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Abstract. Nonradial oscillations of relativistic neutron stars with a solid crust are computed in the relativistic Cowling approx-
imation, in which all metric perturbations are ignored. For the modal analysis, we employ three-component relativistic neutron
star models with a solid crust, a fluid core, and a fluid ocean. As a measure for the relativistic effects on the oscillation modes,
we calculate the relative frequency difference defined as δσ/σ ≡ (σGR − σN)/σGR, where σGR and σR are, respectively, the
relativistic and the Newtonian oscillation frequencies. The relative difference δσ/σ takes various values for different oscillation
modes of the neutron star model, and the value of δσ/σ for a given mode depends on the physical properties of the models. We
find that |δσ/σ| is less than ∼0.1 for most of the oscillation modes we calculate, although there are a few exceptions such as the
fundamental (nodeless) toroidal torsional modes in the crust, the surface gravity modes confined in the surface ocean, and the
core gravity modes trapped in the fluid core. We also find that the modal properties, represented by the eigenfunctions, are not
strongly affected by introducing general relativity. It is however shown that the mode characters of the two interfacial modes,
associated with the core/crust and crust/ocean interfaces, have been interchanged between the two through an avoided crossing
when we move from Newtonian dynamics to general relativistic dynamics.
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1. Introduction

After the discovery of the r mode instability in neutron stars
driven by gravitational radiation reaction (Andersson 1998;
Friedman & Morsink 1998), nonradial oscillations of relativis-
tic neutron stars has attracted much wider interest than be-
fore in astrophysics (see a recent review, e.g., by Andersson
& Kokkotas 2001). The relativistic formulation of nonradial
oscillations of f luid neutron stars was first given by Thorne
and his collaborators (e.g., Thorne & Campolattaro 1967; Price
& Thorne 1969; Thorne 1969a,b), and later on extended to
the case of neutron stars with a solid crust in their interior
(Schumaker & Thorne 1983, see also Finn 1990). Since one
of the main concerns of these studies was gravitational waves
generated by the stellar pulsations (e.g., Thorne 1969a), it was
essential to include the perturbations in the metric gαβ in order
to obtain a consistent description of the gravitational waves.
However, it was the metric perturbations that made it extremely
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difficult to treat both analytically and numerically the oscilla-
tion modes in relativistic stars.

McDermott et al. (1983) introduced a relativistic version of
the Cowling approximation, in which all the Eulerian metric
perturbations δgαβ are neglected in the relativistic oscillation
equations derived by Thorne & Campolattaro (1967). Under
the relativistic Cowling approximation, they calculated the
p-, f -, and g-modes of relativistic f luid neutron star models
to examine how the oscillation modes depend on the model
properties. The relativistic Cowling approximation employed
by McDermott et al. (1983) was shown to be good enough
to calculate the p-modes for non-rotating polytropic stars by
Lindblom & Splinter (1990), who compared the fully relativis-
tic oscillation frequencies to those obtained in the relativis-
tic Cowling approximation. Assuming slow rotation, Yoshida
& Kojima (1997) have also carried out similar computations
for the f - and p-modes of polytropic models and they con-
firmed the good applicability of the relativistic Cowling ap-
proximation. Quite recently, Yoshida & Lee (2002) have shown
in the relativistic Cowling approximation the existence of the
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relativistic r modes1 with l = m, which are regarded as a
counter part of the Newtonian r modes. We believe that the
relativistic Cowling approximation is quite useful to investi-
gate the oscillation modes of relativistic stars, although we un-
derstand that under the approximation we cannot discuss in-
herently relativistic oscillation modes like w-modes (see, e.g.,
Andersson et al. 1996).

In their Newtonian calculations, McDermott et al. (1988)
have shown that cold neutron stars with a solid crust can sup-
port a rich variety of oscillation modes (see also Strohmayer
1991; Lee & Strohmayer 1996; Yoshida & Lee 2001). The
purposes of this paper are to calculate the various oscillation
modes of relativistic neutron stars with a solid crust in the
relativistic Cowling approximation, and to discuss the effects
of general relativity on the modal property of the oscillation
modes. We regard this paper as an extension of the studies
by McDermott et al. (1983) and McDermott et al. (1988). In
Sect. 2, we derive relativistic oscillation equations for the solid
crust in the relativistic Cowling approximation following the
formulation developed by Schumaker & Thorne (1983) and
Finn (1990). Numerical results are discussed in Sect. 3 for non-
radial modes of three relativistic neutron star models with a
solid crust. Sect. 4 is devoted to discussion and conclusion. In
this paper, we use units in which c = G = 1, where c and G
denote the velocity of light and the gravitational constant, re-
spectively.

2. Formulation

For modal analysis of neutron stars with a solid crust, we solve
general relativistic pulsation equations derived under the rel-
ativistic Cowling approximation, in which all the metric per-
turbations in the matter equations are neglected. We assume
that the solid crust is in a strain-free state in the equilibrium
unperturbed state and the strain in the crust are generated by
small amplitude perturbations superposed on the unperturbed
state (see, e.g., Aki & Richards 1980). For the background un-
perturbed state, it is therefore possible to assume a static and
spherical symmetric state, for which the geometry is given by
the following line element:

(ds2)(0) = g(0)αβdxαdxβ

= −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2 sin2 θdϕ2, (1)

where the subscript (0) is used to refer to the unperturbed state.
The four-velocity of the stellar material in the equilibrium is
given by

uα(0) = e−ν(r) tα, (2)

where tα denotes the timelike Killing vector of the unperturbed
spacetime.

In the relativistic Cowling approximation, the basic equa-
tions for pulsations are obtained from the energy and momen-
tum conservation laws:

uα∇βT βα = 0, (energy conservation law) (3)
1 We should note that several studies about the general relativis-

tic r-mode have been done (e.g., Kojima 1998; Kojima & Hosonuma
2000; Lockitch et al. 2001; Yoshida 2001; Ruoff & Kokkotas 2001).

qαγ∇βT βα = 0, (momentum conservation law) (4)

where ∇α is the covariant derivative associated with the metric,
Tαβ is the energy-momentum tensor, and qαβ is the projection
tensor with respect to the fluid four-velocity uα, which is de-
fined by

qαβ = δ
α
β + uαuβ, (5)

where δβα denotes the Kronecker delta.
For relativistic analysis of vibration of the solid crust in

neutron stars, we follow the formulation given by Schumaker
& Thorne (1983) and Finn (1990). If we define the rate of shear
σαβ and the rate of expansion θ as

σαβ =
1
2

qγαq
δ
β (∇γuδ + ∇δuγ) − 1

3
qαβ θ, (6)

θ = qβα∇βuα = ∇αuα, (7)

the shear strain tensor Σαβ is determined, in terms of σαβ and θ,
as a solution of the differential equation given by

Lu Σαβ =
2
3
θ Σαβ + σαβ, (8)

where Lu is the Lie derivative along the four-velocity field of
the matter (Carter & Quintana 1972). Once Eq. (8) is solved
to give the shear strain tensor Σαβ in terms of σαβ and θ (see
Schumaker & Thorne 1983; Finn 1990), the total stress-energy
tensor is given by

Tαβ = ρ uαuβ + p qαβ − 2µΣαβ, (9)

where µ stands for the isotropic shear modulus, and we have
assumed a Hookean relationship between the shear strain and
stress tensors. Here, ρ and p mean the mass-energy density and
the isotropic pressure, respectively. Note that Σ(0)αβ = 0 since
we have assumed the strain-free state in the equilibrium of the
star.

To discuss nonradial oscillations of a star, we employ
a Lagrangian perturbation formalism (see, e.g., Friedman &
Schutz 1975; Friedman 1978), in which a Lagrangian displace-
ment vector is introduced to connect fluid elements in the equi-
librium state to the corresponding elements in the perturbed
state. In this formalism, the Lagrangian change ∆Q in a quan-
tity is related to its Eulerian change δQ by

∆Q = δQ + LζQ, (10)

where Lζ denotes the Lie derivative along the displacement
vector ζα. If we apply this formalism to oscillations of rela-
tivistic stars, we have, for example,

∆gαβ = δgαβ + ∇αζβ + ∇βζα, (11)

and

∆uα =
1
2

uαuβuγ∆gβγ. (12)

The Eulerian perturbation in the velocity field δûβ ≡ q(0)
α
βδu

β is
then given by

δûα = q(0)
α
β (Lu(0)ζ)

β. (13)
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Notice that δgαβ = 0 and hence δûα = δuα in the relativis-
tic Cowling approximation. Because the background state is in
a hydrostatic equilibrium, the time dependence of all the per-
turbed quantities can be given by eiσt, where σ is a constant
frequency measured by an inertial observer at the spatial in-
finity. The relation between the Lagrangian displacement ζα

and the velocity perturbation δûα is then given as an algebraic
equation:

δûα = iσ e−ν(r) ζα. (14)

Note that the gauge freedom in ζα has been used to demand
the relation uαζα = 0. The velocity field of a neutron star in a
perturbed state may be written as

uα = uα(0) + ηδû
α + O(η2), (15)

where η is a small expansion parameter introduced for our con-
venience. The mass-energy density ρ and the pressure p in the
perturbed state are also given by

ρ = ρ(0) + η (ρ(0) + p(0))
(
Γδp
p(0)
− ζαAα

)
+ O(η2), (16)

p = p(0) + η δp + O(η2), (17)

where Aα is the relativistic Schwarzschild discriminant de-
fined as

Aα =
1

ρ(0) + p(0)
∇αρ(0) − 1

Γp(0)
∇αp(0), (18)

and Γ is the adiabatic index defined as

Γ =
ρ(0) + p(0)

p(0)

(
∂p(0)

∂ρ(0)

)
ad

· (19)

To derive Eq. (16), we have used the adiabatic condition for the
perturbations:

∆p =
Γ p(0)

ρ(0) + p(0)
∆ρ. (20)

Assuming spherical symmetry of the background spacetime,
we may expand the perturbations in terms of appropriate tensor
spherical harmonic functions. The Lagrangian displacement, ζk

and the pressure perturbation, δp/(ρ(0) + p(0)) can be written as

ζr = rS l(r)Ym
l (θ, ϕ) eiσt, (21)

ζθ =

(
Hl(r)

∂Ym
l (θ, ϕ)

∂θ
− Tl′(r)

1
sin θ

∂Ym
l′ (θ, ϕ)

∂ϕ

)
eiσt, (22)

ζϕ =
1

sin2 θ

(
Hl(r)

∂Ym
l (θ, ϕ)

∂ϕ
+ Tl′(r) sin θ

∂Ym
l′ (θ, ϕ)

∂θ

)
eiσt, (23)

δp
ρ(0) + p(0)

= δUl(r)Ym
l (θ, ϕ) eiσt, (24)

where Ym
l is a spherical harmonic function (Regge & Wheeler

1957; Thorne 1980).
By substituting Eqs. (9), (15)–(17), together with the per-

turbations defined by Eqs. (21) to (24), into Eqs. (3) and (4),
and collecting the terms proportional to the small expansion

parameter η, we obtain a system of perturbation equations for
the solid crust:

r
dz1

dr
= −

(
1 +

2α2

α3
+ U2

)
z1 +

1
α3

z2 +
α2

α3
l(l + 1) z3 , (25)

r
dz2

dr
=

{ (
−3 − U2 + U1 − e2λc1σ̄

2
)

V1

+
4α1

α3
(3α2 + 2α1)

}
z1 +

(
V2 − 4

α1

α3

)
z2

+

{
V1 − 2α1

(
1+

2α2

α3

)}
l(l + 1)z3+e2λl(l + 1)z4 , (26)

r
dz3

dr
= −e2λ z1 +

e2λ

α1
z4 , (27)

r
dz4

dr
= −

(
−V1 + 6Γ

α1

α3

)
z1 − α2

α3
z2

−
{

c1σ̄
2V1 + 2α1 − 2α1

α3
(α2 + α3) l (l + 1)

}
z3

− (3 + U2 − V2) z4 , (28)

r
dz5

dr
=

e2λ

α1
z6 , (29)

r
dz6

dr
= −(3 + U2 − V2)z6

−
{
c1σ̄

2V1 − α1(l′ + 1)(l′ − 2)
}

z5 , (30)

where the dependent variables z1 to z6 are defined as

z1 = S l(r), (31)

z2 = 2α1e−λ
d
dr

(
reλS l(r)

)
+

(
Γ − 2

3
α1

)

×
{

e−λ

r2

d
dr

(
r3eλS l(r)

)
− l(l + 1)Hl(r)

}
, (32)

z3 = Hl(r), (33)

z4 = α1

(
e−2λr

dHl(r)
dr

+ S l(r)
)
, (34)

z5 = Tl′(r), (35)

z6 = α1 e−2λr
dTl′(r)

dr
(36)

and the various quantities which appear in the coefficients are

α1 =
µ

p(0)
, α2 = Γ − 2

3
α1 , α3 = Γ +

4
3
α1 , (37)

V1 =

(
1 +
ρ(0)

εp(0)

)
r

dν
dr
, V2 =

ρ(0)

εp(0)
r

dν
dr
,

U1 =

(
dν
dr

)−1 d
dr

(
r

dν
dr

)
, U2 = r

dλ
dr
, (38)

c1 = ε
M
R3

r e−2εν

(
dν
dr

)−1

, (39)

e2λ =

(
1 − ε 2M(r)

r

)−1

, M(r) =
∫ r

0
4πr2ρ(0)dr , (40)

r
dν
dr
= ε e2λ

(
4πr2εp(0) +

M(r)
r

)
,

r
dλ
dr
= ε e2λ

(
4πr2ρ(0) − M(r)

r

)
· (41)
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Here, M = M(R) and R are the mass and the radius of the
star, and σ̄ = σ

√
R3/M is the dimensionless frequency. In

Eqs. (38)–(41), we have introduced a factor ε to indicate the
hidden factor 1/c2 that represents the strength of the general
relativistic degree. Fully relativistic oscillation equations for
the solid crust are regained for ε = 1, and the Newtonian os-
cillation equations are obtained in the limit of ε → 0, which
are the same as those derived by McDermott et al. (1988). We
can see that Eqs. (25)–(28) are decoupled from Eqs. (29), (30)
because the background spacetime is spherical symmetric. The
former describe spheroidal (or polar parity) oscillations, and
the latter toroidal (or axial parity) ones.

In the fluid regions, the oscillation equations to be solved
are given by

r
dy1

dr
= −

(
3 − V1

Γ
+ U2

)
y1 −

(
V1

Γ
− l(l + 1)

c1σ̄2

)
y2, (42)

r
dy2

dr
= (e2λ c1σ̄

2 + rAr) y1 − (U + rAr)y2, (43)

where

y1 = S l(r), y2 =

(
r

dν
dr

)−1

δUl(r) = c1σ̄
2Hl. (44)

Note that Eqs. (42) and (43), which come from Eqs. (25)–(28)
in the limit of µ → 0, are essentially the same as those derived
by McDermott et al. (1983) for spheroidal oscillation modes.
Equations (29)–(30), which describe toroidal torsional oscilla-
tions, become trivial in the limit of µ → 0 because there is
no restoring force that is responsible for the toroidal torsional
oscillations. To calculate the spheroidal modes, Eqs. (25)–(28)
are integrated in the solid crust, and Eqs. (42), (43) in the fluid
core and the surface ocean. For the toroidal torsional modes,
Eqs. (29), (30) should be solved only in the solid crust.

For the spheroidal modes the outer boundary condition is
given at the stellar surface (r = R) by ∆p = 0, which reduces to

y1 − y2 = 0, (45)

and the inner boundary condition is the regularity condition at
the stellar center given by

c1σ̄
2y1 − ly2 = 0. (46)

The jump conditions at the interfaces between the fluid and the
solid regions are given by the continuity conditions, across the
perturbed interface, of the stress Pα on the interface, where

Pα = (pqαβ − 2µΣαβ) Nβ, (47)

and Nβ is the unit vector normal to the perturbed interface
(see, e.g., Finn 1990). The normal form of the core/crust or
crust/ocean interface is given by d(r − η ζr) = nαdxα for the ra-
dial coordinate of the perturbed interface given by r = Ri+η ζ

r,
where Ri is the radius of the core/crust or crust/ocean interface
in the unperturbed state. Thus, the corresponding unit normal
one-form Nα have the components as follows:

Nt = −eλ η iσrS l(r) Ym
l (θ, ϕ) eiσt + O(η2),

Nr = eλ + O(η2), (48)

Table 1. Neutron star models.

Model M (M�) R (km) ρc (g cm3) Tc (K) GM/(c2R)

NS05T7 0.503 9.839 9.44 × 1014 1.03 × 107 7.54 × 10−2

NS05T8 0.503 9.785 9.44 × 1014 9.76 × 107 7.59 × 10−2

NS13T8 1.326 7.853 3.63 × 1015 1.05 × 108 2.49 × 10−1

Nθ = −eλ η rS l(r)
∂Ym

l (θ, ϕ)

∂θ
eiσt + O(η2),

Nϕ = −eλ η rS l(r)
∂Ym

l (θ, ϕ)

∂ϕ
eiσt + O(η2).

The jump conditions for the spheroidal modes at the interface
are then given by

y1 = z1 , V1(y1 − y2) = z2, z4 = 0. (49)

For the toroidal torsional modes, the boundary conditions are
applied at the top and the bottom of the solid crust, and they are

z6 = 0. (50)

By imposing the boundary conditions given above, we can
solve our basic equations as an eigenvalue problem with respect
to the eigenvalue σ̄. Here, we employ a Henyey type relaxation
method to obtain numerical solutions to our basic equations
(see, e.g., Unno et al. 1989).

3. Numerical results

Neutron star models that we use in this paper are the same
as those used in the modal analysis by McDermott et al.
(1988). These models are taken from the evolutionary se-
quences for cooling neutron stars calculated by Richardson
et al. (1982), where the envelope structure is constructed by
following Gudmundsson et al. (1983). They are composed of
a fluid core, a solid crust and a surface fluid ocean. The inte-
rior temperature is finite and is not constant as a function of
the radial distance r. The models are not barotropic and the
Schwarzschild discriminant |A| has finite values in the interior
of the star. The models we use are called NS05T7, NS05T8,
and NS13T8, and their physical properties such as the total
mass M, the radius R, the central density ρc, the central tem-
perature Tc and the relativistic factor GM/c2R are summarized
in Table 1 (for other quantities, see McDermott et al. 1988).

To classify the various oscillation modes of the three com-
ponent models, we use almost the same nomenclature as that
employed by McDermott et al. (1988). We let pk refer to the
acoustic modes of the kth overtone. The internal gravity modes
confined in the surface ocean are denoted as gs

k and those in the
fluid core as gc

k, where k indicates the overtone number. The
eigenfrequencies of the f modes are usually found between
the p1 and g1 modes. Associated with the fluid-solid interfaces
in the models, there are two interfacial modes, which we denote
as i1 and i2 such that σ(i1) ≤ σ(i2). The sk modes are spheroidal
shear dominated modes of the k th overtone, the amplitudes of
which are strongly confined in the solid crust. The tk modes are
toroidal shear dominated modes of the k th overtone propagat-
ing only in the solid crust. Note that the pk-, gk-, f -, i1(2), and
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Table 2. Eigenfrequencies σ̄ (l = 2) of NS05T7.

mode σ̄N σ̄GR δσ/σ

(Spheroidal)
gc

1 1.998 × 10−5 1.625 × 10−5 −0.230
gs

2 2.037 × 10−3 1.760 × 10−3 −0.158
gs

1 3.230 × 10−3 2.787 × 10−3 −0.159
i1 8.282 × 10−3 7.499 × 10−3 −0.104
i2 1.029 × 10−1 9.717 × 10−2 −0.059
s1 3.093 × 10−1 3.159 × 10−1 0.021
s2 5.556 × 10−1 5.548 × 10−1 −0.001
f 1.886 × 100 1.823 × 100 −0.034

p1 4.038 × 100 3.978 × 100 −0.015
p2 4.736 × 100 4.710 × 100 −0.006

(Toroidal)
t0 4.019 × 10−2 3.619 × 10−2 −0.111
t1 3.286 × 10−1 3.279 × 10−1 −0.002
t2 5.633 × 10−1 5.609 × 10−1 −0.004
t3 7.346 × 10−1 7.355 × 10−1 0.001

sk modes are classified as spheroidal modes while the tk modes
as toroidal modes.

In the Newtonian limit of ε → 0, we calculate var-
ious oscillation modes with l = 2 for the three neutron
star models NS05T7, NS05T8, and NS13T8, and tabulate
the Newtonian eigenfrequencies, which we denote as σ̄N, in
Tables 2 through 4. These tables confirm that the Newtonian
frequencies obtained in this paper are in good agreement with
those computed by McDermott et al. (1988). Assuming ε =
1, we also compute the corresponding relativistic oscillation
modes with l = 2, and tabulate the relativistic eigenfrequen-
cies, which we denote as σ̄GR, in Tables 2 through 4, in which
the relative frequency differences defined as δσ/σ ≡ (σGR −
σN)/σGR are also given. The relative difference δσ/σ takes
various values for different oscillation modes, and the value of
δσ/σ of a given mode is also dependent on the physical prop-
erties of the neutron star models. We find |δσ/σ| <∼ 0.1 for
most of the oscillation modes we calculate. The elastic sk and
tk modes with k ≥ 1 have particularly small values of |δσ/σ|,
which are at most a few percent. However, there are some ex-
ceptions, and the values of δσ/σ become as large as −0.45 for
the t0 modes and ∼−1 for the gs- and gc-modes for the model
NS13T8, which is the most compact one among the three. If
we consider the gravitational redshift as one of the general rel-
ativistic effects that are responsible for the difference from the
Newtonian oscillation frequency, we may have σ̃GR = eν(r)σN

and hence (σ̃GR−σN)/σ̃GR = 1−e−ν(r), which is negative since
ν(r) < 0. Although this estimation gives a consistent result for
the surface gs modes confined in the surface ocean and for the
core gc modes trapped in the fluid core, it does not always give
good estimations of the difference as suggested by the tables. In
fact, we have positive δσ/σ for some oscillation modes. This is
understandable, however, since the eigenfunctions usually pos-
sess large radial extent in the interior of stars, and the eigen-
frequencies are dependent on the equilibrium quantities which
contain terms and factors which are absent in the Newtonian
oscillation equations.

Table 3. Eigenfrequencies σ̄ (l = 2) of NS05T8.

mode σ̄N σ̄GR δσ/σ

(Spheroidal)
gc

1 2.248 × 10−4 1.821 × 10−4 −0.234
gs

2 1.297 × 10−2 1.102 × 10−2 −0.177
gs

1 1.507 × 10−2 1.289 × 10−2 −0.169
i1 5.346 × 10−2 5.894 × 10−2 0.093
i2 1.002 × 10−1 9.236 × 10−2 −0.085
s1 3.251 × 10−1 3.299 × 10−1 0.014
s2 5.755 × 10−1 5.746 × 10−1 −0.002
f 1.873 × 100 1.811 × 100 −0.035

p1 4.102 × 100 4.027 × 100 −0.019
p2 4.766 × 100 4.747 × 100 −0.004

(Toroidal)
t0 3.999 × 10−2 3.600 × 10−2 −0.111
t1 3.419 × 10−1 3.410 × 10−1 −0.003
t2 5.841 × 10−1 5.812 × 10−1 −0.005
t3 8.148 × 10−1 8.128 × 10−1 −0.002

Table 4. Eigenfrequencies σ̄ (l = 2) of NS13T8.

mode σ̄N σ̄GR δσ/σ

(Spheroidal)
gc

1 1.269 × 10−4 6.017 × 10−5 −1.109
gs

2 6.115 × 10−3 3.126 × 10−3 −0.956
gs

1 7.548 × 10−3 3.905 × 10−3 −0.933
i1 1.862 × 10−2 2.357 × 10−2 0.210
i2 3.326 × 10−2 2.985 × 10−2 −0.114
s1 4.512 × 10−1 4.528 × 10−1 0.004
s2 7.704 × 10−1 7.685 × 10−1 −0.002
f 1.434 × 100 1.249 × 100 −0.148

p1 3.967 × 100 3.038 × 100 −0.306
p2 5.511 × 100 4.602 × 100 −0.197

(Toroidal)
t0 1.897 × 10−2 1.309 × 10−2 −0.449
t1 4.534 × 10−1 4.533 × 10−1 −0.000
t2 7.727 × 10−1 7.695 × 10−1 −0.004
t3 1.105 × 100 1.100 × 100 −0.004

For the various oscillation modes of NS13T8, we display
the displacement vector ζα versus the radial coordinates r/R or
log(1− r/R) in Figs. 1 through 8, where the amplitude normal-
ization of the eigenfunctions is given by y1 = 1 at r = R for the
spheroidal modes and z5 = 1 at r = Rout for the toroidal modes
with Rout being the radius of the ocean-crust interface. Notice
that for the gc modes, the normalization condition Hl(Rin) = 1
is adapted because the modes are very insensitive to the behav-
ior of the eigenfunctions in the surface ocean, where Rin is the
radius at the bottom of the crust. The eigenfunctions obtained in
the Newtonian calculations are also plotted for comparison in
each of the figures. From Figs. 1 through 8, we can see that the
basic properties of the eigenfunctions of the relativistic modes
are not very much different from those of the corresponding
Newtonian modes, except for the interfacial modes (see the
next paragraph). In this sense, we can say that general rela-
tivity does not bring about any essential changes in the modal
properties represented by the eigenfunctions.
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Fig. 1. Displacement vectors rS 2/R and rH2/R of the gc
1 mode for the

model NS13T8, given as a function of r/R. Here, the normalization of
the eigenfunction is chosen as H2(Rin) = 1, where Rin is the radius at
the bottom of the crust. The Newtonian eigenfunctions are shown as
well as the relativistic ones.

Fig. 2. Displacement vectors rS 2/R and rH2/R of the gs
1 mode for the

model NS13T8, given as a function of log(1− r/R). Here, the normal-
ization of the eigenfunction is chosen as S 2(R) = 1. The Newtonian
eigenfunctions are shown as well as the relativistic ones.

As shown by Figs. 3 and 4, the relativistic eigenfunctions
of the interfacial modes i1 and i2 are at first sight quite differ-
ent from the Newtonian eigenfunctions. Since the eigenfunc-
tions of the relativistic i1(2) mode are rather similar to those
of the Newtonian i2(1) mode, it is tempting to make a guess
that the modal properties have been exchanged between the
two modes when we move from Newtonian dynamics to rel-
ativistic dynamics. In their Newtonian calculation, McDermott
et al. (1988) showed that the properties of the i modes are very

Fig. 3. Same as Fig. 2 but for the i1 mode.

Fig. 4. Same as Fig. 3 but for the i2 mode.

sensitive to the changes in the physical quantities near the in-
terfaces, and mentioned a numerical experiment in which they
computed the two interfacial modes by artificially reducing the
bulk modulus µ and found an avoided crossing between the two
modes through which the modal characters are interchanged
with each other. Inspired by this report, we have carried out a
numerical experiment, calculating the two interfacial modes as
a function of ε for the model NS13T8. Plotting the frequencies
of the two modes versus ε in Fig. 9, we confirm the occurrence
of an avoided crossing between the two modes at ε ∼ 0.67,
through which the modal characters of the two have been ex-
changed with each other. As ε increases from ε = 0 (Newtonian
limit), the effective local shear modulus µ in the solid crust
decreases because of the gravitational redshift effects, as a re-
sult of which the two interfacial modes experience the avoided
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Fig. 5. Same as Fig. 4 but for the s1 mode.

Fig. 6. Displacement vectors rS 2/R and rH2/R of the f mode for the
model NS13T8, given as a function of r/R. Here, the normalization of
the eigenfunction is chosen as S 2(R) = 1. The Newtonian eigenfunc-
tions are shown as well as the relativistic ones.

crossing when we move from Newtonian dynamics to relativis-
tic dynamics.

4. Conclusion

In this paper, we have calculated a variety of oscillation modes
of relativistic neutron stars with a solid crust in the relativistic
Cowling approximation, in which all metric perturbations are
ignored. We find |δσ/σ| is less than ∼0.1 for most of the os-
cillation modes with l = 2, although there are some exceptions
such as the surface gravity modes, the core gravity modes, and
the nodeless toroidal torsional modes. We also find that the es-
sential modal properties represented by the eigenfunctions are

Fig. 7. Same as Fig. 6 but for the p1 mode.

Fig. 8. Displacement vector rT2/R of the t0 and the t1 modes of the
neutron star model NS13T8, given as a function of r/R. Here, normal-
ization of the eigenfunction is chosen as T2(Rout) = 1, where Rout is the
radius at the crust/ocean interface. The Newtonian eigenfunctions are
shown as well as the relativistic ones. Note that two curves for rT2/R
nearly overlap each other.

not strongly affected by introducing general relativity in the
sense that the relativistic eigenfunctions of a mode have almost
the same properties as the corresponding Newtonian eigenfunc-
tions. An exception may be the two interfacial modes whose
eigenfunctions differ from their Newtonian eigenfunctions, and
we have shown that this can be explained as a result of the mode
exchange between the two modes through an avoided crossing
that occurs when we move from Newtonian dynamics to rela-
tivistic dynamics.
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Fig. 9. The avoided crossing between the i1 and i2 mode of the model
NS13T8, where ε is the parameter that represents the strength of gen-
eral relativistic effects. The avoided crossing happens at ε ∼ 0.67.

Needless to say, nonradial oscillations of neutron stars
should be treated within the framework of general relativity
because of their strong gravity. At present, however, we can-
not investigate the pulsations of neutron stars in all the as-
pects by using fully general relativistic formalism because of
the complexity general relativity brings about2. One of the sim-
plest ways to study the oscillations of a neutron star is to treat
the problems within the framework of Newtonian dynamics,
that is, to solve the Newtonian oscillation equations for neu-
tron star models constructed with the Newtonian hydrostatic
equations. However, it is obvious that this Newtonian treatment
cannot be fully approved for neutron stars since the Newtonian
equilibrium models do not give us correct mass and radius
for the stars. To reduce the distance between fully relativis-
tic and Newtonian calculations of nonradial oscillations of the
stars, we may use relativistic equilibrium models and solve
the Newtonian oscillation equations, which was the strategy
taken by McDermott et al. (1988). In this paper, as an exten-
sion of the study by McDermott et al. (1988), we solved rela-
tivistic oscillation equations derived in the relativistic Cowling
approximation for relativistic neutron star models with a solid
crust. Our calculation confirmed that the classification scheme
McDermott et al. (1988) employed for the oscillation modes
of neutron stars with a solid crust is valid even if we integrate
relativistic oscillation equations.

2 One of the problems that appear in general relativistic formalism
is the existence of gravitational waves and a necessity to deal with a
complex eigenvalue problem corresponding to quasi-normal modes.
Some authors have treated this problem (e.g., Lindblom & Detweiler
1983; Leins et al. 1993; Andersson et al. 1995).
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