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The issue raised in this Letter is classical, not only in the sense of being nonquantum, but also in the

sense of being quite ancient: which subset of 4� 4 real matrices should be accepted as physical Mueller

matrices in polarization optics? Nonquantum entanglement or inseparability between the polarization and

spatial degrees of freedom of an electromagnetic beam whose polarization is not homogeneous is shown

to provide the physical basis to resolve this issue in a definitive manner.
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Entanglement is traditionally studied almost exclusively
in the context of quantum systems. However, this notion is
basically kinematic, and so is bound to present itself when-
ever and wherever the state space of interest is the tensor
product of two (or more) vector spaces. Polarization optics
of paraxial electromagnetic beams happens to have pre-
cisely this kind of a setting, and so one should expect
entanglement to play a role in this situation. It turns out
that entanglement in this nonquantum setup is not just a
matter of academic curiosity. We shall show in this Letter
that consideration of this nonquantum entanglement re-
solves a fundamental issue in classical polarization optics.
And it will appear that this issue could not have been
resolved without explicit consideration of entanglement.
We begin by outlining the structure of classical polariza-
tion optics [1–5].

The Mueller-Stokes Formalism.—Traditional Mueller-
Stokes formalism applies to plane electromagnetic waves
or, more generally, to uniformly polarized or elementary
beams (see below). If the wave propagates along the posi-
tive z axis, the complex-valued components E1, E2 of the
transverse electric field along the x and y directions can be
arranged into a column vector

E � E1

E2

� �
; (1)

called the Jones vector. (A scalar factor of the form
exp½iðkz�!tÞ� has been suppressed). While EyE ¼
jE1j2 þ jE2j2 is (a measure of) the intensity, the ratio � ¼
E1=E2 specifies the state of polarization.

When E is not deterministic, the state of polarization is
described by the polarization matrix (once called coher-
ency matrix) [1–3]

� � hEEyi ¼ hE1E
�
1i hE1E

�
2i

hE2E
�
1i hE2E

�
2i

� �
; (2)

where h� � �i denotes ensemble average. The two defining
properties of the polarization matrix are Hermiticity,�y ¼
�, and non-negativity,� � 0: every 2� 2matrix obeying
these two conditions is a valid polarization matrix. It is
clear that the intensity corresponds to tr�, and fully polar-
ized (pure) states describable by Jones vectors E corre-
spond to det� ¼ 0. Partially polarized or mixed states
correspond to det�> 0.
An alternative, but equivalent, way of describing the

polarization state of a plane wave is by means of the so-
called Stokes parameters. These are four real numbers,
traditionally denoted Si, (i ¼ 0; . . . ; 3) and connected to
the polarization matrix by the linear relations

S0 ¼ �11 þ�22; S1 ¼ �11 ��22;

S2 ¼ �12 þ�21; S3 ¼ ið�12 ��21Þ:
(3)

We note in passing that the Stokes parameters turn out to be
the coefficients of the expansion of � into a sum of Pauli
matrices (plus the unit matrix) [1]. The parameters Si,
(i ¼ 0; . . . ; 3), are measurable quantities and define the
components of the Stokes vector S 2 R4. It is seen, in
particular, that the intensity equals S0 ¼ tr�. While
Hermiticity of � is equivalent to reality of the Stokes
vector S, the non-negativity conditions tr�> 0, det� �
0 read S0 > 0, and S20 � S21 � S22 � S23 � 0, respectively.
The space of all real vectors S 2 R4 satisfying these two

conditions will be denoted by �ðpolÞ:

�ðpolÞ ¼ fS 2 R4jS0 > 0; S20 � S21 � S22 � S23 � 0g: (4)

It is the traditional state space for polarization optics.
Typical systems of interest in polarization optics are

spatially homogeneous (in the transverse plane), in the
sense that their action is independent of the coordinates
(x, y). If such a system is deterministic and acts linearly on
the field amplitude, it is described by a complex 2� 2
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numerical matrix J, the Jones matrix of the system [1–3]:

J: E ! E0 ¼ JE , � � hEEyi ! �0 ¼ hE0E0yi
¼ J�Jy: (5)

Anisotropic optical elements can be absorbing.
Accordingly, the intensity S0 ¼ tr� need not be preserved
and hence J need not be unitary. It is clear that Jones
systems map pure states ( det� ¼ 0) into pure states.

We can go from a pair of indices, each running over 1
and 2, to a single index running over 0 to 3 and vice versa,
according to the following correspondence rule:

~�0
~�1
~�2
~�3

2
6664

3
7775 ¼

�11

�12

�21

�22

2
6664

3
7775: (6)

The one-to-one relationship in Eq. (3) between S and �
may thus be written as the vector equation

S0
S1
S2
S3

2
6664

3
7775 ¼

1 0 0 1
1 0 0 �1
0 1 1 0
0 i �i 0

2
6664

3
7775

~�0
~�1
~�2
~�3

2
6664

3
7775: (7)

Linear optical systems of interest can be more general
than the ones described by Jones matrices. Such a general
system acts directly on the Stokes vector rather than
through the Jones vector. It is specified by a numerical 4�
4 real matrix called the Mueller matrix, transforming the
Stokes vectors linearly:

M: S ! S0 ¼ MS: (8)

Mueller matrix of a Jones system specified by a matrix J
will be called Mueller-Jones matrix MðJÞ.

Since M produces a linear transformation on S, the
linear invertible relationship (3) or (7) between S and �

implies thatM will induce a linear transformation HðMÞ on
�. Such a transformation may be written as [4]:

HðMÞ: � ! �0; �0
ij ¼

X
k‘

HðMÞ
ik;j‘�k‘: (9)

That �0 needs to be Hermitian for all Hermitian � de-

mands that the mapHðMÞ, viewed as a 4� 4matrix with ik
(going over 0 to 3) labeling the rows and j‘ labeling the
columns, be Hermitian. It can be seen that this correspon-
dence between real matrices M and Hermitian matrices

HðMÞ is one-to-one [4]. Elements of HðMÞ in terms of those
of M can be found in Eq. (8) of Ref. [4].

If the system described by M is a Jones system with

Jones matrix J, it is not difficult to see [4] thatHðMÞ ¼ ~J~Jy,
where ~J is the column vector associated with the 2� 2
matrix J according to a correspondence rule similar to that
of Eq. (6). Thus, we arrive at the following result of
fundamental importance [4].

Proposition 1.—A Mueller matrix M represents a Jones

system if and only if the associated Hermitian matrix HðMÞ

is a one-dimensional projection. If HðMÞ is such a projec-

tion ~J~Jy, then M ¼ MðJÞ, J being the 2� 2 matrix asso-
ciated with the column vector ~J.
As a consequence, we have [4,5]
Proposition 2.—A real matrix M can be realized as a

positive sum (ensemble) of Mueller-Jones matrices if and

only if the associated Hermitian matrix HðMÞ is positive

semidefinite. If HðMÞ ¼ P
k
~JðkÞ~JðkÞy, then M ¼ P

kMðJðkÞÞ
where MðJðkÞÞ is the Mueller-Jones matrix associated with

JðkÞ.
With this brief outline, we are ready to describe the

fundamental issue being addressed in the present Letter.

The Issue.—The Mueller-Stokes formalism takes �ðpolÞ
as the state space. Thus, given a 4� 4 real matrix M, in
order that it qualifies to be a Mueller matrix one should

demand that it maps the state space�ðpolÞ into itself. Let us
denote by M the collection of all such matrices. We shall

further denote byMðþÞ the collection ofMmatrices which
can be realized as positive sum of Mueller-Jones matrices

MðJÞ. It is clear that MðþÞ is contained in M. The struc-

ture ofMðþÞ is fairly simple: we know from Propositions 1

and 2 that elements of MðþÞ are in one-to-one correspon-

dence with non-negative 4� 4matricesHðMÞ [4,5]. But the
structure of M is considerably more involved. Owing to a
sequence of developments [6–10], which are surprisingly
recent in relative terms, a complete characterization of M
is presently available.

That elements ofMðþÞ are Mueller matrices is clear, for
they are realizable as positive sums of Jones systems. That
M matrices which fall outsideM are not Mueller matrices

is also clear, for they fail to map the state space �ðpolÞ into
itself. Thus the issue is really one about the gray domain

‘‘in between’’—the complement of MðþÞ in M: are these
M matrices physical Mueller matrices?
By definition, members of this domain cannot be real-

ized as positive sums of Jones systems. But they map�ðpolÞ
into itself. There exists, of course, no known scheme to
realize them physically. On the other hand there are
Mueller matrices, extracted from actual experiments re-
ported, which fall deep into this gray domain (we shall
consider later an example from Ref. [11]).
There are two difficulties in simply dismissing these

matrices as unphysical: first, the experimenters did not
realize them as positive sums of Jones systems, and so

the fact that they fall outside MðþÞ cannot be enough
reason to dismiss them; and second, within the Mueller-
Stokes formalism there seems to exist no additional quali-
fication we can demand of a Mueller matrix, over and

above the requirement that it should map �ðpolÞ into itself.
In this Letter we present a compelling physical ground

which judges every M matrix which is not an element of

MðþÞ as unphysical; it comes from consideration of en-
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tanglement or inseparability between the polarization and
spatial degrees of freedom of light beams.

Nonquantum entanglement.—Let us now go beyond
plane waves and consider paraxial electromagnetic beams.
The simplest beam field has, in a transverse plane z ¼
constant described by coordinates ðx; yÞ � �, the form
Eð�Þ ¼ ðE1x̂þ E2ŷÞc ð�Þ, where E1, E2 are complex con-
stants, and the scalar-valued function c ð�Þ may be as-
sumed to be square-integrable over the transverse plane:
c ð�Þ 2 L2ðR2Þ. We denoted by x̂, ŷ the unit vectors,
respectively, along the x, y axes. It is clear that the polar-
ization part ðE1x̂þ E2ŷÞ and the spatial dependence or
modulation part c ð�Þ of such an uniformly polarized
beam are well separated, allowing one to focus attention
on one aspect at a time. When one is interested in only the
modulation aspect, the part ðE1x̂þ E2ŷÞ may be sup-
pressed, thus leading to ‘‘scalar optics.’’ On the other
hand, if the spatial part c ð�Þ is suppressed we are led to
the traditional polarization optics or Mueller-Stokes for-
malism for plane waves.

Beams whose polarization and spatial modulation sepa-
rate in the above manner will be called elementary beams.
Suppose we superpose or add two such elementary beam
fields ðax̂þ bŷÞc ð�Þ and ðcx̂þ dŷÞ�ð�Þ. The result is not
of the elementary form ðex̂þ fŷÞ�ð�Þ, for any e, f, �ð�Þ,
unless either (a, b) is proportional to (c, d) so that one gets
committed to a common polarization, or c ð�Þ and �ð�Þ are
proportional so that one gets committed to a fixed spatial
mode. Thus, the set of elementary fields is not closed under
superposition.

Since superposition principle is essential for optics, we
are led to consider beam fields of the more general form
Eð�Þ ¼ E1ð�Þx̂þ E2ð�Þŷ, and consequently to pay atten-
tion to the implications of inseparability or entanglement
of polarization and spatial variation. This more general
form is obviously closed under superposition. We may
write Eð�Þ as a (generalized) Jones vector

E ð�Þ ¼ E1ð�Þ
E2ð�Þ

� �
; E1ð�Þ; E2ð�Þ 2 L2ðR2Þ: (10)

The intensity at location � corresponds to jE1ð�Þj2 þ
jE2ð�Þj2. This field is of the elementary or separable
form if and only if E1ð�Þ and E2ð�Þ are linearly dependent
(proportional to one another). Since such a proportionality
is rather exceptional, it is to be expected that, in a typical
electromagnetic beam, polarization and spatial modulation
are inseparably entangled.

We can handle fluctuating beams, by means of the so-
called beam-coherence-polarization (BCP) matrix
�ð�;�0Þ � hEð�ÞEð�0Þyi [12]:

�ð�;�Þ ¼ hE1ð�ÞE1ð�0Þ�i hE1ð�ÞE2ð�0Þ�i
hE2ð�ÞE1ð�0Þ�i hE2ð�ÞE2ð�0Þ�i

� �
: (11)

As the name suggests, the BCP matrix describes both the
coherence and polarization properties. It is a generalization

of the numerical matrix of Eq. (2), to the case of (possibly
inhomogeneously polarized) beam fields.
It is clear from the very definition in Eq. (11) of BCP

matrix that this matrix kernel, viewed as an operator, is
Hermitian non-negative:

�k‘ð�;�0Þ ¼ ��
‘kð�0;�Þ; ‘; k ¼ 1; 2;

QðFÞ ¼
Z

d2�d2�0Fð�Þy�ð�;�0ÞFð�0Þ � 0;

(12)

for any (well behaving) vectorFð�Þ. These are the defining
properties of the BCP matrix: every 2� 2 matrix of two-
point functions �k‘ð�;�0Þ meeting just these two condi-
tions is a valid BCP matrix of some beam of light.
Resolution of the issue.—In the BCP matrix of Eq. (11),

each of the four elements �k‘ð�;�0Þ ¼ hEkð�ÞE‘ð�0Þ�i is
an (infinite-dimensional) operator L2ðR2Þ ! L2ðR2Þ. For
the issue on hand, however, it proves sufficient to limit
ourselves to a much more restricted class of beams, corre-
sponding to a two-dimensional rather than infinite-
dimensional space. More precisely, let us consider those
(pure) beams that can be expressed as

E ð�Þ ¼ c 1ð�Þx̂þ c 2ð�Þŷ; (13)

where c 1 and c 2 are orthonormal functions. It should be
stressed that fields of the form of Eq. (13) are necessarily
entangled (inhomogeneously polarized).
The elements of the BCP matrix corresponding to Eð�Þ

in Eq. (13) take the form �k‘ð�;�0Þ ¼ c kð�Þc �
‘ð�0Þ.

According to Eq. (9), the transformed BCP matrix ele-
ments are

�0
ijð�;�0Þ ¼ X

k‘

HðMÞ
ik;j‘c kð�Þc �

‘ð�0Þ: (14)

The quadratic form Q appearing in Eq. (12) reads

QðFÞ ¼ X
ij

ZZ
�0

ijð�;�0ÞF�
i ð�ÞFjð�0Þd2�d2�0: (15)

Let us assume Fi, (i ¼ 1, 2), to have the form

Fið�Þ ¼
X
�

ci�c �ð�Þ; ði ¼ 1; 2Þ; (16)

where the (complex) constants ci�, (i, � ¼ 1, 2), can be
chosen at will. On inserting Eqs. (14) and (16) into Eq. (15)
and using the orthonormality of c 1 and c 2, we obtain

QðFÞ ¼ Qðfci�gÞ ¼
X
ij

X
��

HðMÞ
i�;j�c

�
i�cj�: (17)

Thus, the physical requirement Qðfci�gÞ � 0 for any

choice of the ci�’s demands HðMÞ to be non-negative.

This leads to our final result. Suppose HðMÞ is not non-
negative. Then, �0, the result of M acting on the inhomo-
geneously polarized Jones vector (13), fails to be non-
negative and hence is unphysical, showing in turn that M

could not have been physical. Thus HðMÞ � 0 is a neces-
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sary condition for M to be a physical Mueller matrix. On

the other hand, we have seen that if HðMÞ � 0 then M can
be physically realized as a positive sum of Jones systems,

showing thatHðMÞ � 0 is a sufficient condition forM to be
a Mueller matrix. We thus have

Theorem: The necessary and sufficient condition for M
to be a physical Mueller matrix is that the associated

Hermitian matrix HðMÞ � 0. Every physical Mueller ma-
trix is a positive sum of Mueller-Jones matrices.

Thus,M matrices which map �ðpolÞ into itself should be
called pre-Mueller matrices rather than Mueller matrices.
For, to be promoted to the status of Mueller matrices they

need to meet the stronger condition HðMÞ � 0 arising from
consideration of entanglement.

Discussion.— For a simple illustration of the gray region

between MðþÞ and M, the focus of this work, let us
consider M matrices of the diagonal form
diagðd0; d1; d2; d3Þ. It is clear that such an M will map

�ðpolÞ into�ðpolÞ, and hence be inM, iff jdk=d0j � 1, k ¼
1, 2, 3. In the Euclidean space R3 spanned by the parame-
ters (d1=d0, d2=d0, d3=d0) this corresponds to the solid

cube with vertices at (	 1,	1,	1). NowHðMÞ associated
with diagðd0; d1; d2; d3Þ, as computed from Eq. (8) of
Ref. [4], is

HðMÞ ¼ 1

2

d0 þ d1 0 0 d2 þ d3
0 d0 � d1 d2 � d3 0
0 d2 � d3 d0 � d1 0

d2 þ d3 0 0 d0 þ d1

2
6664

3
7775:

(18)

We see HðMÞ � 0 iff �d1 � d2 � d3 � d0, �d1 þ d2 þ
d3 � d0, d1 þ d2 � d3 � 1, and d1 � d2 þ d3 � d0. i.e.,
iff (d1=d0, d2=d0, d3=d0) is in the solid tetrahedron with
vertices at (1, 1, 1), (1, �1, �1), (� 1, 1, �1), and (� 1,
�1, 1), occupying one-third the volume of the cube.

SinceMueller-Jones matrices are physical, it is clear that
the matrix MðJÞMMðJ0Þ, where MðJÞ and MðJ0Þ are inver-
tible Mueller-Jones matrices, is a physical Mueller matrix
iff M is. As shown in Ref. [9], the symmetric Mueller
matrix reported by van Zyl et al. [11] corresponds to
ðd0; d1; d2; d3Þ ¼ ð0:9735; 0:9112; 0:4640;�0:3838Þ. This
clearly corresponds to a point inside our cube since jdkj<
d0, k ¼ 1, 2, 3. But it sits well outside the tetrahedron;
indeed, the third inequality d1 þ d2 � d3 � d0 reads
1:759 � 0:9735, a substantial violation.

Before we conclude, some remarks concerning use of
the term entanglement are in order. First, entanglement
encountered in quantum mechanics generically couples
variables of two (or more) physical systems. However,
entanglement could be between two different attributes
or degrees of freedom of one and the same system. An
example of the latter is the spin and spatial degrees of
freedom of an electron in d-dimensional space [13]. Our
problem of inhomogeneous polarization of optical beams

has the same kinematic or mathematical structure as that of
the quantum electron, with d ¼ 2.
Second, entanglement carries, in the quantum context, a

rich variety of implications such as nonlocality and Bell’s
inequality violation. Some aspects of entanglement are
purely kinematic and arise directly from the superposition
principle in the tensor product of two or more Hilbert
spaces, and such aspects can be expected to manifest in
classical wave optics as well. There are others which arise
from quantum measurement and the associated collapse of
states, but classical optics does not share in this luxury and
richness. The phrase nonquantum entanglement has been
used here to stress that certain situations in polarization
optics need the same type of mathematical description that
applies to quantum entanglement, not to suggest that quan-
tum phenomena have necessarily a correspondence within
classical optics.
Finally, it has been appreciated for long [14] that the

applicability of one and the same type of mathematics to
two different physical realms often leads to beneficial
advancements in one field, on the basis of knowledge
acquired in the other. In the present Letter, we have seen
just one important example of this.
In view of the rapidly growing current interest in an

unified approach to coherence and polarization in optics, it
is hoped that our result will stimulate further research into
the kinematic role of entanglement in classical optics.
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