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Abstract The possible violation of the conventional lower

Higgs mass stability bound by the discovered Higgs boson

has far reaching consequences within particle physics and

cosmology. We discuss the possibility that nonpolynomial

bare interactions seeded at some high-momentum scale can

considerably diminish the lower Higgs mass bound without

introducing a metastability in the Higgs effective potential.

For this, we classify various deformations of the usual quar-

tic bare potential regarding their impact on stable IR physics.

We perform the analysis in a large Nf expansion, addressing

the convergence of the obtained results by taking 1/Nf cor-

rections into account as well. In addition, we investigate the

renormalization group flow of the scalar potential on a non-

perturbative level. Within these approximations, we are able

to identify bare potentials that lead to Higgs masses below

stability mass bounds obtained from finite-order polynomial

bare interactions without introducing a metastability in the

effective potential.

1 Introduction

The Higgs boson was the long term missing piece for the

experimental confirmation of the standard model of particle

physics. It took almost 20 years from the commencement of

construction of the LHC until the Higgs discovery in 2012

[1,2]. The theoretical computation on mass bounds for the

Higgs has an even longer history dating back to the 1970’s.

From renormalization group arguments it was known that

the mass of the Higgs has to be in a finite infrared (IR) win-

dow for a given ultraviolet (UV) cutoff scale � of the stan-

dard model [3–27]. The current measurements of the standard

model parameters, most prominently the top mass but also

the value of the strong coupling constant or the masses of

the electroweak gauge bosons, indicate that the mass of the

Higgs violates the lower Higgs mass bound within the stan-
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dard model for large �. This fact would render the effective

Higgs potential metastable if it is assumed that the renormal-

ization group running (RG) of the standard model parameters

is only dominated by perturbatively renormalizable operators

[28–32].

The situation might change once degrees of freedom

beyond the standard model enter the RG flow of the Higgs

potential. These might stabilize the potential [33–35] or even

compound the stability issue [36]. Thus, Higgs mass bounds

can also be used to constrain parameters in different scenar-

ios beyond the standard model and have been computed in

various standard-model extensions [37–65].

In the spirit of effective field theories, the yet unknown

degrees of freedom beyond the standard model can be

parametrized by higher-dimensional operators in order to

perform model-independent analyses. These

higher-dimensional operators are generically generated by

the underlying structure of the standard model and can influ-

ence the RG running in various ways.

For instance, the impact of a bare λ3φ
6 coupling at the

cutoff scale can diminish the lower Higgs mass bound in

Higgs–Yukawa models mimicking the Higgs-fermion sector

of the standard model [66–68]. Incorporating also the influ-

ence of the gauge bosons on the RG running, it can be shown

that Higgs masses 1 GeV below the conventional stability

bound at the Planck scale are still compatible with stable

Higgs potentials [69]. A simple RG mechanism explains this

fact. While the impact of the RG irrelevant coupling λ3 on the

other couplings rapidly dies out according to Wilsons argu-

ments in the vicinity of the Gaußian fixed-point, this operator

is able to stabilize the Higgs potential in the deep UV even

if the quartic Higgs coupling drops below zero. Thus, a pos-

sible instability scale can be shifted towards larger scales,

leading to a diminishing of the lower Higgs mass bound.

As the conventional stability bound is usually associated

with a vanishing quartic Higgs coupling at some UV scale,

it is useful to introduce a new lower consistency bound for

the mass of the Higgs once higher-dimensional operators are

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-6507-4&domain=pdf
mailto:rene.sondenheimer@uni-jena.de


10 Page 2 of 15 Eur. Phys. J. C (2019) 79 :10

permitted within the bare action. The latter can be defined

by the lowest possible Higgs mass given by a specified gen-

eralization of the bare action which has a Higgs potential

equipped with a unique minimum during the entire RG flow.

In particular this leads to the consistency condition that the

potential is bounded from below to obtain a well-defined

partition function of the theory.

The simple example of adding a φ6 term to the bare poten-

tial demonstrates that generalizations of the bare action can

weaken the stability problem. In fact, the instability scale of

the standard-model Higgs potential at 1010 . . . 1011 GeV can

be shifted by at least one order of magnitude by this strat-

egy [69]. Besides the simple extension of the bare action by

polynomial Higgs self-interactions, also the impact of other

polynomial generalizations of the bare interactions has been

tested, e.g., in the Yukawa sector, confirming these results

[70,71]. However, this shift cannot be realized for an arbi-

trarily large amount of scales, as the running of polynomial

higher-dimensional couplings is dominated by their power-

counting behavior and thus they can contribute only for a

comparatively small RG time to the flow. Due to this argu-

ment, this statement will likely hold for any class of polyno-

mial bare interactions.

However, the existence of an absolute lower consistency

bound is an involved minimization problem in theory space

spanned by all possible bare potentials. Especially, the impact

and RG running of nonpolynomial bare interactions on the

Higgs mass stability issue is not explored in detail, so far.

A further relaxation of the lower consistency bound might

be possible, if a suitable nonpolynomial bare potential exists

such that the RG flow of the Higgs potential stays for a suffi-

ciently long RG time away from its power counting behavior

and the usual RG arguments in the vicinity of the Gaußian

fixed-point can be circumvented.

The aim of this work is to cast a first glance on possible

modifications of the effective Higgs potential and a diminish-

ing of the lower Higgs mass bound by nonpolynomial bare

potentials. For this task, we use a systematic 1/Nf expan-

sion to investigate the properties of the effective potential.

In Sect. 2, we will introduce a toy model to concentrate

on the Higgs-top interactions as the top Yukawa coupling

is the driving force for the stability problem. After defin-

ing the theory, we will compute the effective potential for

the scalar field within a mean-field analysis which represents

the leading order contribution of the large Nf expansion. In

order to improve our analysis, we take 1/Nf corrections in an

extended mean-field analysis into account in Sect. 3. In par-

ticular, we give constructive suggestions of possible nonpoly-

nomial bare interactions that lead to Higgs masses substan-

tially below the lower consistency mass bound of any bare

action spanned by a set of finite-order polynomials. While

it is straightforward to obtain such bare potentials in the

mean-field approximation, the consideration of scalar fluc-

tuations can spoil the convergence properties of the large Nf

expansion. Nonetheless, the inclusion of scalar fluctuations

offers new mechanisms to diminish the lower mass bound at

the same time. Inspired by these results, we check how RG

improvement alters the results. In particular many nonpoly-

nomial classes show unsatisfactory convergence properties

within the 1/Nf expansion. In Sect. 4, we investigate the

RG running of the full scalar potential on a functional level

for specific examples and reveal properties of the underlying

UV physics to obtain a stable effective potential. We finally

conclude and give an outlook in Sect. 5.

2 Mean-field analysis

As the large top mass dominates the RG flow of the Higgs

quartic coupling and is responsible for the fact that it becomes

negative at large RG scales, we will focus on a simple Higgs–

Yukawa model mimicking the Higgs-top sector of the stan-

dard model in the following. This toy model has proven use-

ful to investigate the occurrence of Higgs mass bounds in the

literature also on a nonperturbative level [23,66,72–74], see

[75] for a brief review. The classical, Euclidean action of the

model is given by

S =
∫

x

[

1

2
(∂μφ)2 + U (φ) + ψ̄ i/∂ψ + ihtφψ̄ψ

]

. (1)

Demanding that the scalar potential is invariant under a Z2

symmetry, U (φ) = U (−φ), the action exhibits a discrete

chiral symmetry, φ → −φ, ψ → ei π
2 γ5ψ , and ψ̄ → ψ̄ei π

2 γ5 ,

which mimics the properties of the electroweak symmetry

group within this toy model. Particularly the Dirac fermion,

which represents the top quark, can acquire a mass term only

due to spontaneous symmetry breaking.

In order to get a first, simple approximation of the effec-

tive potential which is obtained after all fluctuations are inte-

grated out, let us investigate the fermionic partition function

of this model. As the fermions appear only as a bilinear in

the action, we can integrate them out yielding the standard

fermion determinant of a Yukawa theory. We perform this

computation in Euclidean spacetime for convenience.

ZF =
∫

�

DψDψ̄e−S[φ,ψ,ψ̄] = e−SB[φ] det(i/∂ + ihtφ), (2)

where SB is the purely bosonic part of the classical action S

defined in Eq. (1). The UV cutoff scale at the functional inte-

gral indicates that we formulate this theory in the spirit of an

effective field theory with an intrinsic finite cutoff belonging

to the definition of the model. Technically, this scale can be

viewed as a UV regularization. However, it is also associated

to a physical scale. Below that scale the considered theory
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can be formulated in terms of a viable quantum field theory

to describe certain aspects of a physical system. For larger

scales, the model loses its validity and has to be replaced by

a more fundamental theory. As the standard model likely has

to be defined with such an upper validity scale and is only

an effective description of nature, we explicitly introduce a

finite but arbitrary UV cutoff scale in our toy model.

In order to extract the effective potential at an one-loop

level, we consider a homogenous mean-field for the scalar

field, φ(x) = const.. This is sufficient as the fermionic deter-

minant already corresponds to a loop integration. Deviations

from this homogeneous field configuration contribute only

at a higher loop level. Therefore, we obtain for the fermionic

induced effective mean-field potential

U MF
eff (φ) = U�(φ) −

1

2	
ln

det�(−∂2 + h2
t φ

2)

det�(−∂2)
, (3)

where we have chosen a normalization of the generating func-

tional that the fermion-induced effective action is normalized

to the zero field limit and 	 denotes the spacetime volume.

Moreover, we used the hermiticity property of γ5, i.e., i/∂ is

isospectral to −i/∂ .

The ratio of the functional determinants can be evaluated

straightforwardly once a suitable regularization procedure is

chosen. We use in the following a linear regulator family as is

often used in the context of functional RG equations [76,77],

in particular in the context of Higgs mass bounds [66,67,69–

71,75,78,79]. Thus, we use this type of regulator for rea-

sons of convenience to directly compare with these studies.

Moreover, functional flows or nonperturbative lattice simu-

lations along the lines of [68,80–85] will be needed to further

improve the following large Nf analysis as we will demon-

strate in the next sections. We emphasize, that the following

conclusions remain the same for other type of regulators like

a sharp momentum cutoff, zeta-function regularization, or

various classes of mass dependent regularization schemes

[67].

The effective mean-field potential can be computed ana-

lytically for the linear regulator and reads

U MF
eff = U� −

1

16π2

[

�2h2
t φ

2 − h4
t φ

4 ln

(

1 +
�2

h2
t φ

2

)]

.

(4)

This approximation of the effective potential becomes exact

in the strict limit Nf → ∞, assuming the model exhibits

Nf copies of Dirac fermions. In the context of Higgs mass

bounds, the simple mean-field approximation has turned out

to be a remarkable good approximation already for Nf = 1 in

case the top fluctuations dominate the RG flow of the scalar

couplings, i.e., for the conventional lower mass bound. The

mean-field lower bound deviates only slightly from a non-

perturbative investigation of the stability bound including

threshold effects, RG improvement, as well as a full func-

tional flow of the scalar potential [66,79].

2.1 Higgs mass consistency bound for polynomial bare

potentials

The main advantage of this simple-minded approximation is

that the effective mass of the scalar particle can be analyti-

cally computed. It can be expressed as a function of the UV

cutoff of the model as well as of the bare parameters encoded

in the bare potential U� [66],

m2
H = U MF

eff

′′
(v)

=
m4

t

4π2 v2

[

2 ln

(

1 +
�2

m2
t

)

−
3�4 + 2m2

t �
2

(�2 + m2
t )

2

]

+ U ′′
�(v) −

1

v
U ′

�(v), (5)

where v is the nontrivial minimum of the effective potential

of the scalar field U MF
eff

′
(v) = 0, given by the Fermi scale in

the standard model. We exchanged the bare Yukawa coupling

by the top mass parameter as we fix this coupling in the deep

IR by a suitable renormalization condition which is given by

mt = htv for our simple approximation. Again, this is an

oversimplification of the complex RG flow of the standard

model but sufficient for our qualitativ investigation at the

moment. Even though we consider only a toy model here,

we choose mt = 173 GeV and v = 246 GeV in order to

make contact with standard-model physics in the following.

Assuming that the bare potential at the cutoff scale is given

by only perturbatively renormalizable operators, i.e., U� =
m2

�

2
φ2 + λ2,�

8
φ4, we get,

m2
H =

m4
t

4π2 v2

[

2 ln

(

1 +
�2

m2
t

)

−
3�4 + 2m2

t �
2

(�2 + m2
t )

2

]

+ λ2,�v2, (6)

yielding a mass which is a monotonically increasing func-

tion of the bare quartic coupling λ2,� for a given cutoff �

and fixed top mass mt. Thus, we obtain a natural lower mass

bound for the Higgs, min mH = mH(λ2,� = 0), for the class

of quartic bare potentials, for which the Higgs mass is entirely

build up from top fluctuations. Lower Higgs masses cannot

be meaningfully obtained in this Higgs–Yukawa model, as

already the bare potential would be unbounded from below

for negative bare quartic couplings. Hence, the effective

potential would suffer from an instability as well. This con-

clusion is a direct consequence from the fact that the asymp-

totic behavior of the potential cannot be altered by the RG

running as can be seen from the properties of exact RG flow

equations [86], for instance.
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However, as long as the underlying structure of the stan-

dard model is unknown, other interactions beyond the power

counting renormalizable operators cannot be excluded at the

cutoff scale. Currently, no experiment is able to put con-

straints on these higher-dimensional operators. The simplest

possible extension of the quartic bare potential is by other

polynomial interactions at the cutoff scale,

U� =
m2

�

2
φ2 +

λ2,�

8
φ4 +

λ3,�

48�2
φ6 +

λ4,�

4!24�4
φ8 + · · · .

(7)

Including these operators in the computation of the Higgs

mass, we obtain

m2
H =

m4
t

4π2 v2

[

2 ln

(

1 +
�2

m2
t

)

−
3�4 + 2m2

t �
2

(�2 + m2
t )

2

]

+ v2

[

λ2,� +
λ3,�

2

v2

�2
+

λ4,�

8

v4

�4
+ · · ·

]

. (8)

The contribution from the RG irrelevant couplings λn≥3,� to

the effective mass of the Higgs field is suppressed by suitable

powers of the cutoff � as one would expect from a dimen-

sional analysis in the vicinity of the Gaußian fixed-point.

Thus, for a sufficient large separation of the electroweak scale

from the scale of new physics, the IR observables are almost

independent of these modifications of the bare action and are

far beyond the current precision measurements.

Even though the higher-dimensional operators do not have

a direct impact on the observable IR Higgs mass, they modify

the stability considerations and thus have an indirect impact

on the position of the lower stability bound. At this point it

is important to keep in mind that the stability mass bound

does not contain only information about the IR physics but

also of the UV embedding of the standard model. In the

presence of positive λn≥3,� a negative bare quartic coupling

can be permitted in the UV, as the higher-order couplings can

potentially stabilize the scalar potential without introducing

a meta- or instability on all RG scales.

Let us exemplify this by a generalization of the bare poten-

tial by a simple λ3φ
6 operator along the line of [66,67,79].

For quartic bare potentials, Eq. (6) can be viewed from two

perspectives once the mass of the Higgs is known. We can

either fix the quartic coupling by the mass of the scalar par-

ticle for a given cutoff or we are able to compute the scale

of maximal UV extent of the model which is determined by

the lower mass bound λ2,� = 0. If a Higgs mass of 125

GeV is required, the scale of maximal UV extent is given by

�φ4 ∼ 107 GeV within our Higgs-top toy model for a top

mass of 173 GeV. To push the cutoff scale even further, neg-

ative values of the bare quartic coupling have to be chosen

which induce an instability in the bare potential as well as

in the effective potential. This problem can be circumvented

once a λ3,�φ6 operator is allowed. The requirement of a bare

potential that is bounded from below translates into a positive

λ3,� coupling. Having a negative quartic coupling, the lower

mass bound is indeed diminished as the contribution from the

positive λ3,� to the effective Higgs mass is highly suppressed

by the cutoff, see Eq. (8), which leads effectively to a larger

cutoff for a fixed Higgs mass. Besides implications for the

Higgs mass an additional φ6 operator affects also tunneling

rates in case a second minimum is present [87–91], see also

[92] for a specific beyond the standard model scenario, or the

electroweak phase transition [93,94].

Unfortunately, the instability scale cannot be arbitrarily

shifted by this simple generalization. Suppose λ3,� = 3. For

this value, the bare quartic coupling can safely be dimin-

ished until it reaches λ2,� = −0.065. For smaller λ2,� the

bare potential can be stable with a unique minimum at vanish-

ing field amplitude, however, the effective potential develops

a second nontrivial minimum rendering the effective poten-

tial metastable due to the interplay of the nontrivial struc-

ture of the bare potential U� and the top fluctuation induced

part of the effective potential [79]. While for a quartic bare

potential the extremal condition of the effective minimum

U MF
eff

′ = 0 has only one nontrivial Z2-symmetric solution,

the richer polynomial structure allows for more solutions in

the generalized case. Thus, the metastability arises for dif-

ferent reasons than the previous stability problem for quar-

tic bare potentials. Nonetheless, even for the seeming small

value of λ2,� = −0.065 the cutoff scale can be shifted by an

order of magnitude to � ∼ 108 GeV.

This simple example demonstrates how irrelevant interac-

tions can weaken the stability issue. Nonetheless, the large

gap between the instability scale in the standard model and

the Planck scale can unlikely be bridged by polynomial inter-

actions at the cutoff scale. Of course, it is possible to add more

terms beyond the φ6 generalization. However, for these type

of finite-order polynomial bare interactions, the second min-

imum in the effective potential beyond the Fermi minimum

is usually at the order of the cutoff scale φmin/� ∼ O(1) and

generically developed by a first order phase transition during

the RG flow if not already present in the bare potential for

sufficiently large absolute values for λ2,�. As these higher-

dimensional operators are even more strongly suppressed by

the cutoff scale, and the corresponding couplings λn die out

faster, any finite-order approximation of the bare potential in

terms of polynomial interactions will not be able to prevent a

metastability in the effective Higgs potential for a sufficiently

light Higgs.

Of course, an exception could be given by rather exotic

finite-order polynomials that have a large higher-order cou-

pling, λn ≫ 1. For instance, the scale of maximal UV extent

can be pushed to � ∼ 109 GeV if λ3,� = 100 for mH = 125

GeV. As a rule of thumb within this mean-field approxima-

tion, a coupling λ3,� ∼ O
(

�2/(10�φ4)2
)

is required to sta-
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bilize the scalar potential where �φ4 is the instability scale

if only power counting renormalizable operators are consid-

ered in the bare action. Nevertheless, this type of solution

comes with a grain of salt. Albeit it cannot be ruled out a

priori, it is very unlikely that the underlying structure of the

standard model generates a finite-order polynomial potential

for the scalar field that singles out one (or a few) dimen-

sionless coupling, say λ3,� for simplicity, which is orders of

magnitude larger than the other coupling constants.

From the Wilsonian view point every interaction term that

is compatible with the field content and the symmetries of

the model will be present at the cutoff scale. Especially the

scalar potential is an arbitrary function of the field amplitude

φ as long as it respects the Z2 symmetry. Restricting the dis-

cussion to a quartic bare potential or a bare potential with

φ6 term assumes implicitly that the bare potential is expand-

able in a meaningful Taylor series at the origin. In the first

instance, it is reasonable to assume that the dimensionless

higher-order couplings λn,� of this Taylor series are of order

one, also to guarantee a suitable radius of convergence to

obtain trustable results within a finite-order approximation.

The situation might change once an infinite series is consid-

ered with increasing higher-order coupling strength. For this,

a full functional analysis as well as appropriate resummation

is required.

2.2 Higgs mass consistency bound for nonpolynomial bare

potentials

In case of a finite-order Taylor-like bare potential, we have

seen that a new lower consistency bound can be formulated.

This bound is a few GeV below the conventional stability

mass bound which is derived for power counting renormal-

izable operators but still guarantees a unique minimum of the

potential at all RG scales. However, it is only able to push the

conventional mass bound by one order of magnitude towards

larger scales. Also, polynomial generalizations in other sec-

tors of the bare action, e.g., by generalized Yukawa inter-

actions h(φ2)φψ̄ψ [70,71], seem to not further diminish

this lower mass bound. Thus, this bound might be univer-

sal for any bare action with polynomial interactions where

the higher-order dimensionless bare couplings are of order

O(1).

In order to further diminish the lower Higgs mass consis-

tency bound, we now focus on nonpolynomial bare interac-

tions. A variety of possibly viable extensions regarding the

stability issue might exist in the infinite dimensional theory

space of all possible bare potentials. Minimizing the lower

consistency bound is thus an intricate problem and clearly

beyond the scope of this work. We will rather classify the

implications of different nonpolynomial structures within the

bare potential on the stability issue and the IR physics and

present constructive examples that diminish the polynomial

lower bound without introducing a metastability in the effec-

tive potential in the mean-field approximation and beyond.

In particular, we investigate three different cases. Bare

potentials which can not be expanded in a Taylor series at

vanishing field amplitude, potentials with a finite radius of

convergence, and potentials which can be written in a power

series with infinite radius of convergence. Some of these

potentials might be motivated by underlying physics that can

be described in the context of a quantum field theory, like

Coleman-Weinberg type potentials which arise by integrat-

ing out heavy degrees of freedom. By contrast, the underly-

ing structure of the standard model does not necessarily be

explainable by yet known methods and techniques. For this

reason, we do not want to restrict to a specific scenario.

2.2.1 Bare potentials with vanishing radius of convergence

The lower mass bound is essentially built up from the loga-

rithmic term in Eq. (5) induced by top fluctuations. As a first

example, let’s try to weaken this impact by modifying the

standard φ4 potential by a logarithmic structure that will eat

up the fermion fluctuations,

U� =
m2

�

2
φ2 +

λ2,�

8
φ4 − aφ4 ln

(

1 +
�2

bφ2

)

, (9)

with positive constants a and b. Note, that this bare potential

and also the effective mean-field potential is bounded from

below if and only if λ2,� > 0. For further convenience, we

choose a = b2/(16π2) as this is sufficient for our following

purpose. In this case it is straightforward to see that parameter

regions exist that can diminish the lower Higgs mass bound

drastically without introducing an instability. The simplest

example is given by the choice b = h2. The logarithmic

modification of the quartic bare potential exactly cancels the

top fluctuation induced part in the mean-field potential. Thus,

the effective mean-field potential only has a simple φ4 form

and is stable for positive λ2,� which is anyhow required for

a stable bare potential. The Higgs mass can then be freely

adjusted according to the precise value of the quartic coupling

for any value of the cutoff scale.

Also for other values of b, the impact of the fermionic

fluctuations can be significantly weaken, depending on the

ratio b/h2. Inserting the bare potential (9) into the mean-field

approximation of the Higgs mass (5), the lowest possible

value of b can be determined by the consistency constraint

λ2,� > 0 for a given cutoff and Higgs mass. For instance,

for b > 0.36 the cutoff scale of our toy model can be pushed

by at least five orders of magnitude compared to quartic bare

potentials towards � = 1012 GeV for mH = 125 GeV with-

out introducing a metastability or instability in the scalar

potential. For smaller values of b, a negative bare quartic

coupling is needed to obtain the desired Higgs mass, render-
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ing the potential unstable. Larger values of b allow for a fur-

ther increase of �. Similar analyses can also be performed

for a �= b2/(16π2), of course, where large regions of the

parameter space regarding a and b exist which diminish the

lower bound considerably once this particular logarithmic

modification of the bare potential is permitted.

Besides this specific logarithmic extension of the bare

potential, we tested a variety of other functions. The obvious

difference between the ln-type bare potential and polynomial

generalizations is the singular structure of the potential (9)

at the origin, yielding a potential which cannot meaningfully

expanded in a polynomial around the minimum at the origin

as λ2,� ∼ limφ→0 ln(1/φ2) and λn≥3,� ∼ limφ→0 1/φ2n−4.

2.2.2 Bare potentials with finite radius of convergence

Let us now investigate whether bare potentials with a finite

radius of convergence can solve the stability problem. For

this task, we slightly modify our previous example (9) by a

mass-type coupling parameter μ,

U� =
m2

�

2
φ2 +

λ2,�

8
φ4 − aφ4 ln

(

1 +
�2

μ2�2 + bφ2

)

.

(10)

Expanding the potential (10) in a power series around its

minimum at φ = 0, we obtain a radius of convergence in

units of the cutoff scale � which is given by μ/
√

b. For

simplicity, we choose b = 1 in the following. We use this

specific function again for purely illustrative purposes. Sim-

ilar conclusions hold for other functions which have a Taylor

series expansion at the origin with a finite radius of con-

vergence like aφ4 ln(1 + bφ2/�2), aφ4 arctan (bφ2/�2), or

aφ4/(1 + bφ2/�2).

Regarding the stability issue, we observe the following.

We are able to diminish the lower mass bound even below the

consistency bound of generalized polynomial bare potentials

if a suitable value of μ is chosen. In order to shift the cutoff

by n orders of magnitude from the φ4 instability scale � =
10n�φ4 ≃ 107+n GeV, the parameter μ has to be of the order

O(10−n) or smaller. This implies that the nonpolynomial

structure of Eq. (10) is able to solve the stability problem

only if the radius of convergence is close to or smaller than

the instability scale �φ4 as one would naively expect.

From a conventional perspective one might be tempted

to argue that new physics has to show up below the scale

�φ4 , based on these results. For instance, structures as they

appear in the potential (10) might be generated from a heavy

massive bosonic particle which couples directly to the Higgs

field and has a mass given by μ�. As only for μ� � �φ4 the

potential is stabilized, the occurrence of new physics is below

the instability scale, solving the stability problem trivially.

However, we would like to emphasize at this point that this

has not necessarily to be the case.

From a more conservative point of view, Nature might be

only described by the degrees of freedom and symmetries of

the standard model up to scales � ≫ �φ4 , if nonperturba-

tive effects in terms of nonpolynomial structures in the bare

potential are present and dominate the RG flow above a cer-

tain scale given by μ� � �φ4 . In this case, the Higgs poten-

tial can be meaningfully described in terms of a polynomial

series at small field amplitudes, φ < μ�, especially near

the electroweak scale, implying that a perturbative descrip-

tion suffice to explain current collider data. Above the scale

μ� nonperturbative effects seeded by the bare action at some

high scale � may render the effective potential stable without

introducing new degrees of freedom or new particles below

the cutoff scale.

One might be worried about the fact that a seemingly

unnatural small value for μ has to be generated at the cut-

off scale to obtain a sufficiently large separation between the

cutoff and the instability scale. However, the parameter μ

is not associated to a specific coupling as usually occurs in

a perturbative analysis but rather contributes to the specific

properties of a full coupling functional in terms of the poten-

tial (10) and a functional investigation for all field amplitudes

is needed to capture the entire nonperturbative effects. In that

sense we formulate no constraint on this parameter. It rather

classifies to which subspace the potential belongs in theory

space. In that sense, the specific example for the bare poten-

tial in Eq. (10) can be understood as a placeholder for any

potential with an analogous structure. It is merely chosen for

an illustrative example in terms of elementary functions.

2.2.3 Bare potentials with infinite radius of convergence

Besides the two considered examples in Eqs. (9) and (10) rep-

resenting bare potentials which have not a well-defined poly-

nomial expansion at the minimum or a finite radius of con-

vergence respectively, also a third possibility can lead to the

desired properties which we already have sketched at the end

of the previous subsection. Suppose the underlying theory of

the standard model generates an infinite polynomial series

with an infinite radius of convergence but sufficiently strong

higher-order interaction terms. Then, the Taylor approxima-

tion of the potential converges for every field amplitude but

with a slow rate of convergence such that very high truncation

orders are needed to capture the relevant properties.

For this type of bare potentials, we use a simple exponen-

tial function for illustration,

U� =
m2

�

2
φ2 +

λ2,�

8
φ4 + aφ4 e

bφ2

2�2 . (11)
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In case b (and a) are of order O(1) or smaller, only a few

terms in a Taylor approximation are needed to properly inves-

tigate the properties of the effective potential regarding the

instability issue and we fall back into the discussion below

Eq. (7) as the bare higher-dimensional couplings λn,� are of

order one. The situation changes if b ≫ 1. In this case, the

higher-order couplings grow according to λn,� ∼ bn−2 for

n > 2 until the factorial n! in the denominator of the series

coefficients of the exponential function takes over ensuring

the convergence properties of the Taylor series. Depending

on the precise value of b, several terms have to be consid-

ered within the polynomial approximation and especially the

’low-dimensional’ coupling constants λ3, λ4, · · · become

large. However, this is not problematic as the full series can

be added up to an exponential function with large b by con-

struction within our example.

In order to diminish the lower bound by this strategy, a

sufficient large b has to be chosen such that the occurrence

of a second minimum at large field amplitudes φmin ∼ �

driven by a negative λ2,� is suppressed but still small enough

that the impact of the new contributions do not alter the small

field behavior of the plain φ4 structure. Otherwise the lower

mass bound would increase due to the strong coupling of

the higher-order operators. Our rule of thumb derived for the

φ6 class of bare parameters is already a good indication for

the specific example given by Eq. (11) as the potential can

be expressed in terms of a power series where λ3,� ∼ b. In

order to shift the cutoff scale n orders of magnitude away

from the φ4 instability scale, � = 10n�φ4 , b has to be of

the order O
(

�2/(10�φ4)2
)

. This might imply rather large

values for b but again, we deal here with a full coupling

functional instead of an extension in terms of an additional

single coupling. In the sense the parameter μ was used for

the bare potential (10) to classify the nonpolynomial effects

that lead to a finite radius of convergence, b can be used to

pick an example of the class of potentials with a specific

rate of convergence towards the full function. Then, a large

value b signals that a sufficiently slow rate of convergence is

required.

Aside from this example with a rather large parameter, also

potentials can be constructed with parameters of order one for

the sake of complexity regarding the functional dependence

on the field amplitude. For instance the cutoff scale can be

pushed towards 109 GeV in our toy model for a bare potential

given by,

U� =
m2

�

2
φ2 +

λ2,�

8
φ4 + aφ4 eb e

cφ2

2�2
(12)

for a = 1, b = c = 2 or to � = 1010 GeV for a = 1, b =
c = 4.75. Similarly higher values of the scale of maximal UV

extent can be approached, e.g., by replacing the exponential

by exp
(

b exp(c exp(dφ2/�2))
)

, we can achieve � = 1011

GeV for b = c = d = 1.7.

To briefly summarize, two strategies can be used to

weaken or even solve the stability problem of the standard

model Higgs sector in terms of generalized Higgs interac-

tions at least in the large Nf limit. First, the nonpolynomial

structure has no impact on the shape of the effective poten-

tial near the electroweak scale. Then, a negative quartic cou-

pling is needed to diminish the lower mass bound and the

nonpolynomial interactions have to compensate the occur-

rence of a second minimum at large field values near the

cutoff scale driven by the negative quartic coupling. The last

class of potentials with a sufficiently slow convergence rate

belongs to this case. Second, the deviation from the φ4 struc-

ture can directly affect the effective quartic coupling at the

electroweak scale and thus the Higgs mass. In case it sup-

presses the contribution coming from the top quark, the lower

mass bound can be diminished as well without introducing a

metastability in the effective potential. For our examples of

ln-type modifications, we ensured that the large field behav-

ior is governed by a positive bare quartic coupling which

avoids the occurrence of a second minimum.

3 Extended mean-field analysis

So far, we only used a simple mean-field approximation in

order to calculate the effective potential, which is the first

contribution in a large Nf expansion. As long as the bosonic

sector is only weakly coupled and the top Yukawa coupling

dominates the RG flow, this approximation has turned out to

be useful even for small Nf not only qualitatively but also to

some extent on a quantitative level for the lower mass bound

[66] as well as the effective potential [79], at least for poly-

nomial type bare interactions. To improve our understanding

of the nonpolynomial bare potentials, an improved calcu-

lation for the effective potential is mandatory as for some

field amplitudes the system becomes strongly coupled and

the validity of the mean-field approximation cannot be guar-

anteed.

An extended mean-field calculation is the next logical step

as this approximation takes 1/Nf corrections into account by

including the scalar fluctuations on the same Gaußian level as

the fermionic fluctuations. The resulting determinant can be

computed analytically for the class of linear regulator func-

tions which we used in the previous section and the extended

mean-field effective potential reads,

U EMF
eff = U� −

Nf

16π2

[

�2h2
t φ

2 − h4
t φ

4 ln

(

1 +
�2

h2
t φ

2

)]

+ .
1

64π2

[

�2U ′′
� − U ′′

�
2

ln

(

1 +
�2

U ′′
�

)]

(13)
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where primes denote derivatives with respect to φ and we

reinstated Nf merely as an ordering parameter of the calcu-

lation. For all quantitative statements, we use Nf = 1.

3.1 Bare potentials with vanishing radius of convergence

At first glance, the logarithmic extension of the quartic struc-

ture in Eq. (9) seems as an appropriate extension. However,

incorporating the scalar fluctuations to the renormalization

process, we obtain a strong contribution from the curvature of

the bare potential induced by the singular structure of the log-

arithm at the origin. Especially the quartic coupling defined

at the electroweak scale, λ2,eff = U EMF
eff

(4)
(φ = v), renor-

malizes with an unusual behavior as the polynomial bare cou-

plings obtained from an expansion at the electroweak scale

behave as λn,� ∼ �2n−4/v2n−4 for n > 2 and � ≫ v.

Therefore, we obtain the peculiar situation of a unique mini-

mum at the electroweak scale but Higgs masses of the order

of the cutoff scale within the extended mean-field approxi-

mation. Note that this result obviously does not diminish the

lower mass bound but circumvent the upper triviality bound

due to nonperturbative effects. Nonetheless, the upper bound

cannot meaningfully be dealt with within the mean-field or

extended mean-field approximation as RG improvement is

mandatory for such a strongly coupled Higgs sector even in

the simple case of quartic bare potentials.

Whether a full nonperturbative RG investigation which

includes RG improvement can wash out this strong renormal-

ization at the electroweak scale, leading indeed to a diminish-

ing of the lower bound, or circumvent the triviality arguments

for the upper bound cannot be answered a priori. At this point,

we are only able to conclude that the singular behavior of the

bare potential (9) spoils the convergence of the 1/Nf expan-

sion for a large scale separation between the cutoff and the

electroweak scale and a full nonperturbative RG investiga-

tion is required to make a definite statement. We perform

such an investigation in Sect. 4.

Of course, this problem does not occur for small � only

a few scales above the electroweak scale, e.g., � = 10 TeV,

with a suitable value a < 1. However, already polynomial

generalizations with λ3,� ∼ O(1) can considerably diminish

the lower Higgs mass bound for small cutoff scales.

Instead of the nonpolynomial structure of the bare poten-

tial U� itself, there also is the possibility that the scalar fluc-

tuations induced by the curvature of the nonpolynomial bare

potential U ′′
� compensate the renormalization coming from

the top for a negative a with |a| ≪ 1. This is only possi-

ble if the dimensionless parameter a compensates the large

contribution �2/v2 coming from the strong curvature of the

bare potential near the origin, i.e., a ∼ v2/�2. For instance,

we obtain a stable effective potential with mH = 125 GeV

for � = 1010 GeV, if a = −5.6 × 10−15. Nevertheless, the

reliability of this result is questionable due to the qualitative

difference between the mean-field and extended mean-field

results caused by the large effects of the scalar fluctuations

as well as RG improvement is still missing in this simple

computation.

3.2 Bare potentials with finite radius of convergence

In a similar way the ln-type example with finite radius of con-

vergence, Eq. (10), does not show the desired convergence

properties. First, we observe that the contribution induced

from the scalar fluctuations to the renormalized effective

quartic coupling and thus to the Higgs mass is ∼ μ−2 as

can be seen by a straightforward computation,

m2
H = λ2,�v2 − 8a ln(μ−2)v2 +

Nf m4
t

4π2 v2

[

2 ln

(

�2

m2
t

)

− 3

]

+
15ab

4π2

1

μ2
v2 + O

(

v2

�2

)

, (14)

for v ≪ �, μ ≪ 1, and bv2 ≪ μ�, where we have sep-

arated the contribution from the scalar fluctuations in the

second line. The first line contains the contribution from the

top fluctuations (last term ∼Nf ) as well as the curvature of the

bare potential at the electroweak scale in the first two terms

which gets renormalized by the fluctuations, i.e., the first

line on the right-hand side represents the mean-field result.

For the mean-field case a sufficiently small μ was needed to

compensate the top contributions and to ensure that the radius

of convergence drops below �φ4 such that the nonperturba-

tive effects can stabilize the potential for large field values.

The scalar fluctuations included in the extended mean-field

approximation can thwart the diminishing for too small μ.

Thus, we have to first answer the question whether parame-

ters exist such that these two contrary effects can be balanced

to solve the stability problem, before we turn towards the

convergence properties of this specific example in the 1/Nf

expansion.

Choosing negative a, a critical value μcr can be found that

minimizes the Higgs mass for a given �. For μ < μcr the

radius of convergence shrinks which strengthens the nonper-

turbative effects, leading to larger Higgs masses and spoil-

ing the convergence of the 1/Nf expansion. For μ > μcr,

the radius of convergence becomes larger, implying that the

nonpolynomial structure cannot prevent the effective poten-

tial from becoming metastable. Nonetheless, the lower bound

obtained by this strategy can be below the lower consistency

bound for the class of generalized polynomial bare potentials.

However, convergence regarding the large Nf expansion

cannot be expected since the diminishing mechanisms are

qualitatively different between the mean-field and extended

mean-field approximation. The nonpolynomial deformation
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of the bare potential contributing to a modification of the

bare quartic coupling at the electroweak scale, see first two

terms on the right-hand side of Eq. (14), and the curvature of

the bare potential determining the scalar fluctuations (second

line of Eq. (14)) come with opposite sign. Thus, a change in

the sign of a is necessary to obtain stable bare potentials with

a Higgs mass below the conventional stability mass bound by

going from mean-field to extended mean-field, as in the pre-

vious case. This leads to the fact, that every set of parameters

for the bare potential (10) that solves the stability problem

in the mean-field approximation does not provide a solution

for the extended mean-field case and vice versa.

This problem might be circumvented by potentials of this

class for which the bare contribution and the contribution

induced by scalar fluctuations contribute with the same sign,

e.g., for arctan(φ2) or ln(1+φ2). However, we were not able

to find a set of parameters for these potentials that diminish

the lower mass bound considerably below the lower consis-

tency bound of the φ6 class within the extended mean-field

approximation.

3.3 Bare potentials with infinite radius of convergence

The scalar fluctuations can spoil the convergence properties

of the large Nf expansion also for the bare potential (11)

belonging to the class of potentials which can be expanded

in a polynomial for arbitrarily large field amplitude but suffi-

ciently slow convergence rate. Nevertheless, there are regions

in parameter space for this example in which the extended

mean-field approximation show merely moderate deviations

from the mean-field results.

The contribution to the Higgs mass induced by the scalar

fluctuations is ∼b for the class of bare potentials modified

by an exponential function. The larger b, i.e., slower rates

of convergence, the stronger the system is coupled such that

no convergence of the results can be expected by the cur-

rent simple approximations of the effective potential and RG

improvement is required again. By contrast, the occurring

metastability cannot be prevented for too large values of the

cutoff for too small b. Following the same strategy as in the

previous case of bare potentials with a finite radius of con-

vergence, we are able to determine an upper critical value for

b which balance both effects. The lower mass bound deter-

mined by bcr is depicted for λ2,� = −0.18 and a = 10−4 in

Fig. 1 as red solid line. For comparison, we plotted also the

conventional lower stability mass bound for φ4 bare poten-

tials as black solid line and the lower consistency bound for

the φ6 generalization with λ3,� = 3 as orange dashed line.

Comparing the conventional lower mass bound to the consis-

tency mass bound of the exponential bare potential, the scale

of maximal UV extent can be shifted by almost three orders

of magnitude for this specific example.

Fig. 1 Comparison of Higgs mass consistency bounds for different

bare potentials. The black solid curve belongs to the conventional lower

stability mass bound for quartic bare potentials. The orange dashed

line is obtained from the lowest possible Higgs masses for the class

of φ6 bare potentials with a unique minimum for the bare as well as

the effective potential. The red solid line depicts the lower consistency

mass bound for bare potentials given by Eq. (11) for a = 10−4 and

λ2,� = −0.18

In order to compare this lower mass bound to the mean-

field results, we fix the parameters a and b of the bare

potential but vary λ2,� until the effective potential becomes

metastable within the mean-field approximation. Comparing

the obtained values for the masses within both approxima-

tions, we observe a deviation of the Higgs mass by at most

10% for the region of interest � > 106 GeV. This moderate

deviation between the mean-field and extended mean-field

Higgs mass can be traced back to the specific properties of

potentials with an infinite radius of convergence but small

convergence rate. The parameters a and b appear in a particu-

lar combination such that the small field behavior of the scalar

potential is governed by the usual power-counting renormal-

izable structure while for field amplitudes close to the cutoff

the generation of a second minimum is avoided by the strong

couplings λ3, λ4, · · · . In order to trust these results beyond

the large Nf expansion, we perform a full nonperturbative

RG calculation in Sect. 4.

3.4 Beyond elementary functions

After the promising results of the mean-field calculation, the

extended mean-field results do not favor a scenario with

a rather simple nonpolynomial generalization of the bare

potential such that the scale of maximal UV extent can be

shifted towards the Planck scale. Although, suitable bare

potentials can be constructed leading to stable extended

mean-field approximations for the effective potential, most

of them called for RG improvement to obtain a reliable result.

At least, we were able to construct an example that further

diminishes the lower consistency bound by a few GeV with-

out spoiling a possible convergence of the 1/Nf expansion
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for the class of potentials given by an infinite polynomial

series but sufficient slow rate of convergence.

However, we would like to emphasize, that we only inves-

tigated bare potentials which were expressed in terms of ele-

mentary functions, so far. The space of all allowed bare poten-

tials is much larger. For instance, it is possible to numerically

construct a bare potential that can circumvent the stability

problem by rethinking Eq. (13). This equation can be viewed

as a nonlinear second order differential equation to obtain a

suitable bare potential once the effective potential is fixed.

The two integration constants can be fixed by demanding

that the solution respects the Z2 symmetry of the model,

U ′
�(0) = 0, and by choosing a convenient value for the in

our case unimportant offset of the potential, e.g., U�(0) = 0.

This yields a unique solution for the bare potential once

the effective potential is specified. By this strategy it can

be tested, which stable IR physics can be extended up to suf-

ficient high energy scales, in case a solution to this nonlinear

differential equation exist.

A numerical solution of this problem is depicted in Fig. 2

where the bare potential is plotted as blue solid line. For

simplicity, we have assumed that the effective potential (red

dashed line) is only given by a stable φ4 potential equipped

with a minimum at the electroweak scale and a Higgs mass

of 125 GeV. The scale of new physics is set to 1014 GeV.

Albeit the solution for the bare potential looks rather trivial

at logarithmic scales, it has a variety of noteworthy proper-

ties. The contribution coming from the scalar fluctuations to

the effective potential (second line of Eq. (13), depicted as

black dotted line in Fig. 2) is almost identical to the abso-

lute value of the fermion determinant for field values larger

than the electroweak scale. Thus, we observe a dynamical

Fig. 2 Numerical solution of Eq. (13) for the bare potential U� (blue

solid line) for � = 1014 GeV. The IR physics is governed by a quartic

Higgs potential (red dashed line) by construction. The black dotted

curve shows the contribution of the scalar fluctuation induced part as

well as the absolute value of the fermion induced part. As the difference

of both contributions are hardly visible by eye in this double logarithmic

plot, they appear as one line, indicating that both contributions almost

compensate each other

cancellation between both contributions such that no second

minimum is generated at large field values and the effective

potential is stable.

For large field amplitudes φ ∼ 100� the differential equa-

tion becomes stiff, making it challenging to go to arbitrar-

ily large amplitudes. Nevertheless, already at scales slightly

above the cutoff scale, the scalar as well as the top fluctua-

tions approach constant values and thus do not modify the

large field behavior which is given by φ4 by construction.

For scales below �, we observe slight deviations from the

quartic structure being strong enough that the effective poten-

tial does not develop a second minimum but small enough

near the origin such that the IR physics is not affected by

this modification and a Higgs mass of 125 GeV can be

obtained.

Besides the example depicted in Fig. 2, we also inves-

tigated the construction of the bare potential via reverse

engineering for other cutoff values as well as different sta-

ble, weakly coupled IR potentials. In all cases, the solutions

behave in a similar way as described above. Thus, not the

plain modification of the quartic structure accounts for the

diminishing of the lower mass bound without introducing a

metastability as was suggested in the mean-field approxima-

tion but the scalar fluctuations described by the curvature of

the bare potential. In this case, the scalar fluctuations have

to play a similar dominant role as the top fluctuations but

are not given in terms of a single strong coupling constant

though induced by the nonpolynomial deformation from the

quartic structure. This behavior was also seen for the ln-type

modifications above.

Let us finally highlight, that the example depicted in Fig. 2

is also below the lower mass bound for the exponential bare

potential plotted as red solid line in Fig. 1. Even though there

is no convergence regarding the 1/Nf expansion for most of

the investigated generalizations, we are optimistic that the

reverse engineering of the bare potential can also be used

for a full nonpertrubative flow equation study in subsequent

work.

4 Nonperturbative RG flow of the scalar potential

In order to improve our results, a full nonperturbative RG

study is required as most modifications of the potential

include nonperturbative structures and effects. In particular

it is important to verify whether the stabilizing effects will be

washed out once RG improvement is included. For this, the

functional RG approach formulated in terms of the Wetterich

equation [86] is an ideal tool. The Wetterich equation

∂tŴk =
1

2
STr

[

(

Ŵ2
k + Rk

)−1
∂t Rk

]

, ∂t = k
d

dk
, (15)
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interpolates smoothly between the classical action defined

at the cutoff scale S = Ŵk=� and the full effective action

Ŵ = Ŵk=0 via an IR cutoff Rk and allows to investigate the

strong coupling limit, threshold effects, and the RG evolution

of a full coupling function depending on various mass scales.

For instance, the flow equation for the dimensionless scalar

potential (u = k−dU ) for the considered Yukawa model can

be obtained by a systematic derivative expansion and reads,

∂t u = −d u +
1

2
(d − 2 + ηφ)φu′

+ 4vd

[

l
(B)d
0

(

u′′; ηφ

)

− dγ l
(F)d
0

(

φ2h2; ηψ

)

]

, (16)

where primes denote derivatives with respect to the scalar

field φ and ηφ and ηψ are the anomalous dimensions of the

scalar and fermion field, respectively. The threshold func-

tions l
(B/F)d
0 encode the loop integration over bosonic and

fermionic degrees of freedom. These can be performed ana-

lytically for the linear regulator family which we used in

Sects. 2 and 3. The threshold functions as well as the nonper-

turbative flow equations for the anomalous dimensions and

the Yukawa coupling for the considered model can be found,

e.g., in Ref. [71].

The flow equations for the quartic coupling, the mass

parameter of the scalar field, or any other higher-dimensional

scalar-self coupling can be extracted form Eq. (16) via

suitable projections. Moreover, also the RG flow of the

entire scalar potential with nonpolynomial interactions can

be addressed by solving this partial differential equation.

Of course, this is rather time consuming compared to the

functional investigation of the large Nf expansion because

a numerically stable solution has to be obtained over many

orders of magnitude regarding the RG scale k as well as the

field amplitude φ to separate the electroweak from the cutoff

scale.

The large Nf expansion has shown that the class of polyno-

mials with infinite radius of convergence exhibit promising

properties to solve the stability issue. It is at least reasonable

to expect that this type of diminishing is also present in the

full flow for the following reason. Usually, the impact of the

higher-dimensional coupling λ3 on the quartic coupling λ2 is

washed out after a few RG scales as the RG running of λ3 is

governed by its power counting behavior. In case the running

of λ3 is driven by a large λ4 for a sufficiently long RG time,

the impact on λ2 can be extended. The even faster die-out

of λ4 can be compensate by an even larger coupling λ5 and

so on. A similar mechanism can also be used to circumvent

the triviality problem of the scalar sector in gauged-Higgs

models which become asymptotically free [95]. Therefore,

we restrict our following considerations mainly to this spe-

cific class. Nonetheless, as the higher-dimensional couplings

behave as bn/n! for the exponential bare potential (11) the

described mechanism can only bridge a finite (but possibly

arbitrary) amount of scales as bn/n! → 0 for fixed b and

n → ∞.

A useful property of this class is that some of the char-

acteristics of the full functional solution can be investigated

in a polynomial truncation of the potential. A similar obser-

vation has been made for bare potentials with finite-order

polynomials. Although, a polynomial projection on the flow

of the potential covers only local information in field space,

the radius of convergence at intermediate RG scales k is usu-

ally still large enough to spot a potential metastability for

polynomial-type bare potentials [79]. We also observe this

behavior for exponential-type bare potentials for sufficiently

high truncation orders. We examine this by comparing the

solutions of the full flow, i.e., solving the partial differential

equation (16), to a finite polynomial approximation λnφ2n

up to n = 16 for selected initial conditions.

According to our previous investigations on the stability

issue for finite-order bare potentials, we have checked the

convergence of our results for different truncations. These

checks include improvements of the derivative expansion

by comparing results of a local potential approximation to

results which include scale-dependent wave function renor-

malizations. In addition we tested the stability of our results

by including other higher-order operators from the Yukawa

sector by allowing for a (polynomial) Yukawa potential h(φ2)

during the RG flow. Technical details on such truncation test

can be found in [66,67,71,79]. For the class of exponential-

type bare potentials, we observe satisfactory convergence

properties even in the strong coupling limit similar to the

previous results for polynomial bare potentials.

Most importantly, we are able to find initial conditions

for the flow equation which can considerably diminish the

lower mass bound of quartic bare potentials as well as the

lower consistency mass bound for finite-order bare poten-

tials. Choosing Eq. (11) as initial potential at the cutoff scale

with a = 1 and positive b, we are able to choose a nega-

tive quartic coupling as long as the potential is stabilized by

the exponential modification. In qualitative agreement to the

large Nf expansion, we observe that some critical λcr
2,� exist

for fixed b which defines a new lower consistency bound for

this specific class of bare potentials. For λ2,� > λcr
2,� the

scalar potential is stable during the entire RG flow, while

for λ2,� < λcr
2,� a second minimum is generated due to the

nontrivial interplay between the scalar and fermionic fluctu-

ations. We plot the deviation of this new lower consistency

bound from the lower stability bound for quartic bare poten-

tials in Fig. 3 as black circles for b = 1/2, red squares for

b = 5, as well as blue triangles for b = 50.

For comparison, we also plot the results obtained from

the mean-field and the extended mean-field investigation as

dashed and solid lines, respectively. For sufficiently small

b where the scalar potential is still in a regime which can
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Fig. 3 Deviation of the lower Higgs mass consistency bound for

exponential-type bare potentials from the lower stability bound for quar-

tic bare potentials. The black curves correspond to b = 1/2 while the

red and blue curved are computed for b = 5 and b = 50, respectively.

Dashed lines depict mean-field results, solid lines take 1/Nf correc-

tions into account, and the circles (b = 1/2), squares (b = 5), and

triangle (b = 50) show results of the full RG flow of the scalar potential

including RG improvement

be described with perturbative techniques or can be approx-

imated by a finite polynomial including only a few terms,

the deviation between mean-field and extended mean-field

results (black curves) is hardly visible by eye. Likewise the

deviation from the full flow equation study is small such that

the large Nf approximation of the effective potential is a suit-

able tool to obtain a first glance on the IR properties in this

regime. Once b is increased, the solutions start to deviate

on a quantitative level but at least the qualitative features

can be captured by all different approximations. It seems

that the extended mean-field results generically overshoot

the impact of the scalar fluctuations. This is not surprising as

RG improvement is missing in the 1/Nf expansion. Thus the

strongly coupled scalar fluctuations contribute over too many

scales as only the bare propagators are used to integrate out

modes. Their contribution is weakened in a full flow equa-

tion study as the large contributions from higher-dimensional

couplings die out during the flow. Nonetheless, the impact of

these nontrivial interactions modifies the flow of the poten-

tial in the UV in such a way that the scalar potential remains

stable during the entire RG flow.

The diminishing effect decreases for larger values of the

cutoff like for the case of a finite-order polynomial modifi-

cation of the bare interactions. Nonetheless, we would like

to emphasize that we were able to demonstrate that the insta-

bility scale can be shifted by 3 orders of magnitude with the

considered initial conditions up to b = 50 and the difference

of the resulting Higgs masses between the lower bounds is

by a factor 2–3 bigger for the exponential modification com-

pared to any finite-order polynomial. Going to even larger

values of b and thus lower Higgs masses is not a conceptual

but numerical issue as it becomes challenging to compute a

numerical stable solution in this case.

So far, we have only investigate the exponential func-

tion given in Eq. (11) as a representative of a bare poten-

tial with infinite radius of convergence. However, it is not

likely that the underlying physics of the standard model will

solely generate an exponential modification of the standard

quartic structure of the Higgs potential at the cutoff scale

�. Nonetheless, we would like to emphasize that the results

presented here will be similar for any potential which can be

expanded in a Taylor series with sufficient slow rate of con-

vergence. In order to substantiate this conjecture, we perform

the following tests.

First, we investigate variations of the plain exponential

structure given in Eq. (11). Therefore, we add a fixed order

monomial cN

n! φ
2N to the exponential modification of the quar-

tic Higgs potential. The results in the following do not alter

if either the full functional flow of the bare potential or only a

(sufficient high) finite-order approximation of the exponen-

tial function is studied. In case of a finite order polynomial

approximation, we ordinarily choose N to coincide with the

highest order exponent but the results do not change if N is

smaller. Now, we crank up the coupling cN which serves as

a measure for the departure of the exponential. As this test

becomes numerically expensive for increasing N , we focus

on b = 1/2 as well as b = 5 for � = 106, 107, and 108

GeV, and b = 50 at � = 107 GeV. We choose these cutoff

values simply because the instability scale of this toy model

is of order O(107) GeV for a Higgs mass of 125 GeV for the

considered toy model.

For all tests we find approximately the same pattern. The

modification influences the low energy physics only if a

certain critical order of magnitude of the coupling cN is

approached. For instance, the stability of the Higgs poten-

tial and the IR Higgs mass is not altered as long as c4 < 10.

Once c4 becomes O(10), we obtain a slight increase of the

Higgs mass of O(0.1) GeV and a shift of a few GeV if c4 is

O(100). As long as the Higgs mass increases, the potential

remains stable during the entire RG flow. For larger N the

maximal order of magnitude of the coupling increases. It can

be estimated by cN ≈ 102.5N−8. As long as cN is smaller, the

IR physics is altered by less than a GeV. Thus, we observe a

certain flexibility of the UV potential around the exponential

function.

Apart from this study, we have also checked that simi-

lar shifts of the lower Higgs mass bound are possible for

other functional structures, e.g., by replacing the exponential

by a cosh or a nested exponential structure like eeb̃x2/2
. For

instance, the shift of the lower Higgs mass bound for b̃ ≈ 0.2

is roughly the same as in case of the exponential modifica-

tion with b = 1/2. As long as the lower order coefficients of

the Taylor expansion of the investigated function are of the
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same size as in the exponential case, we find similar shifts

of the Higgs mass consistency bounds without introducing a

metastability in the Higgs potential.

This fact can also be understood from the above mentioned

point of view. The stability issue of the Higgs potential and

mass is mainly governed by the running of the quartic cou-

pling for the class of bare potentials with infinite radius of

convergence. This running is directly modified by λ3 and (in

the broken regime) λ4. Higher-order couplings have only an

indirect impact via the running of these two couplings. Thus,

the lower order contributions of the expansion will have the

dominant impact as long as higher order couplings do not

become exorbitant large. Any function with a low order Tay-

lor expansion similar to the exponential function will result

in the same IR physics and therefore a similar shift of the

mass bound. Thus, we view the exponential just as a repre-

sentative of the class of functions which can be expanded in

an infinite Taylor series with a certain rate of convergence.

5 Conclusions and outlook

In this work, we addressed the impact of nonpolynomial bare

interactions on the stability of the Higgs potential and the

related lower Higgs mass consistency bound. We found that

deviations from the usual polynomial interactions might have

the possibility to circumvent the RG arguments which lead

to a metastability of the Higgs potential at large field values.

It was possible to construct various classes of bare potentials

that lead to an considerably shift of the scale of new physics

towards larger scales or even solved the stability problem

within a large Nf approximation for the effective potential.

Improving the results by taking 1/Nf corrections into

account, the space of allowed bare potentials obtained from

the mean-field analysis that are compatible with observed IR

physics was further constraint. At the same time, the extended

mean-field analysis offered new mechanisms to shift the scale

of new physics towards larger scales. In particular it turned

out that the nonpolynomial structures have to impose strong

contributions from the scalar fluctuations. This mechanism is

remarkable as nonperturbative physics in terms of a strongly

coupled Higgs sector is usually associated with the upper

Higgs mass bound, here we got a first glance on how these

effects might diminish the lower mass bound.

As scalar fluctuations are not considered within the mean-

field approximation, a suitable convergence property regard-

ing the 1/Nf expansion cannot be expected. However, we

were able to construct one particular family of generalized

bare potentials that shows some convergence behavior. For

this family an example was given that was able to diminish

the lower bound below present consistency bounds obtained

from finite-order generalizations of the bare action within

the considered toy model [66,70,71]. Moreover, we demon-

strated how bare potentials can be constructed via reverse

engineering such that the effective potential does not suffer

from a stability problem and is compatible with observed IR

physics.

However, to fully establish these mechanisms a full non-

perturbative RG flow is required. The challenging part of this

task is to compute the RG flow with a sufficiently high preci-

sion in order to separate the cutoff from the electroweak scale

and the scalar potential has to be investigated beyond local

approximations to investigate its global properties. Sophisti-

cated solvers based on pseudo-spectral methods have turned

out to be useful for this [96–100]. We were able to show, that

a further diminishing of the lower Higgs mass bound by non-

polynomial bare interactions is possible, if the full flow of

the scalar potential is considered for the class of exponential-

type bare interactions with an infinite radius of convergence.

For this class, the large Nf expansion captures all relevant

effects at least on a qualitative level.

Beyond these technical considerations, this work can be

extended in various directions. Even though the Brout–

Englert–Higgs effect is much more involved in a theory

with local gauge symmetry [101–111], a generalization of

this approximation to the full standard model is, of course,

more involved but straightforward. Moreover, we considered

only nonpolynomial generalizations of the scalar potential

here but also modifications of the kinetic terms might sta-

bilize the effective Higgs potential [112]. Besides solving

the stability problem, nonpolynomial structures might also

be able to resolve other open problems without introducing

new degrees of freedom or symmetries beyond the standard

model and offer interesting properties [113]. For instance,

the impact of nonpolynomial bare potentials in terms of the

building blocks of a resurgent transseries expansion can be

investigated to obtain a sufficiently strong first order phase

transition in the context of electroweak baryogenesis [114].

In addition, the presented results can be used to constrain

the underlying physics of the standard model. For instance,

certain classes of nonpolynomial bare interactions are not

compatible with observed IR physics. In case some theory

beyond the standard model generates such a nonpolynomial

structure in the bare Higgs potential, it cannot be a viable

extension of the standard model.
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