 

satisfies Eq. (2. 8). Choosing the particular solution i -x (0) = x,’ 

simplifies the final ialculation and noting that x_(T) = g’ one obtains (2.3). 

When Ia2S/ax& 1 mniahes between 0 and T, additional phases in 
-w 

Eq. (2.12) are needed. in direct analogy to those introduced by the turning 

point in one dimension. 1. 2 
The advantage of the functional integral deriva- 

tion lies in the physical interpretation of the correction terms generated 

by the determinant in K. Eq. (2.12). Aa one can see from Eq. (2.3) and 

Eq. (2.4). they represent the effect of small. quantum mechanical fiuctu- 

ations around the classical orbit. The functional approach also makes the 

transition to field theory quite natural. 
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C. Periodic Orbits 

Proceeding as before, are have 

tr e 
-iHT 

=,I dx, K(x_, x,; T) . 

The x, integration may be done by atarionary phase: the stationary phase 

point 1s determined by 

as 
52 

+as I Y p” - p’ r 0 _ 
agi,,=,,+ - - 

ww w 

(2.14) 

(2.15) 

As pointed out by Gutzwiller. 
1 

this stationary phase condition selects clas- 

oical periodic orbits. If we label the (discrete) set of orbits with period T 

:: 
by au integer n, then one has 

tr e 
-iHT c Y, orbita Do(T) e 

iSn(TI 

&ith period T 

(2.16) 

where S 
xl 

ir the action for the orbit in question and D, ia the product of 

the determinant in (2.3) and a determinant coming from the integration a- 

round the stationary phase point. 

In principle, we can multiply (2.16) by e 
iET 

and do the T integra- 

tion by stationary phase to obtain the semiclassical approximation to G(E). 

The problem is to find all the periodic orbits. 

When all the orbits are not available, a possible approximation to 

(2.16) is the following. Suppose that we have access to one family of such 

orbits. i. c., one orbit at some fixed energy E. and the set of orbits 

rwept out aa we vary the energy continuously away from Eo. The sum in 

(2.16) might then be approximated by summing over this one parameter 

family of orbits, including of course multiple traverses of the basic orbits. 
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The calculation can then be carried out exactly as in Sec. 2. The details 

are given by Cutzwiller. 
1 

To give an example, in the case of a stable 

classical orbit of period T of a particle in a two-dimensional potential 

well, G(E) computed this way is 

G(E) = * no 2.ib~ny exp(in W) 

where a~ is the stability angle. This in turn gives the quantization condi- 

tion 

W = (2mn + $ (2p+l)v) (2. II 

where m and p are non-negative integers. One finds, as expected that 

the bound states of the t-dimensional system are Iabelled by the two quaat- 

um numbers m and p. Since sin i au in F.q. (2.17) represents the ef- 

fect of small deviation8 around the orbit, one expects that the approximation 

(2. IS) is valid only if p is not too large. Of course, the approximation of 

keeping one family of orbita in (2.16) makea sense only if the coupling to the 

transverse degree of freedom (represented by the oscillator energies 

(pti)v) is weak. It is not clear whether or not such an approximation 

could be useful in field theory. 

D. Weak Coupling 

According to Sec. 2C. for weak coupling, we have the option of ex- 

panding around a trivia1 orbit ~(7) 5 IKE where I&, is a (local) minimum 

1 

of the potential V. The functional integral in (2.4) in then rimple to do 

and the energy leveler are 

E = Vbc,) +o$ ‘PO’ + ) aa (2.1 
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where [ P,] = [ Pl...PN] is any set of positive integers and the w are 
L1 

:he eigenfrequencies of the classical oscillator system defined by the action 

a’vb,) 

jkr[+$ - “xixj axm ax. 1 . (2.20) 

1 J 

E. Field Theory 

Letting the number of degrees of freedom become infinite, the re- 

sults of this section carry over directly to field theory. What do we mean 

by a periodic orbit in field theory? Consider a theory containing fields 

‘~~(2, t). [ Note that x, now labels space points: the cp i are the co- 

ordinates. ] A periodic orbit is clearly a solution c,o~~ to the classical 

field equations which has the property that 

qoc; (5. t •t Tt = & (5 tt . 

We will be particularly interested in particle-like solutions which have a 

finite (classical) energy relative to the vacuum. Such solutions must satisfy 

$$-CO ,:,(,,t, = cp:,, 
where piac is the vacuum expectation of the field in question and by z we 

mean equal up to a symmetry operation. In the simplest theories, qjac 

vanishes and (2.20) reduces to 

/g-J 
‘p&t) = 0 

(2.22) 

In field. theory, a trivial orbit is a time independent solution cp O(z) 

to the classical field equations. To hare a particle interpretation, rp 0 (z) 

should be a nonconstant field satisfying the appropriate one of (2.22) or 

(2.23). The weak coupling approximation in field theory leads to formulas like 



-24- 

(2.18) where the number of oscillators is infinite. 

So far, we have been ignoring translational invariance and infinite 

volume questions which must be faced up to if one is to seriously talk 

about applying semi-classical methods in field theory. These arc the 

topics which will concern us in the next two sections. 

In Sec. 6 we will give a more systematic account of the weak coup- 

ling approximation in field theory. 

4. CENTER OF MASS MOTION 

Continuing to work towards our goal of finding particle like solu- 

tions in field theories: we note that a conceptional problem arises. Any 

classical particle-like solution to a field theory will be both localized in 

space and have a definite momentum. This is impossible in’quantum 

mechanics. Another indication that our formal developments have so far 

been incomplete is that in cases of real interest the spectrum of H is 

continuous due ‘to translational invariance. In this section we will fill in 

these holes in our formalism. 

The same basic problems appear in the simpler case of non- 

relativistic systems. Let us first consider the non-relativistic free 

particle. Working in one space dimension for simplicity. we diacretize 

the energy levels by making space finite and imposing periodic boundry 
1 

conditions. Classically, this may be done by imagining that the (one 
_- 

space dimensional) world ia a large closed loop with l perimeter of 

length L. The motion of a free particle with velocity v is then periodic 
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with period 

T : 
=- (3.1) 

i.e. the time it takes to go once around the loop. The action for a free 

Mv’T 
2 

particle of mass M is 2 = EiL~. Inserting this into the general 

formula* of Sec.’ 2 giver energy levels 

P2 

En = + P/F (3.2) 

n = 0, 1,2.. . . . 

which is of course the correct answer for a particle in a periodic box. 

We can eee already how our conceptional ilifficulties will be re- 
,: 

solved. The energy levels ia Eq. (3.2) correspond to the quantisation 

of complete orbits. For there energy eigenrtates only the complete or- 

bithaa a meaning: the position of the particle along the orbit is meaning- 

less quantum-mechanically. Also one sees that as L - m, Eq. (3.2) 

produces the correct continuous spectrum for H. 

For multiparticle non-relativistic systems everything generalizes 

as expected. Because of Calilean invariance, the center of mass motion 

separates from the internal motion. Thus we have a separable system of 

the type treated in Sec. 2. The energy levels are the sums of internal 

energy levels computed by ignoring the canter of mass motion plus the 

klnetic energy of the center of mass as given by Eq. (3.2). 

Moving on now to relativistic problems let ua first consider the 

frees particle. With the earne periodic boundary conditions, the action 

for a relativistic particle with mass M ia 

s = ‘-M (1 -: v2+ T (3.3) 
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where v is the velocity measured in units of the velocity of light. For 

future reference, we wish now to compute the trace of the free propaga- 

tor, G,(E). Eq. (3. I) gives the period for one trip aromd the loop; for 

n trips the period is nL/v. Summing over these muitiple passes lo get 

Tr e 
-iHT 

we have 

CX tr emiHT 

J--;- 

q Lpj a-;2)3i2]fe-1M l “nT (3.4) 

nL 
n 

v =- 
n T 

where the factor in front of the exponential is just the fru<r. 

our general semi-classical formula (1.12). Transforming to G(E), we 

obtain 

GO(E) gq JdT L[~--&&p i TCE-h4&?) (3.5) 

=[ 
i d W,(E) 

dE 
(3.6) 

where we have done the integral in (3.5) by stationary phase and 

W,,(E) = L(E’-M2+ . 

Following our general formalism, we see that Eq. 

unit residue at 

En = M t Pn , Pn =F 
J’ 

rI = 0, 1, 2,. . . 

a‘ expected. 

(3.7) 

(3.6) has poles of 

, (3.8) 

! 

Armed with the formulaa of the pnceeding paragraph we can 

now tackle the general problem of a composite relativistic system. Sup- 
..;,.;. 

pose that we have found a classical particle-like solution which is at rest. 
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[n a field theory, an example would be a solution cp (t,x) to the classical 

field equations which is bounded in space, i. e. p Ct.?)-0 as Iz\-m. 

and periodic in time, i. e. rp [t t r, 55, = p (t,z). Space and time trans- 

lational invariance will allow us ‘to find new solutions by taking x -x + a 
. w u 

and t- t t b. Also Lorents invariance allows us to boost the solution to 

obtain a particle like object moving with any velocity (v 1 < 1. What hap- 

pens when we quantize the system? 

For simplicity we again consider one space dimension and impose 

periodic boundary conditions with length L. The periods of translational 

motion for a moving object are then T = nL/v where n is an integer. 

Because of time dilation the periods of internal motion for the particle 

moving with velocity v are T = 
mr 

J==- 
2 

where m is an integer and T 

-v 

which has the same meaning as before, is the period in the rest frame. 

Following closely the methods used to discuss separable systems in Sec. 2, 

we note that the truly periodic motions satisfy 

‘=@E$ (3.9) 

m.n=O.1,2 . . . . . . co. 

We assume that classical solutions are available for a range of values of 

r and since v is an arbitrary number less than one, it is clear that for 

each T there is a two fold discrete infinity of orbits satisfying Eq. (3. 9). 

Now let the action in the rest frame be S i. e. 

S(T) q J’&’ W 1 v=. 

0 

(3. IO) 

and vn = nL/T as before so that (3.9) becomes 
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m?= (3.11; 

Then the sum over all periodic orbits which satisfy (3. 9) can be shorn 

to be 

JT tr emiHT= m?,.Sdr L1~~21tlmAiWlt (3.12) 

n 

imSi (7) 

Xe 6 (m7 - 
t-- 

- v; T) 

where A, (5) is a determinant independent of m and. n Andy the index i runs 
I 

over the set of all distinct periodic orbits which have a period T in the 

rest frame. The explanation of the factors in (3.12) is as follows. The 

delta function clearly enforces (3. II). Since the action is a Lorentz invar- 

iant the total actionfor motion through m internal periods will be 

mS(r) in any frame: hence this quantity appears in the exponent. The 

remaining factors come from the factor D, in (2.16). Noting that 

-dS/dr is the c!assical mass one sees that apart from the LPrents invar- 

iant ImA I$, 

* 

these factors are the same as in (3.5). This is what one 

expects: we leave the detailed verification of (3.12) to the reader. 

Now inserting 

6(mr -CT) =&, dM exp[ iM(mr l-v* T)] p 

we see that doing the f integration by stationary phase will lead to 

dS 
MD-G. 

Hence (3.12) can be written as 

(3.13) 

(3.141 

1 

(3.15: 



where 
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C(M) = igi /dfl mAi(r)lf 
, 

exp[ i m($(T) -MT) I . 

The quonrrty e. is, of course, Just the thmg which we won!d have corn 

pu-.ed if we had ignored trans&ti; na. JC. o.:i...:e and had worked with a 

set of periodic solutions at rest and orbitrerilv localized in space. Note 

ttri 6 does not depend on the length of space L. We may assume tiat 

C ‘brs po!es, i.e. 

k = :,Z..... (3.17) 

vbich corremponde to the mass spectrum of the theory., J?inally, com- 

paring with (3.5) and (3.6) one easily sees that 

.- 
G(E) = k, Go&% El G&f) d&f 

abere Go is given by (3.6) and we have explicitly indicated that it de- 

pends on hf. Tbe M igegration picks up the poles of (3.17) and C(E) 

consequently has poles at 

E= 
F- 

:+<, k=l,2 . . . . Pj=Fj.j=l,2 . . . . 

vbich is the desired result. 

Note that the energy momentum relation did not have to be put 

in by hand, but appeared kinematically as a consequence of the delta 

function in (3.12). Evidently, we have solved the problem of center of 

-.a motion in the general, relativistic case. Our remark. about the 

complete lack of localiration of a particle in a deftite energy state ap- 

(3.16) 

(3.19) 

. 

ply as before. 

We have worked in one rpacial dimension, but it should be obvious 
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that the result generalizes trivially to three space dimensions. 

In the following paper Ppe will look for time-independent solutions 

to field theories which hove a behavior st spatial infinity, consister?t 

with a particle interpret&an. Iu partic’ular they wi!l have a fitite plas- 

sical energy which we interpret as a first approximation to the mase’ of 

a quantum mechanical state. Theme time independent solutions are like 

the tzi-<ial o:tCts discussed in connect2x with weak cor;piiq approx:ma- 

tion. The trivia! internal motion of these solutions is periodic for any 

period T. Furthermore they caa be boosted to obtaia solutions which 

move. Taking the weak coupling approximation to the generaS results of 

Eq- (3.19) tells that if the energy of the time independent rolution is M, 

then when translational invariance is tiken into account the energies will 

a--i--T be the expected M t P 

Recall that in weak coupling the energy is the classical energy plus 

the energy of zero point orcillatioas around the trivial (time independent) 

orbit. For a tr;+nslation8IIy invariant system there arc always sero fre- 

quency oscillation0 corraspotidiag to a tr8nslation of the spatial origin. 

These oscillations ~ 8re to be interpreted as small motions of the 

center of mass. According to the panerd results of this section, ruei- 

oscillation0 can be ignOre&ihen colnputing the ma,*. Their role is to 

give the proper maso energy rel8tion when trmsl8tiolul invrriance is I 

properly taken into accouat. 
_ 
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5. INFINITE VOLUME SYSTEMS AND STATISTICS 

By analogy with statistical mechanics we expect that in field theory 

-iHT 
tr e will be of the form exp(-i t F(T)n) where n is the volume of 

space and F is a real time analog of the free energy per unit volume. If 

we expand the exponential, it is evident that G(E) will contain terms pro- 

portional to any power of Z2. This might appear to be a serious difficulty 

in the limit of infinite volume. It is, however, really just a formal prob- 

lem which when understood will not cause trouble in practice. In the pro- 

cess of resolving this formal difficulty, we will 8ee how particle statistics 

and scattering states fall out of our general formalism. 

To get a feeling for boy the volume independence,of G goes, let 

us. consider a very simple example. Consider a particle in one dimen- 

sion with Lagrangian L = i 2/ 2 - V br) where. V is an attractive potential 

of finite range. As in the previous section, we make space finite and of 

l ; 
length L by imposing periddic boundary conditions. There are now two 

kinds of periodic orbits which contribute to tr e 
-iHT 

. First, there are 

negative energy bound orbits which exist only in the region where V is 

non-zero. Secondly, there are positive energy orbits (scattering orbits) 

in which the particle cover.9 the entire periodic space. The contribution 

of the bound orbita ia obviously independent of the length of space L : 

they clearly give the bound states poles of G in the usual way. 

Turning now to the scattering orbita, we note that on passing 

through the potential a particle with energy E rufferm a time delay A(E) 

of 
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A(E) = -&&I- J& dx (4. i) . 

where by “time delay” we mean the additional time required to pass 

through the potential over what a free particle would take to traveroc 

the same distance. Since a free particle with energy E has velocity 

m, the period@ of the periodic orbits are 

T(E) = &tA(E) . 

The quantization COnditiOn iS 

W(E) = S(T(E)) + ET(E) = 2vn 

(4.2) 

(4.3) 

n = 0, 1.2,. - - 

Now for large L we are interested only in the density of scattering 

dn 
states E - Treating’ n as a continuous variable in Eq. (4.3) and dif- 

ferentiating yields9 

(4.4) 

where dn,/dE is the L-dependent free particle density of statea and 

A (E) contains the effect of the potential. The la&e= term is L inde- 

pendent as it should be.~ Evidently G(E) is given by 

G(E) = t & [ +&- dE’ t Go(E) (4.5) 

where Ek are tbe energier of bound states and Go is the free particle 

term and i# proportional to L. From Eq. (4.5) we learn twu things. 

. 
First that, in tbie case. the term8 containing interesting phyeica 8re 

1 

independent of L md clecondly that our form&am provider UI with 8ome 

information about the Battering process, namely the density of state*- 
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We could make the above problem translationally invariant by 

imagining that we really have two particle6 with the potential depending 

on their separation. In this case the unlutereatiog term GO will be 

proportional to L2. According to wha? was az:d kx stc. 4. th:. :>ound 

l tatea will acquire a kinetic energy and their contribution to C will go 

like L. The #ame thing will happen to the term coutalning A (E) in 

Eq. (4.5). Thus we might gueea that !or t:ansiationaliy 1nvariar.t sys- 

tems the intereciting parts of G(E) will contain a single power of the 

volume. Thil, as we ohall eee. is indeed what happtna. 

:I 

Rather than proceeding directly to field theory, Let us consider a 

ndn-rtlativittic tytttm which has essentially the same volume-of-space 

propertiet. We dtfiie a non-relativistic system with an indefinite number 

of particler by turnming tr e 
-iHT 

over a one particle ipace. a two part- 

icle space. a three particle *pace and LIO on. This, of course. is just 

what one dots to obtain the grand canonical ensemble in statistical mech- 

miCS. Indeed in what follows we will simply be describing the real time 

veraion of the clu#ter expansion in statilticol mechanics. 

The one particle term thus obtained for G(E) ia proportional to 

the volume ‘fl and ir just that of a free particle. Tbt trao particle term 

containt a piece proportional to Q2 corresponding to two fret puticlts 

and a nontrivial term proportional to n which containa the bound etatee 

and the density of l catttring states at in EZq. (4.5). The three particle 

term has a R 
3 . 

piece equal to the free C for three particles and a ~2’ 

ttrm coming from proceaata where tare particles interact while the third 
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propagater freely. la particular, tbicl S2’ term contains the free prop- 

agation of particle number 3. Bay, and a bound states of numbera 1 and 2. 

In addition there will be a term proportional to R which, unlike the C3 

;A c2 terms , yields ne-w information. It will contaiq the three particle 

bound stats6 and information about the three body scattering process. 
9 

Going OP to four particles, there will clearly be a &2 
4 

term where oli four 

propagate free, a R 
3 

term where one pair interacts, and two Linda of n 
2 

terma where three particles interact while the fourth propagates freely or 

where two separate pairs interact. Finally, the term proportional to Q 

will again be nontrivial giving four particle bound states and rcattering 

information. 

Evideatly, tba terma ia G going like CID for II > I are not intsr- 

esting since they aimply repeat information already known from tbt term 

proportional to R. Thus, if we write tr e 
-iHT= e-iF(T)S7 

for our model 

many particle system, the interceting pieces of G would be gotten by 

Laplace transforming -i F(T) V rather than the exponential. That log 

tr e 
-iHT 

will actually be proportional to Cl in tbc model is direct ~0x1~ 

l equcnce of the cluster expansion in l tati#tical mechaaic#. Th.5 reader 

who is not familiar with tbie line of argument may find it helpful to con- 

vince himself that if there were PO interactiona in the model then F(T) 

would be proportional to e 
iSo Cr) 

not the free action S 
0 

itself. In thin ! - 

came, only the one particle term would have a piece going like $2. 

Almoot by definition, field theory is a many body problem where 

the number of particle@ ir not fixed. The proper thing to do in field theory 
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is the same as in the above model; work with log tr e 
-iHT 

. Let us see 

how this would work in the sort of applications which we have in mind. 

For the moment, we will ignore some points related to -se and Rrmi 

statistics. They will be treated later. Suppose that are have found some 

particle like solutions to a classical field theory, i. e., fields satisfying 

‘p,f(t t 7, z) = ‘pcl (t, z) for some period r and ‘pcl (t.5) - 0 as 1~1-0~. 

In the previous section, we saw how such a solution becomes a quantized 

propagating particle when the center of mass motion is taken into account. 

The contribution of such a state to tr e 
-iHT 

or G(E) is proportional to 

R. Now since our particle like solutions are localized in space we can find 

approximate solutions reprea’enting two well separated particles, for ex- 

ample let the field be. ‘~,~(t.$ t ‘~,f(t,~ t a) where 151 is large. Put- 

ting the system in a periodic box we could look for the exact periodic or- 

bits which take into account the interaction of the two particles. For large 

!? we would then get two terms in G(E), one going like Q2 and the other 

As before, the G 
2 

like 0. term will just count the states of two free 

particles and is not of interest. The term proportional to CJ will yield 

information about the scattering of two particle& Any “bound” two part- 

icle orbits would be added to our original 1% of single particle solutions. 

Similarly, we could in principle construct solutions which display the 

scattering 
10 

of three particles, four particles and EIO on. Each of these 

is a stationary phase point in the functional integral for tr e 
-iHT 

and 

in principle must be kept. The sum over all tbeae claaaical orbita wiH be 

of the form exp(-iF(T)G) where -iF(T) G contains two things. First it 
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is the sum over propagating particle-like solutions. Secondly, there will 

be a residual piece from the scattering orbits. 
IO 

Since it is unlikely 

that these scattering orbits will be available in cases of interest we can 

concentrate on the particle-like solutions. As far as they are concerned. 

we are back where we started. Transforming -iF(T)C to get the inter- 

esting part of G is just the same thing as simply examining the localized 

one particle solutions and forgetting the whole business of higher powers R. 

This is indeed what one is supposed to do. The point of all this has only been 

to assure ourselves that this physically obvious ansats is formally correct. 

We conclude this section with a brief discussion of how Bose and 

Fermi statistics work, in the semi-classical approximation. In particular. 

we will indicate how particle-like solutions to classical field theory end up, 

when quantized, with the proper statistics. We will treat only Bose statis- 

tics explicitly, the generalization to Fermi statistics is straightforward. 
;I 

Consider a non-relativistic system of two identical bosoas. When comput- 

ing tr e 
-iHT 

we have to include an exchange term, i. e., 

tr e -iHT = I,(< x1x2 ) esiHT 1x1x2> t c x2x1 ( emiHTlxlx2>) ydx2. H-6) 

The first term in Eq. (4.6) is the usual one which comes from periodic 

orbits in the semi-classical approximation. The same stationary phama 

approximation applied to the exchange term in Eq. (4.6) will pick out ex- 

change orbits where if the coordinate and momentum of particle 1 at time , 

Lero are =r Bl 
and those of particle 2 are x2, p2 then after time T 

the coordinate and momenta of particle 1 are x 
2’ pt 

and for particle 2 

,: i 
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X1’ PI’ The presence of these exchange orbits will give rise to a new 

term in G(E) proportional to one power of the volume of space Cl. This 

correction to the density of states ie the signature of boroas in our for- 

malism. We leave to the reader the mstructive exercise of verifying 

that the classical exchange orbits do indeed gi-.-e the correct change in G. 

Suppose now that we have a particle iike solution to field theory. 

For simplicity we will assume that the solutior. is time independent in its 

rest frame, i.e., of = cpgfx) where ~0 .- 0 aa 1x1 - m. and take space 

to be one dimensional. Boosting, gives the moving solutions v. (y (xtvt)) 

where y 
-1 

= 1-v2. J 

:; 

An approxinn te two particle solution is given by 

cp = qoDo(y~tvt)) + (po(yq b+a+v’t)) (4.7) 

where v’ is in general a different velocity and Ial is large. For a 

periodic space of length L, this solution is periodic with period T if 

T = nL/v = mL/v’ where m and n are integers. In the special case 

where v = v’ and a = L/t there are further periodic orbits with period 

(a t l/2) L/v for any integer n. For these orbits the two terms on the 

right of Eq. (4.7) go into each other. They are the analog of the exchange 

orbits in the above example and we will call them by that name. The dif- 

ference here is that in frsld theory tbe exchange orbits do not have to be 

added by hand but already exist among the periodic solutions of the clas- 

aical problem. For the exchange orbits the value of a is fixed. There- 

fore their contribution to G(E) will contain a single power of L (l7 in 

the three dimensional case). This change in the density of states is. as noted 
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above, a characteristic of bosons. We leave the details of the calculation 

as well a(I the generalizations to N-particle exchanges, fermioaa, etc. to 

the reader. 

6. USING AN EFFECTIVE ACTION -- 

The semi-classical method discussed in the previous sections re- 

quires an actual knowledge of the dynamics, i.e. orbirs, of the classical 

system. In this section we turn to a different but not unrelated method 

which will be seen to be a systematic scheme for improving on the weak 

coupling approximationa diecuaaed in Sec. 2. 

Firat we will obtain a method for finding the ground atata of a 

quantum ~myatem. In our later applicationa to field theory, we will not 

be interested in the ground atate (vacuum) but rather excited at&es 

(particles). How the method aorkm for excited states will be discussed 

later. For the ground state we will be discussing a method which in well 

known in the literature. 
11.12 

Let u. start with the &nplc l yatem with one degree of freedom 

defined by the Lagrangian 

t.$v,, . (5.1) 

We l aeume that V ha* a unique minimum 8t n = x0. The cla8slc81 

“ground state” of thir l yatam A# #imply the particle sitting atill at the ’ 

point x = ~~‘0; ita energy is Vfx& Because of nero point motion, the r. 

quantum mechanical ground atate energy muat be higher. 

Rather than work with tr c 
-iHT 

aa we did in previous aaction*. 
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let us set T = -ip and consider the limit of large p which gives 

tr e-PI-I& e+=0 

where E 0 is the ground state energy. We will compute tr e -BH via 

the functional integral in the following way. Define 

L = LO+ LI - Vb,) 

where 

.k2- m2 
Lo=5 z (x - xoj2 

(5. 2) 

(5.3) 

2 
n-l = V” (x0) 

LI = - ng vCn’ (x0) (x-xo)n/ l-l: 

Then we have 

-@He pv(xO),-~x(T) =- 0 % + ?- f 
.2 2 

tre -e 

-PW(xo) + y) 

=e t . . . 

where we have explicitly done the n = 0 term which is just the weak 

coupling result. The higher order terms can be done by standard 

means and yield the perturbation expansion for tr e -PH in Feynman 

diagram form. As is well known. the expansion in Eq. (5.4) contains 

both connected and disconnected diagrams. The series can be partially 

summed to give the exponential of the sum of connected diagrams, so we 

have 

tr .+-I, exp(+[ V(x,) + y + A E] 1 (5.5) 

where +A E is the mm of all connected diagrams with two or more 

closed loops. 
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some examples of these diagrams are shown in Fig. ( 3). The 

single diagram with one closed loop gives the m/2 term in (5. 5). It 

is well known from statistical mechanics that in the limit of large f3. 

A E is independent of p and the terms in its expansion are simply ord- . 

inary Feynman diagrams in Wick rotated form. The details of the dia- 

grams, e.g. combination factors, can be straightforwardly deduced from 

functional integral (5.4). 

The diegratis in Fig. (3a) and Fig. (3b)’ are one particle re- 

ducible. i.e. they contain a single particle line which, if cut. would 

make the diagram disconnected. The one particle reducible diagrams can 

be summed in the fol\owing way. 

The sum of all tadpole diagrams shown in Fig. 4 where a single 

line disappears is equal to the difference between the expectation value 

<x> of the operafor x in the ground state and its classical value x0, i. e. 

“complete tadpole” = Cx> - x0. If we were to expand the Lagrangian a- 

round <x> rather than x o, obtaining in the process a new mass rnz(<x>)= 

V”(<x>) and new n-point vertices V (*I 
(<x> ), then there would be no 

tadpoles or, equivalentlp, no one particle reducible diagrams in the per-, 

turbation series for A E. Of course. we do not know the a priori value 

of <x>. Nevertheless, let us define a function r(y) by 

-W(Y) q -PW(y) ty -eC cy, (5.6) 

where c(y) . 
t 

1s t h e cum of all connected, one particle irreducible dia- - 

grame computed with the Feynman rule8 di;i;ed from (5.4) using the 
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interaction 4 = q it Vfn’ ly)(x-y)* and the mar. m’(y) = V”(y) in the 

free Lagrangian. It ie obvioue that r&x>) = Ef,, the ground state ener- 

gy. To compute <r> we note that I” fy) = dy dr(y) ia the wm of all one 

particle irroduciblc tadpole diagrams, including a *‘bare” tadpole V’ (y). 

Now it in obvious that the complete tadpole vanisher if and only if the 

one particle irreducible tadpole vaaioheo. Iienco the vanirhing of the 

complete tadpole ir equivalent to the vanimbing of r’ and we can there- 

fore find <li> by looking for a eero of F. In fact 

EO = minyrfy) (5.7) 
. :; 

which i# the quantum aaalog’of loobing for the mialznm of V. 

The extearion to a rytiem with n degreee of freedam ir rtmight- 

forward: r l Smply becoanea a function of n variablea yl.. . yn. In 

i fields theory T’ IO a ftmetional of the field (p cmui&red a8 a hrnction 

of #pace co-ordhuter st a fixrd time. 

Because r ir difficult to compote. E+ (5.7) ie only ureful for 

weak Coupling. In thie care, it im e**y to l ee the equivalence of the prc- 

rent method ad the semi-cla#rical method. For the latter, the weak 

:’ coupling approximation amounts to expanding the functional integral a- 

round the trivial orbit I g x0. Previouelj we kept only the quadratic 

tcrme in thh expansion but the higher order termr cdd be campnted 

perturbetively •~ me done here. In feet, the rem& would l imply be an 

I dytic contiion to real time of the diagram for A E. One cooid 

: l tm the one particle reducible diagrama by introducing a real time r 

ad it ir l aq to convince oneself that, to any frPte order in 4, the G(E) 
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computed in this manner would have a pole at the energy given by (5.7). 

What if we tried the came trick but chose to expand around a 

trivial orbit which doer not correspond to the classical ground etate. 

For example, one could try expanding around the higher minimum of 

the potential shown in Fig. (2). 

In Appendix (B) we argue thet thh procedure will give good rc- 

aulte for an excited etate provided that tke coupling around the point in 

question ia reasonably weak and that the perturbation exl=naion for I 

ie truncated at a low order. It will not give a convergent eapmeion for 

the energy. but this ia not likely to be of importance in practice. 

Actually for &e 5eld *oretic problems which we kave in mind. 

there are rigormu methods for usiql r to tid excited fpartlele) otatem. 

Gme bar to **rags thing0 ia much l v tlmt the vmxmm d8te annOt *- 

ter the problem. One can do tkim in two waya. 

1) In some field tkeorie~ (aoe the following paper) there 

are field con5gurdhnu rhome topology is inequivalent 

to the 5eld configurations rhiok outer into the vacuum 

w8ve fonctioa. The pert of 5mctional integral for tr e 
-BH 

which runa over these topologicolly &brmrmaI field loafimone 

cmtrlbotw only to welted @aticle) otatea. It fol.low thrt 

v 
one can 5nd pmticla otatw by tainimbiag r over Be&. 

withckbno~tagelon. -- 

2) Another method im to ituimt th8t the state thet one ie 

looking for have ma-vacuum quantom numbers or l non- 
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zero three momentti. This may be accomplished by 

using a Lagrange multiplier p and computing tr e 
-P(H+pP) 

where Q is. say, baryon number or charge. Considering 

HtpQ as an effective Hamiltonian, tr e 
-B(H+PQ) 

can be 

computed by a path integral and one proceeds exactly as 

before. Terms in the effective r which are independent 

of )-’ have to be dropped to avoid the vacuum. In the end 

p is adjusted to get the correct quantum numbers. There is 

a simple example of this procedure in the following paper. 

In situations where we can use Eq. (5.9) or some variant thereof 

to find particle states there is an obvious, but perhaps very useful approx- 

imation scheme available. That is to compute r to some finite order and 

look for a minimum. In field theory this turns out to yield a self-consis- 

tent field, Hartree type of approximation. In the following paper we show 

how this works in a specific example. 

The identification of the weak coupling semi-classical method with 

the properties of the effective action l? serves another very useful func- 

tion in field theory. It is a good guide to how to renormalize when diver- 

gences appear. 

Finally, the diagramatic methods discussed here can be used to 

compute quantum corrections to the general semi-classical method where 

we expand around periodic orbits. This is discussed in Appendix C. - 
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Using the effective action to improve on weak coupling approxirna- 

tions has one drawback. The role played by translational invariance, 

statistics and field-theoretic infinite volume difficulties is not transpar- 

ent. A way to handle these problems, which lie at the heart of any particle 

interpretation of a c-number field. was discussed in Sections 4 and 5. By 

remembering how the effective action relate6 to the weak coupling appror- 

imation to WKB. one can reinterpret the results of Sections 4 and 5 in the 

context of an effective action. Order by order in perturbation theory this 

is a relatively straightforward problem. In paper II we will see how this 

goes in the lowest non-trivial order. 

One of the authora (B. H. ) would like to express his appreciation 

to Dr. Carl Kaysen for the hospitality extended to him by the Institute for 

Advanced Study. 
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APPENDIX A 

The general solution of Eq. Q. 9) ia 

N(T) = b j-2;; dp + 0) kc, (A. 1) 

where o end $ are the two ititegration constants. One can then check 

that 

(A 2) 

for any a and 0, such that N’(u) doer not vanirh for 0 5 u 5 T. One 

then u*e, the formulae 

1 
:I 

8x@) 8xm = - BEcl 8x(O) fJEcfaxm) B*W;# 

a Ef, 
with 

wcf = r’@;- dx = Scf+ EcfT ’ 

and 

B2W 1 

8Ecf 
ax&! =icD 

to l r2rive at Ep. (I. 12). The phase emiT comee fraan the fact that 

B scf 

WO) ax(T) 
vaniehee each time one goee through a turning point: each 

.I 

turning point thw introducea the pheee a 
‘2 

. 
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APPENDIX B 

Coneider the two-minimum potential ahown in Fig. (2 ). Sup- 

pose that each.dip in V could, ignoring the other dip, eupport a bound 

state of energy well below the barrier separating the two. From elemen- 

tary coneideratione the coupling of theee two dater will then be of order 

of the exponential of -JF E dx integrated across the barrier. For 

reasonable barrier thiclneee thie till be very emall eo that the two etates 

are almost decoupled. Therefore the low lying energy levele are almoet 

entirely determined by the individual rhapee of the two dipe. For weak 

coupling we replace the welle by parabola1 and obtain harmonic oecillator 

levele. Lew order. of perturbation theory would correct for deviations c . 

from a parabolic &ape. It follore that a few orders of pF?rbation theory 

would give good reeulte. Similarly, minimking r computed to a few or- 

ders could be a good approximation. This sort of perturbation expansion 

cannot, however, be carried to far eince it ignores the coupling between 

the etatee. For a calculation baeed on minimizing r, one can eee thie 

ae follows. In lowest order r ie juet V and hae twu well-separated 

minima. On the other hand. the exact r(y) can be l hewn to be the min- 

imum of < JI 1 HII& > over normalised wave function8 ouch that <J1 1x1$ > = 

Y- We can l pproximetely compute r by eetting JI = toe 8 (I, + ein g JI, 

where $, and 9, are the lowest l tetee ln wellr one and two reepect- 1 

ively. If <$ ilHI#l> = a, and CJ, Ixw>=xi for i=l.Z then 
i .i- 

(Cnce <JI ,lHl+ 2> - 0 and <JI ,1x1+ $ - 0) l-(y) = coe20(y).l + 

l in*g (u)c 2 when g(y) ie determined by y = coa’efy) xl t l in*g(y) x2. 
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Now for weak coupling el= V(x,) and e2= V(x,). from which one sees 

that the true I? does not have the hump between x1 and x2, but rather 

connects the minima with a straight line. This effect which does not 

occur to low order in perturbation theory need not keep one from using 

r to obtain a useful estimate of the energies. 
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APPENDIX C 

-iHT 
When we compute tr e by stationary phase, we expand the 

Lagrangian around the periodic classical orbit xcf (T). Separating the 

Lagrangian into terms which are quadratic in (x-xcl) and those which 

are cubic or higher defines a split into an L 
0 

and L 
I 

which is anal- 

ogous to that in Eq. (5.3). One could expand in powers of LI obtaining, 

in each order of (LI)n, functional integrals which can be computed by a 

simple extension of the methods of Sec. (3) and Appendix (A). This will 

lead to a Feynman diagramatic perturbation expansion which has the same 

topological and combinational properties as that discuoaed in Sec. 6. For 

example, the set of a!1 diagrama will mum to an exponential of the .sum of 

all connected diagrama and there will be both one particle reducible and 

irreducible diagrama. The one particle reducible diagrams can be summed 

as before. Let Y(T) be any periodic function. Define a functional F(y) wher 
. 

y is any periodic function, as F(y) = S(y) t (the sum of all connected 

one particle reducible diagrama obtained by expanding the functional in- 

tegral for tr e 
-iHT 

around the periodic path y(t) ). The same argu- 

ment as was used in Sec. 6 then implies that tr e -iHT 
=e 

ir(<x>) 
where 

the periodic function <X(T)> ia determined by br 
- = 0 *t Y(T) = <X(T)>. 
6Y(T) 

This result. while elegant, is very unlikely to be of any use. For strong 

coupling where one has to use the full semi-classical method, the real 

t 
problem is to find all the classical orbits which are stationary phase points 

in the functional integral. 
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FIGURE CAPTIONS 

Periods of the anharmonic oscillator as a function of E X, Fig. 1. 

the energy times the coupling constant. The higher curves 

are integral multiples of the bottom curve. 

Fig. 2. A potential with two minima leading to two classes of orbits 

in the weak coupling approximation. 

Some typical connected diagrams in the expansion of Eq. Fig. 3. 

(5.4). Diagrams a and b are one particle reducible while 

c and d are one particle reducible. 

Some tadpole diagrams. Fig. 4. 
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