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ABSTRACT: The behavior of metals across a broad
frequency range from microwave to ultraviolet frequencies
is of interest in plasmonics, nanophotonics, and metama-
terials. Depending on the frequency, losses of collective
excitations in metals can be predominantly classical resistive
effects or Landau damping. In this context, we present first-
principles calculations that capture all of the significant
microscopic mechanisms underlying surface plasmon decay
and predict the initial excited carrier distributions so
generated. Specifically, we include ab initio predictions of
phonon-assisted optical excitations in metals, which are
critical to bridging the frequency range between resistive
losses at low frequencies and direct interband transitions at
high frequencies. In the commonly used plasmonic materials, gold, silver, copper, and aluminum, we find that resistive
losses compete with phonon-assisted carrier generation below the interband threshold, but hot carrier generation via direct
transitions dominates above threshold. Finally, we predict energy-dependent lifetimes and mean free paths of hot carriers,
accounting for electron−electron and electron−phonon scattering, to provide insight toward transport of plasmonically
generated carriers at the nanoscale.
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Plasmons provide a pathway to manipulate electro-
magnetic radiation at nanometer length scales1,2 and
femtosecond time scales.3 Illumination of a metallic

structure produces strong optical near-fields that initiate a
cascade of processes with multiple outcomes, including the
excitation of surface plasmons, their radiative decay to photons,
and their nonradiative decay in the material.4

Nonradiative plasmon decay includes the generation of
electron−hole pairs. These electron and hole energies depend
on the material and the plasmon energy and are considered
“hot” when significantly larger than those of thermal excitations
at ambient temperatures. These hot carriers undergo fast
internal relaxation but can be ejected into semiconductor and
molecular systems, as clearly demonstrated in several recent
device applications ranging from energy conversion and
photocatalysis to photodetection. In particular, demonstrations
of photochemistry driven by both hot electrons5−8 and hot
holes9 raise interesting questions regarding the time scales of
plasmonic hot carrier generation and transport.10−12

In addition to the visible and ultraviolet plasmonic response
of metals, the behavior of metals at microwave and infrared
frequencies is of broad interest.13−15 Losses in metals can

proceed either through classical resistive dissipation or single-
particle excitations. For plasmons, the collective excitations of
electrons in metals, these excitations constitute Landau
damping that results in generating highly energetic carriers.
Direct optical excitation of carriers in most metals is allowed
only above an interband threshold energy due to crystal
momentum conservation. Below this threshold, which typically
corresponds to optical frequencies, phonons provide the
necessary momentum to circumvent this selection rule.
Additionally, in metals, confinement of fields to the surface
breaks translational invariance that can also provide the
momentum necessary to excite intraband transitions.16 These
“surface-assisted” and phonon-assisted transitions are important
contributors to losses in metals at infrared frequencies and,
hence, important to understand from both fundamental and
technological perspectives.17
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First-principles calculations provide an opportunity to
quantitatively analyze individually each microscopic mechanism
underlying plasmon decay (Figure 1a) and gauge their relative

contributions in different materials and at different frequencies.
These calculations examine the process at various time scales,
separating effects due to the initial distribution of hot carriers
and its subsequent transport. Such a detailed understanding,
which is extremely challenging to extract from experiment,
elucidates opportunities to enhance plasmonic hot carrier
devices as well as their fundamental limits.
Previously, we studied in detail direct interband transitions in

plasmonic metals18 and showed that the plasmon-generated hot
carrier distribution is extremely sensitive to details of the
electronic band structure. Specifically, we found that in noble
metals the positions of the d bands relative to the Fermi level
result in much hotter holes than electrons; subsequent studies
confirmed these results.19 We also showed that the decay of
surface plasmon polaritons is representative of decays in
plasmonic nanostructures and that geometry effects on the
generation of carriers are significant only at dimensions below
10 nm.
This article completes the theoretical picture of surface

plasmon decay by adding ab initio calculations of phonon-
assisted transitions and resistive losses. Previous first-principles
calculations of phonon-assisted transitions treat indirect gap
semiconductors only below their optical gap.20,21 In extending
such calculations to metals, we show that it is necessary to treat
carefully the energy-conserving “on-shell” intermediate states
that correspond to sequential processes (Figure 1b). We
predict the contributions of these processes relative to direct
transitions and compare the absolute decay rates to those
estimated from experimentally measured complex dielectric
functions for frequencies ranging from infrared to ultraviolet.
Finally, we analyze the subsequent dynamics of the hot carriers
generated, account for electron−electron and electron−phonon
scattering, and present ab initio predictions for the strongly
energy-dependent lifetimes and mean free paths of hot carriers.

RESULTS AND DISCUSSION

The decay of plasmons that determines generated carrier
energy distributions and the subsequent scattering and
transport of these carriers are both essential to the design of
plasmonic hot carrier devices. Typically, scattering events
thermalize the carriers and bring their energies closer to the
Fermi level of the metal. Plasmonic hot carrier applications, on
the other hand, require carriers far from the Fermi level to more
efficiently drive both solid state and chemical processes. Various
microscopic processes contribute to hot carrier generation as
well as transport, and we quantitatively predict the contribu-
tions of the dominant processes for both aspects.
Within a quasiparticle picture, we include electron−electron

and electron−lattice interactions in the quasiparticle energies as
a part of the underlying electronic structure calculation. We also
calculate electron−electron and electron−phonon scattering
contributions to the quasiparticle line width, which determines
carrier lifetimes and transport. The lowest-order process for the
nonradiative decay of plasmons, which have negligible
momentum compared to electrons in the material, is the direct
generation of an electron−hole pair with net zero crystal
momentum. This process is allowed above the interband
threshold energy and dominates in that regime. Below the
threshold energy, the electron−hole pair must have net
momentum, and this momentum can be provided either by
phonons in the bulk material or by surfaces in a nanostructure.
We calculate all of these processes that have significant
contributions and dominate in relevant energy ranges and
length scales but ignore higher-order processes such as decays
involving multiple electron−hole pairs or phonons, as these do
not dominate in any regime.
In nanoscale systems, the electronic states are localized in

space and are therefore no longer exact (crystal) momentum
eigenstates by the uncertainty principle. This introduces a finite
probability of direct plasmon decay into an electron−hole pair
with net crystal momentum for plasmons below the interband
threshold energy. For definiteness, we refer to these as
geometry-assisted intraband transitions. Note, however, that
the quasiparticle energies and line widths are not substantially
altered at dimensions of ∼10 nm and higher. In particular,
confinement energies are ℏ2/(2meL

2) ∼ 0.1 eV only for
dimensions L ∼ 0.6 nm and line widths due to surface
scattering are ℏvF/(2L) ∼ 0.1 eV only for dimensions L ∼ 5 nm
(using the Fermi velocity vF ∼ 1.5 × 106 m/s for noble metals),
in contrast to the relevant plasmonic energy scales of ∼1 eV.
We therefore account for the geometry explicitly only to
calculate geometry-assisted contributions to plasmon decay and
use quasiparticle energies and line widths of the bulk material
for all remaining contributions.

Plasmon Decay. In order to compare various contributions
to surface plasmon decay with experiment on equal footing, we
calculate contributions to the imaginary part of the dielectric
tensor Im ϵ(̅ω) and relate the complex dielectric function to
the plasmon decay rate. Specifically, the decay rate per unit
volume, obtained by dividing the energy loss per unit volume22

by the photon energy, is ω* · ϵ̅ ·
π ℏ E r E r( ) Im ( ) ( )1

2
at a point in

the material where the electric field is E(r). For a surface
plasmon polariton with wave vector k and angular frequency ω
on the surface of a semi-infinite metal slab extending over z < 0,
substituting the electric field profile of a single quantum23,24

and integrating over space yields the total decay rate

Figure 1. (a) Schematic for excitation and decay of surface
plasmons. Surface plasmons excited, for example, through coupling
to a grating or prism subsequently decay via direct and phonon-
assisted transitions to generate hot electrons and holes. (b)
Illustrations of direct, surface-assisted and phonon-assisted
transitions on the band structure of gold. Surface-assisted
transitions constitute the small but nonzero probability of
nonvertical transitions due to the momentum distribution of the
plasmon. The intermediate virtual state (empty circle) requires a
sum over states (filled circles) in perturbation theory. When the
intermediate state is a real state on the band structure (goes “on-
shell”), it corresponds to a sequential process of electron−phonon
scattering followed by a direct transition (or vice versa).
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Here, L(ω) is the quantization length for the plasmon

determined by normalizing the energy density of the mode,

|γ(z < 0)| is the inverse decay length of the plasmon into the

metal, and λ ≡ k ̂ − z ̂ k/γ(z < 0) is the polarization vector. All of

these quantities are fully determined by the experimental

dielectric function and described in detail in refs 24 and 18.
We calculate the total “experimental” decay rate of plasmons

as a function of frequency by using eq 1 directly with the

complex dielectric functions measured by ellipsometry.25

Within the random phase approximation, direct interband

transitions contribute18
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where εqn and fqn are the energies and occupations of electronic

quasiparticles with wave vectors q (in the Brillouin zone, BZ)

and band index n, and ⟨p⟩n′n
q are momentum matrix elements.

Note that the factor ( fqn − fqn′) rather than fqn(1 − fqn′), as

usually found in Fermi’s golden rule, accounts for the difference

between the forward and reverse processes. This is appropriate

for the steady state change of plasmon number due to

interactions with the electrons rather than the decay rate of a

single plasmon mode. Hence, these two forms are each exact in

different contexts and differ by the reverse process, which is the

blackbody emission of plasmons due to room-temperature

carriers. This process is completely negligible for ℏω ≫kBT

(≈0.026 eV), and hence we do not need to make this

distinction when discussing plasmon decays in the near-infrared

and optical frequency range. To account for finite carrier

lifetimes, the energy-conserving δ function is replaced by a

Lorentzian with half-width ImΣqn + ImΣqn′, where ImΣqn is the

total carrier line width due to electron−electron and electron−
phonon scattering, as calculated using eq 7 and eq 8 below.
Substitution of eq 2 in eq 1 results exactly in the plasmon

decay rate we previously derived using Fermi’s golden rule

within a fully quantum many-body formalism of the electrons

and plasmons.18 We calculate the energies and matrix elements

with the same relativistic DFT+U method as ref 18, which

produces band structures in excellent agreement with photo-

emission spectra. Since we use a spinorial electronic structure

method to fully treat relativistic effects, the band indices include

spin degrees of freedom.
Next, the contribution due to phonon-assisted transitions

from second-order perturbation theory is20,21
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where ℏωkα is the energy of a phonon with wave vector k and
polarization index α, nkα is the corresponding Bose occupation
factor, and gq′n′,qn

kα is the corresponding electron−phonon matrix
element with electronic states labeled by wave vectors q,q′ and
band indices n,n′ (with k = q′ − q for crystal momentum
conservation). The sum over ± accounts for phonon
absorption as well as emission. Since the ab initio matrix
elements couple all pairs of wave vectors in the Brillouin zone,
they implicitly account for wrap-around (Umklapp) processes.
We calculate the phonon energies and electron−phonon

matrix elements consistently using the same relativistic DFT+U
approximation as for the electronic states. We use a Wannier
representation to efficiently interpolate the phonon energies
and matrix elements to calculate the Brillouin zone integrals in
eq 3 accurately (see Methods section for details).
The imaginary part of the energy denominator, η, in the

second line of eq 3 corresponds to the line width of the
intermediate electronic state (with band index n1). The value of
η does not affect the phonon-assisted absorption at photon
energies less than the optical gap of materials20,21 and is usually
treated as a numerical regularization parameter. However,
above the optical gap (the interband threshold for metals), the
real part of the denominator crosses zero, making the resulting
singular contributions inversely proportional to η. These
singular contributions correspond to sequential processes:
electron−phonon scattering followed by a direct interband
transition or vice versa (Figure 1). For a metal, including
contributions from these sequential processes, this would lead
to multiple counting of the direct transition. Scattering events
preceding the optical transition are a part of the equilibrium
Fermi distribution, while scattering events following the optical
transition corresponds to the subsequent inelastic relaxation of
the generated carriers. We eliminate this multiple counting by
taking advantage of the η independence of the nonsingular part
and the η−1 variation of the singular part and extrapolating from
calculations done using two values of η (see Methods section
for details).
In metals, the strong confinement of fields at the surface

introduces an additional mechanism for intraband transitions.
The exponential decay of the fields in the metal with inverse
decay length |γ(z < 0)| introduces a Lorentzian distribution in
the momentum of the plasmon normal to the surface with
width ∼|γ(z < 0)|. (This can also be interpreted in terms of the
uncertainty principle.) This momentum distribution allows
diagonal intraband transitions on the band structure (Figure
1b), which contribute a “surface-assisted” loss16,26
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Here, ω π= ne m4 /p e
2 is the bulk plasma frequency of the

metal and π= ℏv m n( / ) 3eF
23 its Fermi velocity, where n is the

bulk carrier density of the metal. In nanoconfined geometries,
such as spherical nanoparticles, the probability of intraband
transitions due to crystal momentum nonconservation can be
greatly enhanced, as shown by several numerical studies using
free-electron jellium models.27−29 We can calculate the decay
rate of localized surface plasmons in a spherical nanoparticle
using Fermi’s golden rule with analytical free-electron
eigenstates, dipole field profiles, and matrix elements and use
eq 1 to express that rate as an effective Im ϵ contribution.

ω
ω

ω π
ϵ = ×

v
R

Im ( )
6p F
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2
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where R is the radius of the spherical nanoparticle. This is
similar to eq 4 except for dimensionless prefactors and the
particle radius setting the length scale instead of the skin depth.
See ref 26 for detailed derivations of these contributions.
The direct, surface/geometry-assisted, and phonon-assisted

transitions considered above are the lowest-order processes for
the decay of a plasmon to single-particle excitations, which
correspond to the Landau damping of the plasmon on the
Fermi sea.30−32 Higher-order processes including multiple
electron−hole pairs or multiple phonons are suppressed by
phase-space factors at low energies and become important only
at higher energies that are not usually accessed by surface
plasmons.3

Apart from Landau damping, an additional source of
plasmon loss is the intrinsic lifetime of the electronic states
comprising the collective oscillation. This corresponds to a
resistive loss in the material which we calculate using a
linearized Boltzmann equation with a relaxation time
approximation. We show in the Methods section that

ω
πσ

ω ω τ
ϵ =

+
Im ( )

4
(1 )resistive

0
2 2

(6)

where the zero-frequency conductivity σ0 and the momentum
relaxation time τ are derived from ab initio electronic states and
electron−phonon matrix elements.
Figure 2 compares the plasmon line width and decay rates

estimated directly from the experimentally measured complex
dielectric functions with theoretical predictions for cumulative
contributions from direct, surface-assisted, phonon-assisted
transitions and resistive losses. For all the common plasmonic
metals, aluminum and the noble metals, we find that direct
transitions dominate above the interband threshold (∼1.6−1.8
eV for aluminum, gold, and copper and ∼3.5 eV for silver). The
sum of all other contributions is less than 10% above threshold,
and hence the cumulative results overlay the direct transition
lines. In silver, the maximum plasmon frequency coincides with
the interband threshold, and hence, there is no accessible
frequency range for which direct transitions dominate. In
aluminum, direct transitions are, in fact, possible at all
frequencies due to a band crossing near the Fermi level,18

but an additional channel for direct transitions with much
higher density of states opens up at the effective threshold of
∼1.6 eV.

Below the threshold, direct transitions are forbidden (or for
aluminum, are weak), and the contributions due to the other
processes become important. For the ideal surface we consider
here, surface-assisted processes contribute only a small fraction
(at most 5%) of the experimental line width over the entire
frequency range below threshold. Adsorption of molecules,
localized surface states, and defects can induce additional
surface-assisted contributions, which could be estimated in
future work for specific cases using direct ab initio calculations
of nanoscale geometries. Phonon-assisted transitions and
resistive losses compete significantly and dominate the
frequency range below the interband threshold. The relative
importance of phonon-assisted transitions increases slightly
with frequency, with resistive and surface-assisted losses
dominating at very low frequencies (close to 0 eV in these
plots), an approximately even split between the three processes
at ∼1 eV, and a greater contribution from phonon-assisted
transitions just below threshold.
The total line width predicted by a theory that includes all

these contributions agrees very well with experiment over the
entire range of frequencies.25 Above threshold for the noble
metals, the theoretical predictions overestimate experiment by
∼10−20%, which is the typical accuracy of optical matrix
elements involving d electrons in density functional theory.33

Below threshold, the total theory result underestimates the
experimental value, but it is typically within a factor of 2. This
may arise from material nonidealities that contribute additional
losses and because our theoretical calculations estimate an ideal
lower bound. In fact, the largest discrepancy is for silver because
these ideal losses are the smallest, making nonidealities
relatively more important. Also note that there is a significant
spread in tabulated experimental dielectric functions for the
noble metals,25 with discrepancies a factor of 2 or higher in the
imaginary parts at infrared frequencies. (We used the
measurements that covered the greatest frequency range.)
Therefore, more careful experimental measurements in that
frequency range with higher-quality samples would be
necessary and useful for a stricter comparison.
The results in Figure 2 are based on calculations at standard

room temperature, T = 298 K. We expect the direct and
surface-assisted contributions to be approximately independent

Figure 2. Comparison of calculated and experimental line widths
(left axis) and decay rates (right axis) in (a) Al, (b) Ag, (c) Au, and
(d) Cu. The theoretical curves indicate cumulative contributions
from direct transitions alone (“Direct”), including surface-assisted
transitions (“+Surface”), including phonon-assisted transitions
(“+Phonon”), and including resistive losses (“+Resistive”).
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of temperature, the resistive contributions to decrease almost
linearly with decreasing temperature, and the phonon-assisted
contributions to reduce by a factor of 2 upon lowering the
temperature (phonon emission persists while phonon absorp-
tion freezes out). Therefore, at very low temperatures, phonon-
assisted transitions will dominate below threshold, while direct
transitions continue to dominate above threshold.
Figure 3 compares the relative contributions due to all the

above processes to absorption in the surface of bulk gold and

spherical gold nanoparticles of various sizes. Geometry-assisted
intraband contributions are negligible for a semi-infinite surface
and are comparable to the phonon-assisted and resistive
contributions for a 40 nm diameter sphere below threshold.
With decreasing particle size, the relative contributions of the
geometry-assisted transitions increase in inverse proportion and
dominate the subthreshold absorption for gold spheres smaller
than 10 nm. However, direct transitions continue to dominate
above the interband threshold even for these small spheres.
Therefore, simplified treatment of localized plasmon decay in
nanoparticles using jellium models that preclude direct
transitions27−29 is only reasonable for frequencies below the
interband threshold. Those approximations are therefore
reasonable for silver, where the interband threshold exceeds
the dipole resonance frequency, but not for gold, copper, or
aluminum.
Figure 4 shows the initial carrier distributions generated via

direct and phonon-assisted transitions, which we calculate by
histogramming the integrands in eq 2 and eq 3 by the initial
(hole) and final (electron) state energies. The carrier
distributions are plotted as a function of carrier energy
(horizontal axis) and plasmon/photon energy (axis normal to
the page). The color scale indicates the fraction of carriers
generated by direct or phonon-assisted transitions. Note that
carrier energies may exceed the plasmon energy with low

probability because of the Lorentzian broadening due to carrier
line widths in energy conservation (equivalently, a consequence
of the uncertainty principle). This causes the small contribu-
tions from direct transitions below threshold seen for the noble
metals in Figure 4. Such contributions are dominant for short-
lived carriers (large broadening) at plasmon frequencies below
regions of strong interband transitions, such as the top of the d
bands in the noble metals. The higher density of states close to
the top of the flatter d bands makes this effect stronger in
copper.
Direct transitions, shown in blue, dominate at high energies

and exhibit the strong material dependence we previously
discussed in detail in ref 18. For copper and gold, direct
transitions occur from the d bands to unoccupied states above
the Fermi level, which results in holes that are much more
energetic than electrons. Aluminum exhibits a relatively flat
distribution of electrons and holes, while silver exhibits a
bimodal distribution of hot electrons as well as holes from
direct transitions in a very narrow frequency range close to the
maximum plasmon frequency.
Phonon-assisted transitions, shown in red, exhibit a flat

distribution of electrons and holes extending from zero to the
plasmon energy for all the metals. In aluminum, direct
transitions are also possible below the threshold at 1.6 eV
and contribute ∼25% of the generated carriers. Geometry-
assisted intraband transitions (in the surface or sphere cases)
have a similar phase space to phonon-assisted transitions and
also generate flat distributions of electron and hole energies.
Resistive losses compete with phonon-assisted transitions but
dissipate thermally and do not generate energetic hot carriers.
Due to this competition, below threshold, ∼30−50% of the
absorbed energy is dissipated without hot carrier generation.
Therefore, plasmonic hot carrier applications could benefit

Figure 3. Comparison of resistive, geometry-assisted, phonon-
assisted, and direct transition contributions to absorption in gold as
a function of frequency for (a) semi-infinite surface or (b) 40 nm,
(c) 20 nm, or (d) 10 nm diameter spheres. The surface/geometry
contributions are negligible for the semi-infinite surface, aer
comparable to the phonon-assisted and resistive contributions for
a 40 nm sphere, and increase in inverse proportion with decreasing
sphere diameter. Direct transitions dominate above threshold in all
cases.

Figure 4. Energy distributions of hot carriers, P(ω,ε), generated by
the decay of surface plasmons due to phonon-assisted and direct
transitions, as a function of plasmon frequency (ω) and carrier
energy (ε) in (a) Al, (b) Ag, (c) Au, and (d) Cu. The color scale
indicates the relative contributions of phonon-assisted (red) and
direct (blue) transitions. For each frequency, P(ω,ε) is normalized
such that it equals 1 for a flat distribution, similar to the red
plateaus below threshold where phonon-assisted transitions
dominate. These distributions are for carriers generated at semi-
infinite surfaces: geometry changes the relative contributions of
interband and intraband contributions, as shown in Figure 3, but
does not affect the carrier energy distributions within each
contribution.
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from the higher efficiency above threshold, where direct
transitions dominate by far and result in high-energy carriers.
However, the stronger damping due to interband transitions
weakens plasmonic field enhancement; the trade-off between
this effect and higher energy carriers should be considered
when designing hot carrier devices, by combining our results
with electromagnetic simulations. Additionally, we predict
aluminum to be an excellent candidate for general hot carrier
applications since it allows direct transitions at all energies and
has the smallest fraction of resistive loss (despite its absolute
resistivity being higher than other metals).
Carrier Transport. In experiments, hot carriers generated

by plasmon decay must live long enough or travel far enough to
be collected or detected. The time and length scales of such
nonequilibrium carrier transport have been the subject of much
recent debate.3,5,34 Recent theoretical estimates for the energy-
dependent lifetimes of hot carriers in metals19 show that band
structure effects can play an important role, especially for holes
in the d bands of noble metals. However, those calculations are
based on a less-accurate nonrelativistic band structure and
available only for gold and silver. Here, we present the results of
calculations for the lifetimes and mean free paths of hot carriers
as a function of energy using our more accurate band structure
methods in all four metals considered above, accounting for
electron−phonon and electron−electron scattering.
For the electron−electron scattering contribution, we

calculate the imaginary part of the quasiparticle self-energy
given by35
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where ρ̃q′n′,qn(G) is the plane-wave expansion of the product
density ∑σuq′n′

σ* (r)uqn
σ (r) of Bloch functions with reciprocal

lattice vectors G, and ϵGG′
−1 (k,ω) is the microscopic dielectric

function in a plane-wave basis calculated within the random-
phase approximation. See ref 35 for a detailed exposition
including its connection to the Fermi golden rule for electron−
electron scattering. Here, we calculate eq 7 in JDFTx36 using an
explicit frequency integral with 0.1 eV resolution for the
dielectric function, retaining local field effects with a kinetic
energy cutoff of 200 eV. The remaining computational details
are identical to the plasmon decay calculations described in the
Methods section.
We calculate the electron−phonon scattering contribution to

the electron line width using the Fermi golden rule
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where the electronic states, phonon modes, and electron−
phonon matrix elements are computed exactly as for the
phonon-assisted decay (see Methods section). Additionally, we
use a dense 48 × 48 × 48 grid to sufficiently resolve the q′
integral with electron and phonon occupations at standard
temperature, T = 298 K.
We then calculate the total carrier line width ImΣqn = ImΣqn

e−e

+ ImΣqn
e−ph, the carrier lifetime τqn = ℏ/(2 ImΣqn), and mean

free path λqn = vqn τqn, where ≡
ε∂
∂v nq q

nq is the group velocity of

electronic state qn. Figure 5 shows the resulting carrier lifetimes

and mean free paths as a function of carrier energy relative to
the Fermi level for aluminum and the noble metals. For each
metal, the axes for lifetime and mean free paths have been
scaled relatively by the Fermi velocity so that the two quantities
coincide approximately for low energy carriers.
For all metals, we find that low-energy carriers close to the

Fermi level have the longest lifetime and mean free path. At
these energies, electron−phonon scattering dominates while
electron−electron scattering, which is nominally proportional
to (ε − εf)

2 due to the phase space available for scattering,35 is
negligible. The noble metals have similar maximum carrier
lifetimes ∼30 fs and mean free paths ∼50 nm in the order Ag >
Cu > Au, while aluminum has a smaller maximum lifetime ∼10
fs and mean free path of ∼20 nm. Our results for Au and Ag
agree qualitatively with ref 19 but differ in the details for d band
holes due to our refinement of the d band positions with the
relativistic DFT+U method.18

With increasing carrier energy away from the Fermi level, for
both electrons and holes, the electron−phonon scattering rates
remain nominally constant while the electron−electron
scattering rates increase dramatically, reducing the lifetimes
and mean free paths. The electron−electron and electron−
phonon contributions become comparable at roughly 1 eV
away from the Fermi level for all four metals. The mean free
paths drop to ∼10 nm in all four metals for 2 eV electrons.
The spread in lifetimes at each energy is because states with

different wave vectors at the same energy have different phase
spaces and matrix elements for scattering due to the anisotropy
of the material at the microscopic level. Figure 6 shows this
anisotropy for carriers at the Fermi level for all four metals.
Interestingly, the phase space for electron−phonon scattering
increases in regions of positive Fermi surface curvature relative
to those with negative curvature, causing a variation of about a
factor of 2 in the lifetimes.
Figure 5 also exhibits an asymmetry between electron versus

hole transport in all the metals. Electrons and holes of similar

Figure 5. Hot carrier lifetimes as a function of energy, accounting
for electron−electron and electron−phonon contributions for (a)
Al, (b) Ag, (c) Au, and (d) Cu. For each panel, the left axis
measures lifetime (blue) and the right axis measures mean free path
(green). The spread in the results is because of multiple electronic
states at each energy with different scattering rates due to
anisotropy at the microscopic level (see Figure 6).
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energies have similar lifetimes, but electrons have higher group
velocities and hence higher mean free paths because of the
curvature of the dispersion relation. This effect is particularly
drastic for d band holes in the noble metals, which are relatively
localized states with dramatically smaller group velocities.
However, after the first scattering event, d band holes result in s
band holes with half the energy on average, which can transport
much further. Additionally, our results indicate that aluminum
and silver are particularly attractive for the transport of high-
energy holes.

CONCLUSIONS
In this article, we report the first ab initio calculations of
phonon-assisted optical excitations in metals, allowing us to link
the energy range between resistive losses at low energies
(microwave-infrared) and direct interband transitions at high
energies (visible−ultraviolet). Along with surface-assisted
transitions due to field confinement in metals,16 this completes
the theoretical picture of surface plasmon decay, accounting for
all relevant mechanisms.
We find good agreement with experimental measurements

for the total decay rate, but we additionally predict the relative
contributions of all these processes and the initial generation of
hot carriers in plasmonic metals. We find that direct transitions
dominate above threshold and generate hot carriers, while
below threshold, hot carrier generation by phonon-assisted
transitions is diminished by competition from resistive losses.
We also find that surface-assisted transitions are enhanced in
nanoconfined geometries and become dominant below thresh-
old for particle sizes ∼10 nm, but that direct transitions remain
dominant above the interband threshold even for small
particles.
We suggest that aluminum is quite promising as a general

purpose plasmonic hot carrier generator since it generates hot
carriers efficiently for the widest frequency range and generates
high-energy electrons and holes with equal probability.
Compared to the noble metals, aluminum also exhibits the
best transport properties for high-energy holes. A detailed
analysis of the transport of energetic carriers in real metal
nanostructures, based on the initial carrier distributions and

scattering rates predicted here, now enables directed design of
optimal hot carrier devices.

METHODS
Electronic Structure. We require an approximation to quasipar-

ticle energies and optical matrix elements to describe the decay of
surface plasmons to quasiparticle excitations (eqs 2 and 3). We use the
relativistic DFT+U approach that we previously established18 to best
reproduce experimental photoemission spectra in contrast to semilocal
density functional or even quasiparticle self-consistent GW methods.37

Strong screening in metals renders electron−hole interactions and
excitonic effects negligible, so that we can work at the independent
quasiparticle level rather than with the more expensive Bethe−Salpeter
equation38 that accounts for those effects.

Following ref 18, we perform density functional calculations in the
open-source code JDFTx36 with full-relativistic norm-conserving
pseudopotentials at a plane-wave cutoff of 30 Eh (Hartrees). We use
the PBEsol39 exchange-correlation approximation and a rotationally
invariant DFT+U correction40 for the d electrons in noble metals (U =
1.63, 2.45, and 2.04 eV, respectively, for copper, silver, and gold). See
ref 18 for more details regarding the selection of the electronic
structure method.

We perform the self-consistent ground state calculations using a 12
× 12 × 12 uniform k-point mesh centered at the Γ point along with a
Fermi−Dirac smearing of 0.01 Eh to resolve the Fermi surface. The
optical matrix elements correspond to the momentum operator

∇̂ ≡ ̂ = + ̂
ℏ

ℏ
ℏp H Vr r[ , ] [ , ]m

i i
m
i NL

e e , which accounts for the fact that

the nonlocal DFT+U and pseudopotential contributions (V̂NL) to the
DFT Hamiltonian (Ĥ), do not commute with the position operator, r.
These nonlocal corrections are usually insignificant for s- and p-like
electrons but are critical for describing optical transitions involving the
d electrons in the noble metals.33

Finally, we interpolate the electronic energies and matrix elements
to arbitrary k-points in the Brillouin zone using a basis of maximally
localized Wannier functions.41,42 Specifically, we use an sp3 basis with
four Wannier bands for aluminum and a relativistic d5t2 basis with 14
Wannier bands for the noble metals (where t is an orbital centered on
the tetrahedral void sites of the face-centered cubic lattice). These
Wannier functions exactly reproduce the orbital energies and matrix
elements within the maximum surface plasmon energy of the Fermi
level for all metals. We then evaluate eq 2 by Monte Carlo sampling
6.4 × 106 q values in the Brillouin zone for the noble metals (9.6 × 107

for aluminum) and histogram contributions by plasmon and carrier
energies to get the direct transition results in Figures 2 and 4. Note
that aluminum requires more q samples to get similar statistics since it
contributes fewer pairs of bands per q.

Phonon Modes and Matrix Elements. We calculate the ab initio
force matrix for phonons and electron−phonon matrix elements from
direct perturbations of atoms in a 4 × 4 × 4 supercell using exactly the
same electronic DFT parameters as above in JDFTx.36 All four metals
considered here have a single atom basis and hence exactly three
acoustic phonon modes. We then cast these phonon energies and
matrix elements into a Wannier basis to enable interpolation for a
dense sampling of the Brillouin zone integrals. (See ref 43 for a
detailed introduction; we implement an analogous method in JDFTx,
with additional support for spinorial relativistic calculations.)

We use the aforementioned Wannier basis to cover the energy
range close to the Fermi level and add random-initialized maximally
localized Wannier orbitals orthogonal to the first set to extend the
energy range of included unoccupied states. We use a total of 24
Wannier bands for aluminum and 46 spinorial Wannier bands for the
noble metals that exactly reproduce the orbital energies and optical
and phonon matrix elements up to at least 50 eV above the Fermi
level. We find this energy range of unoccupied states sufficient to fully
converge the sum over states in the second-order perturbation theory
(expression 3) at all plasmon energies considered.

Finally, we evaluate the double integral over Brillouin zone in eq 3
by Monte Carlo sampling with 2 × 107 {q,q′} pairs for the noble
metals (3 × 108 pairs for aluminum to get similar statistics). We use

Figure 6. Anisotropy of hot carrier lifetimes on the Fermi surface of
(a) Al, (b) Ag, (c) Au, and (d) Cu, with variations of about a factor
of 2 between regions of positive and negative curvature of the
Fermi surface.
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standard temperature, T = 298 K, to calculate the Fermi occupations
for electrons and Bose occupations for phonons. Note that such low
electronic temperatures (compared to the Fermi energy ∼105 K)
necessitate extremely dense Brillouin zone sampling, which is, in turn,
made practical by the Wannier interpolation.43 Histogramming by
plasmon and carrier energies, we collect the phonon-assisted
contributions to Figures 2 and 4 (after incorporating the extrapolation
discussed below to eliminate sequential process contributions).
Extrapolation To Eliminate Sequential Processes. In the

Results and Discussion section, we pointed out that eq 3 contains
singular contributions when the intermediate state conserves energy
(is “on-shell”), causing the denominators in the effective second-order
matrix element to vanish. We examine these on-shell contributions in
more detail here.
By taking the limit η →0 in eq 3 and noting that |1/(x + iη)|2 →

πδ(x)/η, we can show that

λ λ

λ λ

λ λ

η

η

η η
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(9)

where Im ϵ(̅q′n′,qn) denotes the contribution to Im ϵ ̅ due to a specific
pair of initial and final electronic states. Here, ImΣe−ph

qn is the electron
line width due to electron−phonon scattering, given by eq 8.
The above expansion in η clearly illustrates that the singular

contributions correspond to sequential processes. The first term
corresponds to a direct transition followed by electron−phonon
scattering, while the second term corresponds to the reverse. If we
substitute the intermediate state line width ImΣqn for η as the
formalism prescribes,20,21 and for simplicity focus only on electron−
phonon scattering contributions ImΣqn

e−ph (which is dominant for low-
energy carriers), then we see that the η singular part reduces simply to
twice the direct contribution (eq 2). For a metal, this contribution
should not be counted as a separate decay rate since scattering events
preceding and following a transition are part of the initial Fermi
distribution and the subsequent carrier transport, respectively.
We eliminate the singular contributions using an extrapolation

scheme designed to exploit the fact that the η dependence is different
for on-shell and off-shell processes. To retain the nonsingular O(η0)
terms while canceling the O(η−1) singular terms discussed above, we
modify eq 3 as

= | − |η η(3) 2(3) (3)corrected 2 (10)

We find that η = 0.1 eV, which was previously used for
semiconductors,20 is sufficiently large to keep the singular terms
resolvable for effective subtraction and sufficiently small to have
negligible impact on the physical nonsingular contributions. We note
that this extrapolation only has an effect and is necessary above the
optical gap of the material. Previous ab initio studies of phonon-
assisted processes20,21 did not deal with this issue since they focused
on predictions for semiconductors above the indirect gap and below
the direct (optical) gap.
Ab Initio Estimate of Resistive Losses. Single electron−hole pair

generation dominates the plasmon decay at high frequencies. As the
Results and Discussion section discusses, resistive loss in the metal,
which arises from the finite carrier lifetime and results in heating rather
than few energetic carriers, dominates at frequencies close to 0 eV.
Here, we estimate these losses from the frequency-dependent
resistivity calculated ab initio within a linearized Boltzmann equation
with a relaxation time approximation.
The Boltzmann equation for electron occupations fqn(t) in a

uniform time-dependent electric field E(t) is44

∂

∂
+ ·

∂

∂
=

∂

∂

f t

t
e t

f t f

t
E

p

( )
( )

( )n n nq q q

coll (11)

We then substitute fqn(t) = fqn + δ fqn(t), where the first term is the
equilibrium Fermi distribution and the second contains perturbations
to linear order due to the applied electric field, and collect
contributions at first order in E(t).

To first order, the collision integral on the right-hand side of eq 11
can be written as −δfqnτqn−1, where τqn−1 is the difference between rates of
scattering out of and into the electronic state qn. Within the relaxation
time approximation, we replace τqn

−1, which depends on the wave vector
(Figure 6), by its average τ−1 (inverse of momentum relaxation time).
This is an excellent approximation for metals where electron−phonon
scattering dominates carrier relaxation near the Fermi level,44 which is
the case for most elemental metals (except those with partially
occupied d shells) including aluminum and the noble metals.

Switching eq 11 to the frequency domain, linearizing, invoking the
relaxation time approximation, and rearranging, we get

δ ω
τ ω

ω=
− ′

−
·−f

ef

i
v E( ) ( )n

n
nq

q
q1 (12)

where vqn ≡
ε∂
∂q

nq is the group velocity of electronic state qn and fqn′ is

the energy derivative of the Fermi−Dirac distribution. We then
calculate the current density j = ∑qnefqnvqn and obtain the conductivity
tensor by factoring out vqn. Averaging over directions, the isotropic
conductivity is then
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where σ0 is the zero-frequency (DC) conductivity.
Finally, we calculate the momentum relaxation time τ using the

Fermi golden rule for electron−phonon scattering. In the average, we

weight the scattering rates by − ′f( )n
v

q 3
nq

2

since that determines the

relative contributions to the conductivity above. It is then
straightforward to show that τ−1 = Γsum/wsum, where
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with all the ab initio electron and phonon properties defined exactly as
before and where the denominator for normalizing the weights is

∫ ∑
π

= − ′w f
vqd
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n

n
q

q
sum

BZ 3

2

(15)

Note that with this definition, we can simplify the DC conductivity, σ0
= e2τwsum = e2wsum

2 /Γsum.
Given the frequency-dependent conductivity of the metal, we

calculate the resistive losses as π σ ω ωϵ = iIm Im[4 ( )/ ], which results
in eq 6 upon simplification. We calculate wsum and Γsum using Monte
Carlo sampling of the Brillouin zone integrals with 1.6 × 106 q values
for the single integral and 5 × 107 {q,q′} pairs for the double integral,
which converges τ and σ0 within 1%. Table 1 lists the momentum−
relaxation time and resistivity we predict for the common plasmonic
metals. The excellent agreement with experimental resistivities
demonstrates the quantitative accuracy of the ab initio electron−
phonon coupling (better than 10% in all cases).

Sensitivity Analysis. Finally, we test the robustness of our
predictions against potential inaccuracies of the electronic structure
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method, especially for phonon frequencies and electron−phonon
couplings that can be highly sensitive to changes in lattice constants.
Table 2 first shows that the PBEsol(+U) density functional method

accurately predicts the lattice constants of all four metals to within
0.5% of experimental values, as expected based on its accuracy for
metal geometries in general.39

We recalculate all our predictions after straining the lattice by 0.5%
to conservatively estimate the uncertainty in those predictions due to
DFT errors in structural annd phonon properties. Table 2 shows that
the sensitivity is typically within 10%, in line with the agreement with
experimental resistivities above. Somewhat counterintuitively, direct
and phonon-assisted contributions are comparably sensitive to the
lattice constant: the sensitivity of direct transitions arises from small
changes in positions of electronic bands, whereas that of phonon-
assisted transitions arises from the electron−phonon coupling.
Additionally, the resistivity of aluminum is most sensitive because of
a band crossing near the Fermi level, which shows up as the pockets
near the Brillouin zone boundary in Figure 6 and strongly affects the
density of states and electron−phonon lifetime near the Fermi level.
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