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To derive tests for randomness, nonlinear-independence, and stationarity, we combine surrogates with a

nonlinear prediction error, a nonlinear interdependence measure, and linear variability measures, respectively.

We apply these tests to intracranial electroencephalographic recordings (EEG) from patients suffering from

pharmacoresistant focal-onset epilepsy. These recordings had been performed prior to and independent from our

study as part of the epilepsy diagnostics. The clinical purpose of these recordings was to delineate the brain

areas to be surgically removed in each individual patient in order to achieve seizure control. This allowed us to

define two distinct sets of signals: One set of signals recorded from brain areas where the first ictal EEG signal

changes were detected as judged by expert visual inspection (“focal signals”) and one set of signals recorded

from brain areas that were not involved at seizure onset (“nonfocal signals”). We find more rejections for both the

randomness and the nonlinear-independence test for focal versus nonfocal signals. In contrast more rejections

of the stationarity test are found for nonfocal signals. Furthermore, while for nonfocal signals the rejection

of the stationarity test increases the rejection probability of the randomness and nonlinear-independence test

substantially, we find a much weaker influence for the focal signals. In consequence, the contrast between the

focal and nonfocal signals obtained from the randomness and nonlinear-independence test is further enhanced

when we exclude signals for which the stationarity test is rejected. To study the dependence between the

randomness and nonlinear-independence test we include only focal signals for which the stationarity test is not

rejected. We show that the rejection of these two tests correlates across signals. The rejection of either test is,

however, neither necessary nor sufficient for the rejection of the other test. Thus, our results suggest that EEG

signals from epileptogenic brain areas are less random, more nonlinear-dependent, and more stationary compared

to signals recorded from nonepileptogenic brain areas. We provide the data, source code, and detailed results in

the public domain.
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I. INTRODUCTION

Nonlinear signal analysis comprises a wide variety of mea-

sures that allow one to extract different characteristic features

of dynamical systems underlying experimental signals [1].

Applications to signals measured from the brain, for example,

contribute to our understanding of brain functions and mal-

functions and thereby help to advance cognitive neuroscience

and neurology [2,3]. In particular electroencephalographic

(EEG) recordings from epilepsy patients attract researchers’

interest. In some epilepsy patients the diagnostics requires

to record the EEG directly from the surface of the brain

or from deeper brain structures. The clinical purpose of

these intracranial recordings is to localize the brain areas

where seizures start and to assess whether the patient can

benefit from the neurosurgical resection of these parts of

the brain. From the physics’ point of view, these recordings

reveal intriguing dynamics not only during acute epileptic

seizures but also during the seizure-free interval. Therefore,

such intracranial recordings from epilepsy patients are a

prominent and challenging field of applications for nonlinear

signal analysis [4]. There is growing evidence that this

interdisciplinary analysis can contribute valuable diagnostic

information about the localization of the epileptic focus even

from the seizure-free interval [5–9]. This is highly important,

because each seizure is a potentially health impairing event and

epileptologists strive to minimize the number of seizures that

have to be recorded for diagnostic epilepsy surgery evaluation.

Univariate nonlinear measures estimate features such as the

dimensionality, predictability, or entropy of individual dynam-

ics X from single signals x. Pairs of signals x and y measured

simultaneously from two dynamics X and Y are analyzed using

bivariate nonlinear measures to detect interactions between the

dynamics. However, both univariate and bivariate nonlinear

measures have an important limitation. While they are sensitive

to characteristic features of nonlinear dynamics they often lack

specificity. The problem is that nonlinear measures are strongly

influenced by linear correlations of the signals, and arbitrary

degrees of linear auto- and cross-correlation can, for example,

be obtained for linear stochastic processes. For EEG signals

cross-correlation can reflect the underlying dynamics but can

likewise be caused by volume conduction or the reference

montage.

This lack of specificity can be addressed with the concept

of surrogates, first origins of which can be found in studies

of electrocardiographic [10] and electroencephalographic [11]

signals. Originally devised as a test for nonlinearity in univari-

ate dynamics [12], the concept of surrogates has become a very

versatile tool in signal analysis. Different types of surrogates

can be generated for univariate [12–14] as well as for bivariate
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or multivariate signals [15–19]. While classically surrogates

are combined with nonlinear measures, their combination

with linear measures [9,20–25] is equally straightforward and

useful. Exploiting these different variations of the concept of

surrogates one can test a wide variety of null hypotheses about

the dynamics underlying experimental signals.

Surrogate signals are generated by randomizing the original

signals. This randomization is constrained such that selected

properties of the original signals are preserved. In particular,

the composition of the maintained properties can be adapted to

the different null hypothesis [26]. A discriminating statistics,

which has to be sensitive to at least one signal property that

is not consistent with the null hypothesis, is calculated for

both the original signal and the surrogates. If the result for the

original deviates from the distribution of the values obtained

from the surrogates, the null hypothesis is rejected.

As a concrete example suppose that we have calculated

some low value of a nonlinear prediction error (Ref. [1] and

references therein) from an experimental signal. We wonder

whether our result indicates nonlinear deterministic structure

of the underlying dynamics or simply reflects the signal’s linear

autocorrelations. Since we cannot answer this question based

on the nonlinear prediction error alone, we generate a set of

surrogate signals of the original signal. The surrogates are

constrained to have the same linear autocorrelations as the

original signal but to be otherwise random. We calculate the

nonlinear prediction error also for the surrogate signals and test

whether the original result is inside or outside the surrogates’

result range. If it is outside, the linear autocorrelations are

not sufficient to explain the low value of the nonlinear

prediction error, and the dynamics is not consistent with

a stationary linear stochastic process. This does not prove

that the dynamics is nonlinear deterministic. The surrogates’

null hypothesis is composed of various assumptions, and the

violation of any of these assumptions renders it incorrect.

In consequence different alternative models remain for our

dynamics. To further narrow down these alternatives we can

proceed and analyze our signal with other types of surrogates in

combination with other nonlinear or also linear measures [27].

There is growing evidence that the additional informa-

tion gained by surrogates can be decisive for a successful

characterization of EEG recordings of epilepsy patients

[5–9,11,20,23–25,27–32]. Investigating intracranial peri-

seizure EEG recordings in rats, Pijn et al. [11] were the first

to combine a nonlinear measure and surrogates to analyze

recordings from the brain. Casdagli et al. [5] and Andrzejak

et al. [6] combined different univariate nonlinear measures

and surrogates to analyze intracranial EEG recordings from

patients with unilateral medial temporal lobe epilepsy. In both

studies rejections of the null hypothesis of a linear stochastic

process were prevalent in signals measured in the seizure-

generating brain area. Extending earlier work of Ref. [21],

Rummel et al. [23] combined the linear cross-correlation with

univariate surrogates to extract the “genuine cross-correlation”

between individual channel pairs. In comparison to the raw

cross-correlation, the genuine cross-correlation better assessed

spatiotemporal interaction patterns from an intracranial peri-

seizure EEG recording of an epilepsy patient. In particular, the

genuine cross-correlation revealed the strong involvement of

focal signals in these interactions. In Ref. [27] this concept was

extended by including mutual information as nonlinear bivari-

ate interrelation measure as well as multivariate surrogates.

Rejections of the null hypothesis of linear interrelations were

found predominantly for the EEG recorded in epileptogenic

brain areas as well as during epileptic seizures.

In a study of continuous EEG recordings of the seizure-free

interval in 29 patients with medial temporal lobe epilepsy

Andrzejak et al. [7] tested a variety of univariate measures.

They showed that combinations of nonlinear measures with

univariate surrogates allowed to localize the epileptic focus in

a high percentage of cases. Importantly, this approach clearly

outperformed the use of nonlinear measures without surrogates

as well as linear measures. Recently Andrzejak et al. [8]

showed that these findings carry over to bivariate signal

analysis. Based on the same EEG recordings they showed that

a combination of a nonlinear interdependence measure with bi-

variate surrogates excels nonlinear interdependence measures

without surrogates as well as the linear cross correlation in

localizing the epileptic focus. In both studies more rejections

of the surrogate null hypotheses were obtained for the EEG

recorded in the focal as compared to the nonfocal EEG. The

authors concluded that focal EEG signals were distinct from

nonfocal EEG signals in that they are less consistent with an

underlying linear stochastic process and rather reflect some

properties of a coupled nonlinear deterministic dynamics [8].

However, as indicated above, the rejection of a surrogates’

null hypothesis always leaves one with different alternative

interpretations. As already indicated by Andrzejak et al. [7,8],

apart from nonlinear determinism their results could be ex-

plained by the nonstationarity of the EEG. The assumption of

stationarity is included in the null hypotheses of the univariate

and bivariate surrogates used in these studies. Therefore, if

the focal EEG was more nonstationary than the nonfocal

EEG and if this nonstationarity favored the rejection of the

null hypotheses tested with univariate or bivariate nonlinear

measures that were used in these studies, this could explain

the increased rejection rate found for the focal EEG.

Another important open question is whether univariate and

bivariate surrogate analysis can provide much nonredundant

information about the dynamics underlying the EEG. In the

first place univariate and bivariate nonlinear signal analysis

measures extract in general independent aspects of the dynam-

ics. For example, we can have two low-dimensional nonlinear

deterministic dynamics. This structure would be detected by

any sensitive univariate nonlinear measure. However, that

does not imply whether or not there is dependence between

these two dynamics to be detected by bivariate measures.

The dynamics may or may not be coupled. On the other

hand, any nonrandom structure in either dynamics violates

both the univariate and bivariate null hypothesis. Whether the

hypotheses are actually rejected due to this nonrandomness

in turn depends on the type of the univariate and bivariate

measures used to test the hypothesis.

Therefore, our first objective is to assess the influence

of nonstationarity on a univariate randomness test and a

bivariate nonlinear-independence test in application to focal

and nonfocal EEG signals. We base the randomness test on a

nonlinear prediction error and univariate surrogates, and the

nonlinear-independence test on a nonlinear interdependence

measure and bivariate surrogates. As stationarity test we use
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a combination of linear fluctuation measures with univariate

surrogates. Our second objective is to study whether the

rejections of the univariate randomness test and the bivari-

ate nonlinear-independence test correlate across signals. To

minimize the influence of nonstationarity and the differences

between the focal and nonfocal dynamics, we restrict this part

of the study to focal signals for which the stationarity test was

not rejected.

II. METHODS

A flowchart providing an overview of the different steps of

analysis described in this section is provided in Appendix C.

A. Presurgical epilepsy diagnostics

We included intracranial EEG recordings from five epilepsy

patients. These recordings were performed prior to and

independently from our study as part of the epilepsy diag-

nostics in these patients. All five patients had longstanding

pharmacoresistant temporal lobe epilepsy and were candidates

for epilepsy surgery. Noninvasive studies had not allowed

for unequivocal localization of the brain areas from which

seizures originated (“seizure onset zone”), and all patients

underwent long-term intracranial EEG recordings at the De-

partment of Neurology of the University of Bern. Multichannel

EEG signals were recorded with intracranial strip and depth

electrodes all manufactured by AD-TECH (Racine, WI, USA).

An extracranial reference electrode placed between 10/20

positions Fz and Pz was used. EEG signals were either sampled

at 512 or 1024 Hz, depending on whether they were recorded

with more or less than 64 channels. Based on these intracranial

EEG recordings the brain areas where seizures started could

be localized for all five patients. In addition, these areas

were found in parts of the brain that could be surgically

resected without the danger of neurological deficits that would

be unacceptable for the patients. All five patients had good

surgical outcome. Three patients attained complete seizure

freedom, and two patients only had auras but no other seizures

following surgery, corresponding to class 1 and 2 according

to the “International League Against Epilepsy” classification

of surgical outcome [33]. Retrospective EEG data analysis

has been approved by the ethics committee of the Kanton of

Bern. In addition, all patients gave written informed consent

that their data from long-term EEG might be used for research

purposes.

B. Preprocessing of EEG signals

All EEG signals were digitally band-pass filtered between

0.5 and 150 Hz using a fourth-order Butterworth filter. Forward

and backward filtering was used in order to minimize phase

distortions. Those EEG signals that had been recorded with

a sampling rate of 1024 Hz were down-sampled to 512 Hz

prior to further analysis. EEG signals were then re-referenced

against the median of all the channels free of permanent

artifacts as judged by visual inspection. There is no reference

that can be considered “best” on general grounds. Rummel

et al. [34] investigated the impact of six common EEG

references on bi- and multivariate correlation measures for the

example of scalp montages. The global average clearly intro-

duces correlation, however, in a controlled way. The median

reference was not investigated in this publication. However,

as compared to the mean it has the additional advantage that

the rank of the correlation matrix remains full. In consequence,

the amount of artificially introduced correlation is even smaller

than for the global average reference.

C. Composition of sets of EEG signals

As “focal EEG channels” we defined all those channels

that detected first ictal EEG signal changes as judged by

visual inspection by at least two neurologists who are also

board-certified electroencephalographers. KS was always one

of the experts. Though visual analysis is not a fully objec-

tive approach, joint-analysis with fellow neurologists allows

reducing subjective interpretation. Furthermore, visual EEG

analysis is currently still the most important technique for

clinical decision making (see Sec. II A). All other channels

included in the recordings were classified as “nonfocal EEG

channels.” We randomly selected 3750 pairs of simultaneously

recorded signals x and y from the pool of all signals measured

at focal EEG channels. For that purpose, we at first divided the

recordings into time windows of 20 seconds, corresponding to

10 240 samples. Recordings of seizure activity and three hours

after the last seizure were excluded. For each individual signal

pair we then randomly selected one of the five patients, one of

this patient’s focal EEG channels (for the signal x), one of this

channel’s neighboring focal channels (for the signal y), and

one time window included in this patient’s recordings. This

random sample was drawn without replacement and using

a uniform random number generator. Before being included

into the database, the signal pair was visually inspected.

In case, it contained prominent measurement artifacts, the

signal pair was discarded. Moderate contaminations by power-

line noise at 50 Hz, however, were not used as exclusion

criterion. No clinical selection criteria such as the presence

or absence of epileptiform activity were applied. Finally, the

focal EEG signal pairs were stored in the order in which

they were drawn. Their origin (patient, channel, window)

was not stored. In the same way we randomly selected 3750

pairs of nonfocal signals measured at nonfocal EEG channels.

Exemplary pairs of signals are shown in Fig. 1 along with

the outcomes of the different tests described below (see also

Sec. V).

D. Surrogate signals

For the different hypotheses tests described below we

used univariate [13] and bivariate surrogate signals [16].

Univariate surrogates are generated from univariate signals.

Accordingly, given the pair of signals x and y, univariate

surrogate signals are generated by randomizing both individual

signals separately. The randomization is constrained such that

the surrogates have the same autocorrelation and amplitude

distribution as the original signals. Any potential nonlinear

deterministic structure or nonstationary features of the original

signals are destroyed. Pairs of bivariate surrogate signals

are generated by randomizing the pair of original signals

jointly. Like in the univariate case, the surrogates have the

same autocorrelation and amplitude distribution as the original
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FIG. 1. Exemplary pairs of nonfocal signal pairs (a–c) and focal signal pairs (d–f). The test outcomes for these signals are (a) S0, UX
0 , UY

0 ,

B0; (b) S0, UX
0 , UY

1 , B1; (c) S1, UX
1 , UY

1 , B1; (d) S0, UX
0 , UY

0 , B0; (e) S0, UX
1 , UY

1 , B1; (f) S1, UX
0 , UY

0 , B0.

signals. Beyond that the pair of surrogates also has the same

cross-correlation as the original pair of signals. Again any

potential nonlinear deterministic structure or nonstationary

features of the original signals are destroyed. Furthermore,

any signature of nonlinear interdependence between x and y

is removed.
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The null hypothesis tested by univariate surrogates H0,univ

is that the dynamics is a stationary linear stochastic correlated
Gaussian process. The measurement function by which the sig-
nal was derived from the dynamics is invertible but potentially
nonlinear. The autocorrelation, mean, and variance of the
underlying Gaussian process are such that the measurement
results in the autocorrelation, and amplitude distribution of
the observed time series. The null hypothesis of the bivariate

surrogate signals H0,biv is a generalization of the univariate

version: The dynamics is a stationary bivariate linear stochas-
tic correlated Gaussian process. The measurement functions
by which the pair of signals was derived from the dynamics
are invertible but potentially nonlinear. The autocorrelation,
cross-correlation, mean, and variance of the underlying
Gaussian process are such that the measurement results in the
autocorrelation, cross-correlations and amplitude distribution
of the observed time series.

We generated the surrogates signals using an iterative

algorithm proposed for the univariate case in Ref. [13]

and generalized to the bivariate case in Ref. [16]. Detailed

descriptions of these algorithms can be found in these original

references or in Ref. [35] (see also Sec. V).

E. Randomness tests: U
X
0 and U

Y
0 versus U

X
1 and U

Y
1

The randomness test is based on a nonlinear prediction error

N (Ref. [1] and references therein) and univariate surrogates. It

is carried out separately for the signals x and y. The nonlinear

prediction error N aims at a distinction between stochastic

and deterministic dynamics. For this purpose, it quantifies

the degree to which similar present states are mapped to

similar future states of the dynamics. The dynamics is at

first reconstructed from the signal using delay coordinates,

and similarity of states is assessed by spatial proximity in

the reconstructed state space. For a detailed description of

the algorithm used to calculate the measure N we refer to

Ref. [6] (see also Sec. V).

For periodic dynamics the nonlinear prediction error N

takes values of zero. The other extreme is uncorrelated white

noise for which N values around one are obtained. When

calculated for a signal from a deterministic dynamics and

for a stochastic signal that has the same autocorrelation like

the deterministic signal, lower nonlinear prediction errors

are typically obtained for the deterministic signal. However,

stochastic but strongly autocorrelated signals can result in

lower N values than weakly autocorrelated deterministic

signals. Hence, only a combination of the nonlinear prediction

error and surrogates can serve as randomness test.

To calculate N we low-pass filtered the signals with a cut-

off frequency of 40 Hz (eighth-order Butterworth filter) and

subsequently down-sampled the signals by a factor of four,

resulting in a sampling time of 7.8 ms. Subsequently, the state

space was reconstructed using an embedding dimension m and

time delay τ . The parameters of the nonlinear prediction error

are the number of nearest neighbors k, the prediction horizon

H , and the Theiler correction window W . In Secs. III A–III B,

we show detailed results obtained for m = 8, τ = 4 sampling

times, k = 5, H = 4 sampling times, and W = 19 sampling

times. The parameter dependence of the results is summarized

in Appendix A.

We calculated the nonlinear prediction error N for the signal

x and for 19 univariate surrogate signals generated from it. We

rejected the randomness test if the result for the signal was

lower than the minimal result across all 19 surrogate signals.

Accordingly, the randomness test has a significance level of

α = 0.05. The outcome of a rejection of the randomness test

for x is denoted by UX
1 . If the N value of at least one surrogate

was lower than the one for the original signal, the randomness

test for x was not rejected. This outcome is denoted by UX
0 .

All steps were carried out analogously but independently for

y resulting in the two possible outcomes UY
1 and UY

0 .

F. Nonlinear-independence test: B0 versus B1

For the nonlinear-independence test we use a nonlinear

interdependence measure L and bivariate surrogates. The non-

linear interdependence measure L aims at a characterization

of couplings between two dynamics X and Y from the analysis

of a pair of signals measured from them [36]. Like a number of

related approaches [1,18,37–42], the measure L quantifies

the probability with which similar states of one dynamics

are mapped to similar states of the other dynamics. Like

for the nonlinear prediction error, the dynamics are at first

reconstructed from the signals x and y using delay coordinates,

and similarity of states is assessed by spatial proximity in

the respective reconstructed state spaces. Due to an unbiased

normalization and the use of a rank-based statistics, the

measure L offers a higher sensitivity and specificity for

directional couplings than a number of previous approaches

[36].

In its elementary form this approach provides two di-

rectional measures: L(X|Y ) and L(Y |X). Both directional

measures take values distributed around zero for signals of

independent realizations of independent dynamics. For weak

couplings from X to Y the measure L(X|Y ) increases while

L(Y |X) remains close to zero. Analogously, weak couplings

in the other direction can be detected from an increase of

L(Y |X) and L(X|Y ) being close to zero. Once the coupling

is strong enough to induce a synchronized motion of X and

Y , both measures attain high values, and the upper bound of

L(Y |X) = L(X|Y ) = 1 is reached for identical synchroniza-

tion. Accordingly, the difference L(X|Y ) − L(Y |X) can be

used to characterize the direction of the coupling, as long as

the coupling is not strong enough to induce synchronization.

Following Ref. [8] we restrict ourselves to the characterization

of the overall strength of the nonlinear dependence and use the

nondirectional symmetrized version of the measure:

L =
L(X|Y ) + L(Y |X)

2
. (1)

For a detailed description of the algorithm used to calculate L

we refer to Ref. [36] (see also Sec. V).

To calculate the nonlinear interdependence measure L

we used the same filtering and down-sampling as for the

nonlinear prediction error. We also used the same parameter

values for the embedding dimension m, time delay τ , number

nearest neighbors k, and the Theiler correction window W .

No prediction horizon H is needed for the measure L.

Accordingly, results of the nonlinear-independence test shown

in Secs. III A–III B are obtained for m = 8, τ = 4 sampling
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times, k = 5, and W = 19 sampling times. The parameter

dependence of our results is summarized in Appendix A.

Apart from a coupling between nonlinear deterministic

dynamics, cross-correlations resulting from superpositions of

independent dynamics can result in high values of L. Accord-

ingly, only a combination of the nonlinear interdependence

measure L with bivariate surrogates can be used as nonlinear-

independence test. Therefore, we calculated the measure L

for the original pair of signals x and y and for 19 pairs of

surrogate signals. We rejected the nonlinear-independence test

if the result for the pair of original signals was higher than the

maximal result across all 19 pairs of surrogate signals, again

corresponding to a test with a significance level of α = 0.05.

The outcome of a rejection of the nonlinear-independence

test is denoted by B1. If the result of at least one pair

of surrogates exceeded the results for the pair of original

signals, the nonlinear-independence test was not rejected.

This outcome is denoted by B0. We use the term “nonlinear-

interdependence test” instead of just “independence test” since

the null hypothesis includes linear cross-correlation between

the two signals.

G. Stationarity test: S0 versus S1

For the stationarity test we combine an amplitude-

stationarity test and frequency-stationarity already used in

[6], and a correlation-stationarity test. Since these tests are

nonstandard and somewhat ad hoc, we provide the full

formulas here. Given the pair of signals x and y of 10 240

samples each, the following steps are carried out. At first the

signal are both normalized to zero mean and unit variance.

Then both are divided into 16 nonoverlapping subsegments

of length 640 samples: xi,j and yi,j for i = 1, . . . ,16 and

j = 1, . . . ,640. For each subsegment we calculate the average

absolute deviation across the amplitudes

Axi
=

1

640

640
∑

j=1

|xi,j − xi,j |, (2)

where the overbar denotes the mean across the samples of

segment i. Ayi
is calculated analogously. Furthermore the

mean frequency is determined from

Fxi
=

∑320
k=1 fkSxi

(fk)
∑320

k=1 Sxi
(fk)

, (3)

where Sxi
(fk) denotes the amplitude of the Fourier transform

of the subsegment i at frequency fk . Fyi
is calculated analo-

gously. The equal-time cross-correlation coefficient between

corresponding segments of x and y is calculated using

Ci =
1

640

640
∑

j=1

(xi,j − xi,j )(yi,j − yi,j )

σ (xi,j )σ (yi,j )
, (4)

where σ (·) denotes the standard deviation across the samples

of segment i.

The fluctuation of these quantities across subsegments is

quantified using the average deviations

R(Ax) =
1

16

16
∑

i=1

|Axi
− 〈Axi

〉|, (5)

where the brackets 〈·〉 denote the mean across the segments,

R(Ay),R(Fx),R(Fy),R(C) analogously. R(Ax) and R(Fx) are

calculated for the signal x and 99 univariate surrogates

generated from x, R(Ay) and R(Fy) in turn for y and 99

univariate surrogates of y. The quantity R(C) is calculated

for the pair of signals x and y and 99 bivariate surrogates

generated from them.

The stationarity test is designed to be very strict. To reject

it, it is sufficient that one of the five values obtained for the

original signals [R(Ax), R(Ay), R(Fx), R(Fy), and R(C)] is

outside the range of its surrogates. This outcome is denoted by

S1. We use a higher number of 99 surrogates to avoid that the

chance level of this combined test exceeds 5%. If we regard

the amplitude-stationarity test, frequency-stationarity, and

correlation-stationarity test as independent, the significance

level of the stationarity test is 1 − 0.995 = 0.049. The outcome

that the stationarity test is not rejected is denoted by S0.

H. Outcomes: Counts, probability estimates, and terminology

We denote the counts of the different test outcomes

across signal pairs by c(·). Since we have two univariate

randomness tests, one bivariate nonlinear-independence test,

and one stationarity test, we can have up to four arguments

for the counts. Whenever we refer to marginal counts, we

suppress all arguments over which the sum was taken,

e.g., c(UX
0 U

Y
0 B1S1) + c(UX

1 U
Y
0 B1S1) + c(UX

0 U
Y
0 B0S1) +

c(UX
1 U

Y
0 B0S1) = c(UX

0 U
Y
0 S1) + c(UX

1 U
Y
0 S1) = c(UY

0 S1). In

consequence, when we refer to the sum of all counts

marginalized over all tests, we use no argument for c.

From the outcome counts c(·) we define estimates of

probabilities p(·) and conditioned probabilities p(·|·). For the

sake of brevity we often drop the term estimate. We, however,

have to keep in mind that these values derived from outcome

counts are subject to fluctuations caused by the finite sample

size. Confidence intervals of these probability estimates are

derived in Appendix B.

Like the counts of outcomes, the derived probabilities can

have up to four arguments. Among the arguments can be none,

one, or both outcomes of the two univariate randomness tests,

e.g., p(B1), p(UX
1 |B1), p(UY

1 |B1U
X
0 ), respectively. Recall,

however, that our database is constructed to be symmetric with

regard to the univariate properties of X and Y . Accordingly all

probabilities that have at least one univariate randomness test

outcome among the arguments are paired. The definition of

one paired probability can be transformed to its counterpart

by exchanging the symbols X and Y . The values of both

probabilities are identical, e.g., p(UX
1 |B1) = p(UY

1 |B1), or

p(UY
1 |B1U

X
0 ) = p(UX

1 |B1U
Y
0 ). The values of our estimates of

these probabilities coincide, except for fluctuations caused by

the finite sample. To avoid redundancies, we therefore show

only one of the paired probabilities, namely, the one where

the outcome of X occurs alone or first, e.g., p(UX
1 |B1) or

p(UX
1 |B1U

Y
0 ). Importantly, that does not mean that we pool

across the two univariate randomness tests to improve the

statistics. We cannot pool across these two tests since they

cannot assumed to be based on independent samples. (In

Secs. III B4–III B5 we study the actual dependence between

the two univariate randomness test outcomes.)
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To compare probabilities we use the relative difference:

D(p1,p2) =
p1 − p2

p1 + p2

. (6)

Evidently this quantity is bounded by [−1,1], positive and

negative values of D(p1,p2) are obtained for p1 > p2 and

p1 < p2, respectively. Confidence intervals for this quantity

are derived in Appendix B.

As indicated above and further discussed in Sec. IV, the

outcomes B1 and B0 can indicate but cannot prove nonlinear-

dependence and nonlinear-independence, respectively. The

same holds for UX
1 , UY

1 versus UX
0 , UY

0 with regard to

nonrandomness and randomness, as well as for S1 and S0

with regard to nonstationarity and stationarity. This has to be

kept in mind when we use these terms in the following.

III. RESULTS

A. Focal versus nonfocal signals: Randomness, nonlinear

independence, and stationarity

In this section we compare the rejection counts of the

randomness tests and the nonlinear-independence test for

the focal and nonfocal signals. We use the index f and

n, respectively, to distinguish between these signal classes.

In formulas the index a is used as place holder for both:

a = {f,n}.

1. More focal nonrandomness and nonlinear dependence

Estimates of the rejection probabilities for the randomness

and nonlinear-independence test are given by, respectively,

pa

(

U
X
1

)

=
ca

(

UX
1

)

ca

, (7)

pa(B1) =
ca(B1)

ca

. (8)

Figure 2(a) shows that all estimates are clearly above the

chance level of 5% and that rejection probabilities for the non-

linear-independence test are higher than the ones for the

randomness test. More importantly, for both tests we obtain

higher rejection probabilities for the focal signals as for the

nonfocal signals.

2. More nonfocal nonstationarity

The estimates of the rejection probabilities for the station-

arity test are

pa(S1) =
ca(S1)

ca

. (9)

Figure 3 shows that in contrast to the randomness and

nonlinear-independence test, more rejections of the station-

arity test are found for the nonfocal signals.

3. Impact of nonstationarity stronger for nonfocal signals

Does the stationarity test outcome have an influence on

the rejection probabilities of the randomness and nonlinear-

independence tests? To address this question we con-

trast the overall probability pa(UX
1 ) with the conditioned

probabilities:

pa

(

U
X
1

∣

∣S1

)

=
ca

(

UX
1 S1

)

ca(S1)
, (10)

pa

(

U
X
1

∣

∣S0

)

=
ca

(

UX
1 S0

)

ca(S0)
. (11)

We furthermore compare pa(B1) to the corresponding con-

ditioned probabilities, which are defined analogously to

Eqs. (10) and (11). For the nonfocal signals a rejection of

the stationarity test increases the rejection probabilities for

both the randomness and the nonlinear-independence test

substantially [Fig. 2(c)]. In contrast, for the focal signals

a rejection of the stationarity test has almost no impact

on the rejection probabilities for the randomness test. It

does increases the rejection probability for the nonlinear-

independence test, however, to a lesser extent than for the

nonfocal signals, as evidenced by the D values displayed in

Figs. 2(c)–2(d).

Keep in mind that the results shown in Figs. 2(c)–2(d)

are not a consequence of the ones shown in Fig. 3. The

different stationarity test rejection probabilities found for the

nonfocal versus nonfocal signals do not imply what happens

with the rejection probabilities of the other tests, given that the

stationarity was rejected or was not rejected.

4. Increased contrast between focal and nonfocal signals for

stationary signals

Results of the previous section imply that the contrast be-

tween the focal and nonfocal signals, found by the randomness

test and the nonlinear-independence test [Fig. 2(a)], changes if

we exclude signals for which the stationarity test was rejected.

Specifically, regarding Figs. 2(c)–2(d), we expect that this

contrast increases. Indeed, Fig. 2(b) shows that the D values

obtained for the quantities conditioned on that the stationarity

test is not rejected are substantially higher than those for the

unconditioned counterparts shown in Fig. 2(a).

B. Dependence between nonlinear independence

and randomness tests: Stationary, focal signals only

In this section we study the dependence between the

randomness and the nonlinear-independence test outcomes.

Results of Sec. III A show that the focal and nonfocal signals

have different statistical properties with regard to these two

tests. Therefore, to isolate the dependence between the tests,

we restrict the following analysis to focal signals. To simplify

the notation we drop the index f . Furthermore, Sec. III A3

shows that the outcome of the stationarity test influences

the rejection probabilities of the randomness and nonlinear-

independence tests. Even though this influence is weaker for

the focal signals, we restrict our analysis further by excluding

those signals, for which the stationarity test was rejected.

Thereby we aim to minimize the influence of nonstationarity.

After this reduction of our data base we are left with 2000

focal signal pairs. In consequence, all subsequent expressions

are conditioned onS0. We suppress this conditioning argument

to simplify the notation. Note that it is a pure coincidence that

we have a round number of exactly 2000 focal signal pairs for

which the stationarity test was not rejected.
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FIG. 2. (a) More focal nonrandomness and nonindependence. Comparison of rejection probabilities for nonfocal (light gray) and focal

signals (dark gray) for the randomness test (left) and nonlinear-independence test (right). (b) Increased contrast between focal and nonfocal

signals for stationary signals. Composed like panel (a), but here the analysis is restricted to signals for which the stationarity test was not

rejected. (c) Impact of nonstationarity for nonfocal signals. Comparison of probabilities of the outcome that the randomness test is rejected (left)

and the outcome that the nonlinear-independence test is rejected (right). Probabilities are conditioned on that the stationarity test is rejected

(black) or not rejected (white). For gray bars the stationarity test outcome is marginalized out. (d) Impact of nonstationarity for focal signals.

Composed like panel (c), but here for focal signals. Graphical elements: bars: rejection probability estimates; error bars: 95% confidence

intervals; vertical lines: significance level of the tests; D values: determined according to Eq. (6) for the pair of probabilities above which they

are displayed, along with 95% confidence intervals (see Appendix B for confidence intervals).

1. More nonlinear dependence for nonrandom signals

Does the rejection probability of the nonlinear-

independence test depend on the outcomes of the randomness

tests? To address this question we compare the conditional

probability

p
(

B1

∣

∣U
X
0 U

Y
0

)

=
c
(

UX
0 U

Y
0 B1

)

c
(

UX
0 U

Y
0

) (12)

to the analogously defined conditional probabilities

p(B1|UX
1 U

Y
0 ), and p(B1|UX

1 U
Y
1 ). Figure 4(a) shows that already

the rejection of one of the two randomness tests increases

the rejection probability of the nonlinear-independence test.

The rejection of both randomness tests further increases this

probability.

We find however also that even if no randomness test

is rejected, there is a substantial probability to reject the

nonlinear-independence test: p(B1|UX
0 U

Y
0 ) is very far from the

chance level. Accordingly, the rejection of the randomness test

is not necessary for the nonlinear-independence test rejection.

Furthermore, even if both randomness tests are rejected, there

is a substantial probability not to reject the bivariate test:

p(B1|UX
1 U

Y
1 ) remains clearly below one. Hence, the rejection

of the randomness test is not sufficient for the rejection of the

nonlinear-independence test.

2. Nonrandomness does not cause false positive detections

of nonlinear dependence

We showed in the previous subsection that the rejection of

the randomness tests is not sufficient for the rejection of the

nonlinear-independence test. Nonetheless, results displayed in

Fig. 4 could suggest that nonrandomness in X or Y , and even

more so in X and Y , favors the rejection of the nonlinear-

independence test, even if X and Y are independent.

To test this possible conjecture we generated independent

signals by breaking the pairing between the x and y signals.
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FIG. 3. More nonfocal nonstationarity. Comparison of the rejec-

tion probabilities of the stationarity test for the nonfocal (light gray)

and focal signals (dark gray). All graphical elements like in Fig. 2.

Instead of pairing the signal x(l) with its simultaneously

measured counterpart y(l), we paired it with some other y(k �=l)

signal, which was selected without replacement from the pool

of all remaining y signals. (Accordingly, the upper indexes l,k

refer to the number of the signal within all 2000 stationary focal

signals. They do not refer to samples within individual signals.

The signal samples were not shuffled.) We then repeated the

analysis for these shuffled signal pairs. In particular, we again

excluded all signals for which the stationarity test was rejected.

The shuffled signal pairs have the same statistical properties

with regard to the randomness test as the nonshuffled pairs.

However, the shuffling destroys any potential dependence.

Figure 4(b) shows that for these shuffled signal pairs, the

rejection probability of H0,biv is very close to the chance

level of 5%. In all cases, the confidence intervals include this

significance level. In particular, no evident dependence on

the outcome of the randomness test is found. Hence, the

nonlinear-independence test is not rejected for independent

X and Y .

3. More nonrandomness for nonlinear dependent signals

To study in which way the rejection probabilities of the

randomness test depend on the outcomes of the nonlinear-

independence test, we use the conditional probability

p
(

U
X
1 U

Y
1

∣

∣B1

)

=
c
(

UX
1 U

Y
1 B1

)

c(B1)
(13)

as well as the analogously defined conditional probabilities

p(UX
1 U

Y
1 |B0), p(UX

0 U
Y
0 |B1), p(UX

0 U
Y
0 |B0), p(UX

1 U
Y
0 |B1), and

p(UX
1 U

Y
0 |B0). We find that the rejection of the nonlinear-

independence test increases the probability to reject the

randomness test (Fig. 5). In particular, the probability to reject

both random tests jointly is increased substantially, while

the probability to reject just one randomness test is only

moderately increased.

Furthermore, we find that even if the nonlinear-

independence test is not rejected, there is a high probability to

still reject at least one of the randomness tests, p(UX
0 U

Y
0 |B0)

stays clearly below one. Hence, the rejection of the nonlinear-

independence test is not necessary for the randomness test re-

jection. Furthermore, even if the nonlinear-independence test is

rejected, there remains a substantial probability p(UX
0 U

Y
0 |B1)

to accept both randomness tests. Therefore, the rejection of the

nonlinear-independence test is not sufficient for the rejection

of the randomness test.

4. U
X
1 and U

Y
1 are dependent

Assume that UX
1 and UY

1 were independent events with a

certain probability q. In this case we expect p(UX
0 U

Y
0 ) ≈ (1 −

q)2, p(UX
1 U

Y
0 ) ≈ p(UX

0 U
Y
1 ) ≈ q(1 − q), and p(UX

1 U
Y
1 ) ≈ q2.

However, results displayed in Fig. 5 suggest that p(UX
1 U

Y
1 )

is too high compared to p(UX
1 U

Y
0 ) to be consistent with

this assumption of UX
1 and UY

1 being independent events.

Direct evidence for their dependence can be obtained from
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(b):    Shuffled signal pairs

FIG. 4. (a) More nonlinear dependence for nonrandom signals. Comparison of the rejection probabilities for the nonlinear-independence

test conditioned on that no randomness test is rejected (left), one randomness test is rejected (middle) and both randomness tests are rejected

(right). (b) Nonrandomness does not cause false positive detections of dependence. Composed like panel (a), but here for shuffled signal pairs.

All graphical elements like in Fig. 2.
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FIG. 5. More nonrandomness for nonlinear dependent signals. Comparison of probabilities of the joint outcome that no randomness test is

rejected (left), one randomness test is rejected (middle), and both randomness tests are rejected (right). We show these probabilities conditioned

on that the nonlinear-independence test is rejected (black) or not rejected (white). For gray bars the nonlinear-independence test outcome is

marginalized out. All graphical elements like in Fig. 2.

the conditional probabilities:

p
(

U
X
1

∣

∣U
Y
1

)

=
c
(

UX
1 U

Y
1

)

c
(

UY
1

) (14)

and the analogously defined p(UX
1 |UY

0 ). If UX
1 and UY

1

were independent events, we expect p(UX
1 |UY

1 ) ≈ p(UX
1 |UY

0 )

and accordingly D[p(UX
1 |UY

1 ),p(UX
1 |UY

0 )] ≈ 0. However, this

relation clearly does not hold [Fig. 6(a)], providing direct

evidence for the dependence of UX
1 and UY

1 .

5. The dependence of U
X
1 and U

Y
1 depends on B1

To quantify the degree of dependence between UX
1 and

UY
1 we contrast the conditional probability p(UX

1 |UY
1 ) with the

probabilities that are additionally conditioned on the nonlinear-

independence test outcome:

p
(

U
X
1

∣

∣U
Y
1 B1

)

=
c
(

UX
1 U

Y
1 B1

)

c
(

UY
1 B1

) (15)

and p(UX
1 |UY

1 B0) defined analogously. Figure 6(b) shows that

the dependence between the randomness test outcomes across

X and Y is increased if the nonlinear-independence test is

rejected.

IV. DISCUSSION

For both the randomness test and the nonlinear-

independence test we obtain more rejections for the focal

signals as compared to the nonfocal signals (Sec. III A1). These

findings are consistent with previous findings of Refs. [5–7]

and [8,23,27], respectively. An important potential confound-

ing variable in such results derived from surrogate tests is

nonstationarity. Since stationarity is included in H0,univ and

H0,biv, nonstationarity can cause the rejection of the random-

ness and the nonlinear-independence test. While the potential

effect of nonstationarity is often discussed or stationarity of the

signals is sometimes even used as an inclusion criterion for the

signals, results of Secs. III A2–III A4 for the first time assess

the impact of nonstationarity on the rejection probabilities

of a randomness and nonlinear-independence test applied to

EEG time series. Regarding the high rejection rates of the

stationarity test (Sec. III A2), we should recall that we designed

this test to be very strict. To reject it, it is sufficient to reject the

frequency-stationarity test or the amplitude-stationarity test

for x or y or the correlation-stationarity test for the pair x

and y. Nonetheless, rejection rates around 50% reflect that on

the time scale of the analysis window our EEG signals show

strong fluctuations of the frequencies, amplitude magnitudes

and correlations. These fluctuations exceed in a large fraction

of signals those found for the surrogates leading to the high

rejection rates of the stationarity test.

It is important, however, to keep in mind that also our

stationarity test is based on a null hypothesis test. Accord-

ingly, for the principal reasons outlined in the introduction,

its rejection cannot prove that the underlying dynamics is

nonstationary. Consider for example the following simple

stationary stochastic process. The first variable ui counts the

number of events emitted by a homogeneous Poisson process

up to time index i. The second variable vi is set to zero if

ui is even and set to one if ui is odd. The third variable is

defined as wi+1 = 0.5wiui + ξi , where ξi is Gaussian white

noise. Evidently, depending on the ratio between the Poisson

process rate and the window length the stationarity test can be

rejected when applied to w. Another example is a signal from

the deterministic Lorenz dynamics. This dynamics involves

two time scales, fast oscillations within individual wings and

slow switchings between the wings of the butterfly attractor. In

the case these irregular switches occur seldom with regard to

the window length used for the stationarity test, the test can be

rejected. In both examples the dynamics are stationary, but the

stationarity test can be rejected depending on the ratio between

the long time scales of the dynamics and the window length
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FIG. 6. (a) UX
1 and UY

1 are dependent. Comparison of probabilities of the outcome that the randomness test is rejected for X. We show these

probabilities conditioned on that the randomness test for Y is rejected (black) or not rejected (white). For gray bars the randomness test outcome

for Y is marginalized out. (b) The outcomeB1 enhances the dependence betweenUX
1 andUY

1 . Comparison of the probabilities that the randomness

test for X is rejected given that it has been rejected for Y . We show these probabilities conditioned on that the nonlinear-independence test is

rejected (black) or not rejected (white). For the gray bar the nonlinear-independence test outcome is marginalized out. Accordingly this bar is

a replica of the black bar in panel (a). All graphical elements like in Fig. 2.

used for the stationarity test. However, in fact these rejections

are not false but true positive rejections. The stationarity test is

a test of H0,univ based on a measure of nonstationarity. In both

examples, the dynamics are not consistent with H0,univ, both

processes are nonlinear. The Lorenz dynamics is moreover

deterministic. Accordingly, the rejection of the test is correct in

both examples. It would be incorrect, however, to interpret this

rejection as proof for the nonstationarity of the dynamics. On

the other hand, whatever causes the fluctuations of the mean

frequency, mean amplitudes, and linear correlations of the

EEG signals, their effect is that the signals seem nonstationary

on the time scale of the analysis window. After all that is

what counts when the EEG signals are used as input for the

randomness and nonlinear-independence test. In that sense we

interpret results of Sec. III A2 to indicate nonstationarity.

Due to the intermittent occurrence of epileptiform activity

during the seizure-free interval one might expect that focal

signals are less stationary than nonfocal signals. However, in

consistency with an early study of Wang and Wieser [43],

we in fact find more nonstationarity for nonfocal signals than

for the focal signals. Another important finding is that the

impact of the rejection of the stationarity test on the rejection

probabilities of the other tests is distinct for focal versus non-

focal signals (Sec. III A3). For nonfocal signals the rejection of

the stationarity test increases the rejection probabilities for the

randomness and the nonlinear-independence test substantially.

For focal signals the rejection of the stationarity test increases

the rejection probabilities for the nonlinear-independence test,

while for the randomness test even a slight decrease of the

rejection probability is found. Overall the impact is clearly

weaker for the focal versus nonfocal signals. As a consequence,

the contrast between the focal and nonfocal signals, found

by the randomness test and the nonlinear-independence test,

enhances when we exclude signals for which the stationarity

test is rejected (Sec. III A4). Certainly these findings deserve

further investigation. How can one characterize these different

ratios and types of nonstationarity found for the focal and

nonfocal signals (cf. Ref. [44])? Do these findings depend on

different recording locations (temporal lobe, occipital lobe,

parietal lobe, frontal lobe, hippocampal formation)? Do these

findings depend on the time scale used for the stationarity test?

These questions are beyond the scope of the present study and

are left for future studies, to which everyone is invited to

contribute (see Sec. V).

In summary of Sec. III A, nonstationarity is indeed a

confounding variable for the randomness and nonlinear-

independence test. However, once we control for it, the signifi-

cance of the main result, namely, the contrast between the focal

and nonfocal signals obtained by these tests, is actually further

enhanced. So, while we challenged the conclusion of Ref. [8]

in the introduction, our results further support it. Accordingly,

in keeping with Ref. [8] we interpret the results of Sec. III A

to reflect an increased level of synchronization of groups of

neurons induced by epilepsy during the seizure-free interval.

This increased synchronicity can have different manifestations

on different spatial scales of neuronal organization. For

univariate focal signals recorded by individual contacts it can

cause the rejection of the randomness test. For bivariate focal

signals recorded by pairs of contacts it can cause the rejection

of the nonlinear-independence test. Across these spatial scales

this focal synchronicity can result in an EEG that is less

consistent with a linear stochastic process and more consistent

with a coupled nonlinear deterministic dynamics. These results

for the seizure-free interval complement studies which provide

evidence for nonlinear deterministic dynamics in epileptic

seizures (e.g., Refs. [11,35,45]). We do not imply that epilepsy

induces a transition from a pure linear stochastic process to a

pure coupled nonlinear deterministic dynamics. Rather our

interpretation is that the EEG reflects the superposition of

these two types of dynamics and that epilepsy strengthens the

coupled nonlinear deterministic fraction. This strengthening

and the complexity of the coupled nonlinear deterministic
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fraction will vary across different signal pairs, so that the

randomness and nonlinear-independence tests are rejected

only for a portion of the signals.

It is important to note, however, that also the present results

can not yield a proof for an underlying nonlinear deterministic

dynamics. As stated in the introduction, the reason is that the

null hypotheses H0,univ and H0,biv are composed of a number

of distinct assumptions, and the violation of any of these

assumptions renders these hypotheses wrong. In consequence

the rejection of the randomness test cannot prove that the

dynamics is nonlinear deterministic, and the joint rejection

of the randomness test and the nonlinear-independence test

cannot provide a proof for a coupled nonlinear deterministic

dynamics. We provided strong evidence against that our results

are caused by the nonstationarity of the dynamics. Thereby we

provided evidence against one, but only one, alternative to the

conclusion of an underlying nonlinear deterministic dynamics.

Many alternatives remain, such as a nonlinear or non-Gaussian

stochastic process. To test for these is left for future work.

In Sec. III B we only included focal signals for which the

stationarity test was not rejected in order to assess the cor-

relation between the randomness and nonlinear-independence

test outcomes. We find that the rejections of the randomness

test and nonlinear-independence test are positively correlated

across signals (Secs. III B1 and III B3). In particular, the

rejection of the nonlinear-independence test increases the

probability that the randomness test is rejected for both x and

y. Analogously the outcomes of only one or both randomness

tests being rejected both increase the rejection probability of

the nonlinear-independence test. In particular, the increase

is stronger when both randomness tests are rejected. These

findings provide further support for the conclusion drawn from

Sec. III A that the focal EEG contains a nonlinear deterministic

part. This violates both H0,univ and H0,biv, and both null

hypotheses are wrong and should be jointly rejected. On the

other hand, we find that the rejection of the randomness test

is neither necessary nor sufficient for the rejection of the

nonlinear-independence test. Analogously the rejection of the

nonlinear-independence test is neither necessary nor sufficient

for the rejection of the randomness test. This indicates

that the features induced by epilepsy become sometimes

predominantly evident from the structure of individual signals

and sometimes rather manifests themselves in the nonlinear

interdependence between signals.

Extending results for mathematical model systems [36,46]

and time-shifted surrogates of EEG signals [8], results of

Sec. III B2 confirm the excellent specificity of the mea-

sure L. They show that the rejection probability of the

nonlinear-independence test obtained for independent signals

is consistent with chance level. This holds regardless of

whether the randomness test is rejected for none, one, or

both univariate signals. Let us suppose that the rejection of

the randomness tests is caused since X and Y are a pair of

nonlinear deterministic but independent dynamics. Despite

being independent, the individual dynamics’ deterministic

structure violates H0,biv. However, due to the high specificity

of the particular nonlinear interdependence measure L it takes

values distributed around zero for independent dynamics,

regardless of possible deterministic structure in the univariate

signals. Accordingly, for a pair of nonlinear deterministic

but independent dynamics, values distributed around zero are

obtained for the original signals and for the surrogates. In

consequence, the nonlinear-independence test is not rejected.

Thanks to this high specificity an nonlinear-independence test

based on this measure and surrogates can indeed provide

specific information about the interrelation of the two dynam-

ics and is not influenced by the structure of the individual

dynamics.

The dependence between the randomness test outcomes

across x and y (Sec. III B4), which is further increased if

the nonlinear-independence test is rejected (Sec. III B5), is

plausible. We only included signals that where measured from

neighboring contacts. EEG signals measured from neighboring

contacts are frequently but not necessarily strongly correlated.

Hence, these are not independent measurements, and the

randomness test derived from these signals cannot be expected

to be independent. The increase of this dependence upon

rejection of the nonlinear-independence test is analogous to the

finding that a nonlinear-independence test rejection increases

the probability that the randomness test is rejected for both x

and y (Secs. III B1 and III B3).

Our results show that the randomness test and nonlinear-

independence test extract nonredundant information from

focal EEG signals. In consequence, both tests can contribute

different aspects to a thorough characterization of EEG signals

measured from epilepsy patients. Both tests can help to

distinguish focal and nonfocal signals. Importantly, for both

tests this contrast is enhanced when we include only signals for

which the stationarity test was not rejected. Future work shall

study how combinations of the tests used here and potential

further tests can be optimized to localize brain areas where

seizures originate without the necessity to observe actual

seizure activity.

Recordings from the brain have always been a chal-

lenging application for nonlinear signal analysis. Problems

encountered in the study of brain signals often promoted the

improvement of existing nonlinear measures, the development

of new measures, or even new concepts such as surrogates.

Our results provide further evidence that the benefit of this

interdisciplinary field is mutual. The application of nonlinear

signal analysis can provide valuable clinical information.

V. Sharing of data, source code, and results

The data, source code, and detailed results are provided in

Ref. [47]. The data comprises all EEG signals analyzed here.

The source code includes the algorithms for the calculation

of the measures N and L, the generation of the univariate

and bivariate surrogates, as well as for the stationarity test.

The outcomes of the stationarity test, randomness test, and

nonlinear-independence test are given for each individual pair

of EEG signals. In this way, the interested reader can inspect

the data and the corresponding results without the need to rerun

the analysis. The detailed results also allow one to determine

whatever joined or conditioned rejection probability which can

be of interest but was not included here. This resource of data,

source code, and results can be extended in all aspects. We

therefore invite the scientific community to contribute further

results obtained with other measures for the data studied here,

or further data to be evaluated with the tests used here.
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FIG. 7. (Color online) (a) D[pf (B1),pn(B1)] (red circles) and D[pf (B1|S0),pn(B1|S0)] (blue crosses) in dependence on m, τ , and k.

(b) D[pf (UX
1 ),pn(UX

1 )] (red circles) and D[pf (UX
1 |S0),pn(UX

1 |S0)] (blue crosses) in dependence on m, τ and k for a fixed H = 4 sampling

times. (c) Dependence of p(B1|UX
0 U

Y
0 ) (green squares, always below red circles), p(B1|UX

1 U
Y
0 ) (red circles), and p(B1|UX

1 U
Y
1 ) (blue crosses) in

dependence on m, τ , and k for a fixed H = 4 sampling times. Note the different scaling of the y axes of the different panels. In all panels the

parameter setting used in the main text is indicated by the vertical line.
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APPENDIX A: PARAMETER DEPENDENCE

For the nonlinear prediction error and the nonlinear interde-

pendence measure, underlying the randomness and nonlinear-

independence test, respectively, we varied the parameters of

the embedding dimension within m = [2,4,6,8,10,12] and the

time delay within τ = [1,2,4,8] sampling times. The number
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of nearest neighbors was varied within k = [1,5,10]. The

nonlinear prediction error has the prediction horizon H as addi-

tional parameter which we varied within H = [1,2,4,8,16,32]

sampling times. The Theiler correction window was fixed to

W = 19 sampling times. For the stationarity test the only

parameter is the number of subsegments. We did not vary

this parameter but fixed it to 16 according to Ref. [6].

In general, the rejection probabilities of the randomness

test and the nonlinear-independence test depend on the

different parameters. However, our main findings, derived

from comparisons of these probabilities, show only a weak

parameter dependence. Deviations are mostly found for small

values of m and τ . In this context we should note that the

temporal distance between the first and last entry in delay

coordinate vectors is given by (m − 1)τ , and a sufficient value

of this so-called embedding window is necessary to properly

reconstruct complex dynamics.

An exhaustive description of the dependence of all re-

sults on all parameters would be far too lengthy. There-

fore we restrict ourselves to three representative examples.

Figure 7(a) shows the dependence of D[pf (B1),pn(B1)] and

D[pf (B1|S0),pn(B1|S0)] on m, τ , and k. We see that across

all parameter values:

D[pf (B1|S0),pn(B1|S0)] > D[pf (B1),pn(B1)] > 0. (A1)

This means that more nonlinear-independence test rejections

are always found for focal versus nonfocal signals. Further-

more, this contrast is always increased when the analysis is

restricted to signals for which the stationarity test was not re-

jected. Both D[pf (B1),pn(B1)] and D[pf (B1|S0),pn(B1|S0)]

tend to decrease for increasing k. With regard to increasing m

and τ these quantities either increase or show a dependence of

∩ shape.

For the randomness test we have the additional parameter of

the prediction horizon H . Figure 7(b) shows the dependence

of D[pf (UX
1 ),pn(UX

1 )] and D[pf (UX
1 |S0),pn(UX

1 |S0)] on m,

τ , and k for a fixed H = 4 sampling times. We see that for this

value of the prediction horizon across all values of the other

parameters:

D
[

pf

(

U
X
1

∣

∣S0

)

,pn

(

U
X
1

∣

∣S0

)]

> D
[

pf

(

U
X
1

)

,pn

(

U
X
1

)]

> 0

(A2)

This means that, at H = 4, for the randomness test more

rejections are found for the focal signals across all parameter

combinations. This is in agreement with findings for the

nonlinear-independence test. Again this contrast is increased

across all parameter values when the analysis is restricted

to signals for which the stationarity test was not rejected.

Both D[pf (UX
1 |S0),pn(UX

1 |S0)] and D[pf (UX
1 ),pn(UX

1 )] tend

to decrease for increasing m, increasing τ , and decreasing

k. Similar results are found for smaller and higher values

of the prediction horizon H . Only for H = 1,m = 4,τ =
1,k = 5 and H = 1,m = 4,τ = 1,k = 10 we found nega-

tive D[pf (UX
1 ),pn(UX

1 )] values. For all other 430 parameter

combinations we found positive D[pf (UX
1 ),pn(UX

1 )] values.

D[pf (UX
1 |S0),pn(UX

1 |S0)] is positive for all 432 parameter

combinations and higher than D[pf (UX
1 ),pn(UX

1 )] for 421

parameter combinations. The remaining 11 combinations for

which the exclusion of nonstationary signals did not increase

TABLE I. Exceptional parameter combinations for which

we obtain the atypical result D[pf (UX
1 |S0),pn(UX

1 S0)] <

D[pf (UX
1 ),pn(UX

1 )].

H m τ k

1 2 2 1

1 2 4 1

1 2 4 5

2 2 1 1

2 2 2 1

2 2 1 5

2 2 2 5

2 2 1 10

32 6 2 1

32 2 8 1

32 8 8 10

the contrast between the focal and nonfocal signals found

by the randomness test are listed in Table I. We see that

these exceptions are mostly found at small values of H

in combination with small values of m and τ , or at high

values of H . Accordingly many of the exceptions listed

in Table I can be attributed to an insufficient reconstruc-

tion of the dynamics caused by too short an embedding

window.

As third example we show the dependence of

p(B1|UX
0 U

Y
0 ),p(B1|UX

1 U
Y
0 ) and p(B1|UX

1 U
Y
1 ) on m, τ , and

k, again for a fixed H = 4 sampling times [Fig. 7(c)].

Without exception we find p(B1|UX
0 U

Y
0 ) < p(B1|UX

1 U
Y
0 ), and

p(B1|UX
0 U

Y
0 ) < p(B1|UX

1 U
Y
1 ) is found with the only exception

of H = 4,m = 2,τ = 4,k = 5. Again this exception is found

at small values of the embedding window. Accordingly, the

fact that the rejection of the randomness and nonlinear-

independence test are correlated is found across almost all

parameters shown in Fig. 7(c). The additional finding that the

outcome of both randomness tests being rejected increases

the rejection probability of the nonlinear-independence test

more than the outcome of only one randomness test being

rejected (p(B1|UX
1 U

Y
0 ) < p(B1|UX

1 U
Y
1 )) is found only for high

enough values of the embedding window (m − 1)τ . This again

points to the importance of an embedding window of sufficient

length to properly reconstruct complex dynamics. Very similar

results are found for prediction horizons higher or lower than

H = 4.

APPENDIX B: CONFIDENCE INTERVALS

We use
[

p − 1.96

√

p(1 − p)

n
, p + 1.96

√

p(1 − p)

n

]

(B1)

as approximation to the 95% confidence interval for our

probability estimates p(·). Suppose that we carry out n

Bernoulli trials with parameter p0. That means we make n

independent trials where the probability to get a positive result

in an individual trial is p0 and to get a negative result is

1 − p0. Then the total count of positive trial results follows
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a binomial distribution with mean np0 and standard deviation√
np0(1 − p0). For large np0 this binomial distribution can be

approximated with a normal distribution with the same mean

and standard deviation. Accordingly, the fraction of positive

trial results, corresponding to our p, follows approximately

a normal distribution with mean p0 and standard deviation

σ0 =
√

p0(1−p0)

n
. Replacing the unknown p0 by our p derived

from the sample to estimate σ0 and using the inverse of

the standard normal distribution function �−1(1 − 0.05/2) =

1.96 results in the confidence interval boundaries given

above.

Confidence intervals for the quantity D(p1,p2) in Eq. (6)

can be derived as follows. Let u and v be two independent

normally distributed random variables with means μu, μv

and standard deviations σu, σv . Let the random variable d be

defined as

d =
u − v

u + v
, (B2)

FIG. 8. Flowchart of the steps of analysis. The numbers refer to sections of the main manuscript. The unidirectional arrows emphasize

that our analysis is sequential. Lower blocks have no influence on upper blocks. In particular, our data analysis has no influence on any aspect

of the EEG recordings carried out during the presurgical epilepsy diagnostics. Likewise our results have no influence on the selection of the

EEG signals. Arrow (a) is used to emphasize that the definition of the focal and nonfocal channels is fully determined through the information

derived prior to and independent from our data analysis during the presurgical epilepsy diagnostics.
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the distribution function F (z) of which is

F (z) = P

(

u − v

u + v
� z

)

(B3)

= P [u − v � z(u + v)] (B4)

= P [u(1 − z) − v(1 + z) � 0]. (B5)

The left-hand side of the inequality is again a normally

distributed random variable, which we denote by w. Its mean

and standard deviation are, respectively,

μw = μu(1 − z) + μv(1 + z), (B6)

σw =
√

σ 2
u (1 − z)2 + σ 2

v (1 + z)2. (B7)

Hence the random variable W = w−μw

σw
follows a standard

normal distribution with zero mean and unit variance, and

F (z) = P
(

w � 0
)

(B8)

= P

(

W � −
μw

σw

)

(B9)

= �

(

−
μw

σw

)

. (B10)

Setting F (z) = 0.975 and F (z) = 0.025 we get

�−1(0.025) = −1.96 = −
μw

σw

, (B11)

�−1(0.975) = 1.96 = −
μw

σw

. (B12)

Solving Eq. (B11) for z, using (B6)–(B7) and defining C =
1.962, yields

μ2
u − μ2

v − C
(

σ 2
u − σ 2

v

)

±
√

4C
(

μ2
uσ

2
v + μ2

vσ
2
u − Cσ 2

u σ 2
v

)

(μu + μv)2 − C
(

σ 2
u + σ 2

v

) .

(B13)

Due to the symmetry of the problem, solving Eq. (B12) for z

leads to the same pair of solutions. The resulting z1 and z2 are,

respectively, the upper and lower boundary of the confidence

interval for d.

APPENDIX C: STEPS OF ANALYSIS: FLOW CHART

A flowchart of the different steps of analysis is shown in

Fig. 8.
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