
Discrete Comput Geom 5:333-350 (1990) C l)iserete & C~mqmtatitmal 

o egmet  

Nonrealizability Proofs in Computational Geometry 

Jiirgen Bokowski, ~ Jiirgen Richter, 1 and Bernd Sturmfels 2 

Fachbereich Mathematik, Technische Hochschule Darmstadt, Schlossgartenstrasse 7, 
D-6100 Darmstadt, Federal Republic of Germany 

: Research Institute for Symbolic Computation, Johanes-Kepler Universit~it Linz, 
A-4040 Linz, Austria 

Abstract. This paper deals with a class of computational problems in real algebraic 

geometry. We introduce the concept of final polynomials as a systematic approach 

to prove nonrealizability for oriented matroids and combinatorial geometries. 

Hilbert's Nutlstellensatz and its real analogue imply that an abstract geometric 

object is either realizable or it admits a final polynomial. This duality has first been 

applied by Bokowski in the study of convex polytopes [7] and [11], but in these 
papers the resulting final polynomials were given without their derivations. 

It is the objective of the present paper to fill that gap and to describe an algorithm 

for constructing final polynomials for a large class of nonrealizable chirotopes. We 

resolve a problem posed in [10] by proving that not every realizable simplicial 

chirotope admits a solvability sequence. This result shows that there is no easy 

combinatorial method for proving nonrealizability and thus justifies our final 

polynomial approach. 

1. Introduction 

A large class of  realization problems in computational geometry can be reduced 

to the realizability problem of  chirotopes or equivalently of  oriented matroids 

[10]. Among such problems which have been studied in the recent literature are 

the polytopality of  combinatorial spheres [11] and [25], the embeddings of  

triangulated manifolds [5] and [6] and the stretchability of  pseudoline arrange- 

ments [20]. Apart  from these applications, the realizability problem for both 

oriented and unoriented matroids is a fundamental theoretical question in both 

matroid theory [30] and algebraic geometry [16] and [27]. 

Throughout  the literature most nonrealizability proofs for (oriented) matroids 

and nonpolytopality proofs for spheres were based on arguments from classical 
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projective geometry. These arguments are often very specific for the object in 

question and cannot be generalized. Moreover, it is known that over the real 

numbers there is no finite excluded minor characterization of the geometrically 

possible configurations [12] and [25]. For these two reasons, it becomes important 

to develop general computer algebra techniques for proving or disproving realiza- 

bility of abstract geometric objects. 

It is the objective of this paper to suggest such a technique. The method of 

final polynomials has already been used by the first author in earlier papers [7] 

and [11] where only the results of the computations were given and applied to 

the geometric problem in question. In this paper we aim to give a satisfactory 

answer to the question of how to find a final polynomial for a given nonrealizable 

structure. 

It follows from the results in [26] that deciding the realizability of arbitrary 

(oriented) matroids is as difficult as solving arbitrary polynomial equations and 

inequalities with integer coefficients. From a purely theoretical point of view this 

settles the problem because there are well-known decision procedures for the 

theory of real closed fields; we refer in particular to Collins's cylindrical algebraic 

decomposition method [ 14] and the very recent work of Grigoryev and Vorobjov 

[17] and Canny [13]. 

Computer experiments of B. Kutzler show, however, that all inequality systems 

resulting from the geometric applications in this paper are much too large for 

the SAC-II implementation of Collins's method. To the best of our knowledge, 

this implementation is the state of the art in general purpose real geometry 

software, and so there is a need to develop more specialized but faster algorithms. 

There is another important reason why chirotope realizability could be of 

interest to computer scientists and real algebraic geometers. 

The systems of sharp determinantal inequalities resulting from chirotopes 

share many structural features with problems arising in concrete applications 

such as robotics [13]. To take full advantage of these specific features, there 

should be some hope that the techniques to be presented here can be further 

developed along with the above methods from computer algebra to yield appli- 

cable decision procedures for a large class of interesting and applied problems 

in geometry. 

Throughout this paper the algorithmic point of view will be in the foreground. 

The sections are organized as follows. In Section 2 we explain some basic ideas 

by discussing a nonrealizable simplicial 3-chirotope with 10 points which has the 

structure of the Desargues configuration. We give a final polynomial for that 

example, and we describe in detail how this final polynomial has been constructed. 

Earlier Bokowski used precisely this construction technique to solve several 

previously open mathematical problems concerning the realizability of four- 

dimensional polytopes [7] and [11]. 

In Section 3 we begin the discussion of the general case. We give a "geometric 

preprocessing" algorithm which performs the following inequality reduction. Start- 

ing with a very large set of determinantal inequalities, we obtain a substantially 

smaller inequality system which is still equivalent to the original system. Once 

this reduced system has been found, the original geometric structure can be 
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ignored, and we proceed by variable elimination. If this elimination process leads 

to a contradiction, e.g., i f "0  < 0" can be derived in a certain sequence of deductive 

steps from the reduced system, then this sequence can be merged to a single 

(final) polynomial which shows the contradiction. 

In Section 5 we turn to the coordinatization algorithm which has been intro- 

duced by Bokowski and Sturmfels in [10]. There it was conjectured that the 

absence of  a solvability sequence is insufficient for the nonrealizability of  a 

chirotope. We prove this conjecture by establishing a realizable simplicial 3- 

chirotope R 9 with nine points due to J. Richter which does not admit a solvability 

sequence. Although R 9 does fulfill the isotopy property [10, Section 6], this 

example suggests the existence of chirotopes with disconnected realization space. 

Very recently, after the completion of this paper, it has been proved by White 

[31] and Jaggi and Mani-Levitska [18] that there are chirotopes without the 

isotopy property. 

Finally, we discuss final polynomials from a general algebraic geometry point 

of  view in Section 6. We outline the proof for the existence of final polynomials 

for all nonrealizable matroids and oriented matroids. This result was indepen- 

dently obtained by Dress and Sturmfels [27]. 

The reader is referred to [10], [15], [19], [22], and [27] for the basic concepts 

of  oriented matroid theory. Throughout this paper we identify oriented matroids 

with their chirotope representation. In order to define chirotopes, we denote the 

set of  ordered d-tuples of n elements by 

A(n, d) :=  {(A1,. • •, A d ) l l  --<AI <~A2 <~" " " < A d  --< n}. 

Definition. A mapping X: A(n, d)-> {-1, 0, +1} is an (oriented) d-chirotope with 

n vertices if for all A cA(n,  d + l )  and for al l /z  ~ A(n, d - l )  the set 

{(-1) '  • x (A, , .  • •, Ai, • • •, Ad+l) ' X(~l, • •. ,/~d-1, A,)Ii ~ {1 . . . .  , d + 1}} 

either contains {-1, +1} or equals {0}. Here we identify X with its unique 

alternating extension X: { 1 , . . . ,  n} d -> {-1, 0, +1}. 

The chirotope X is called simplicial if x(A(n, d)) c {-1, +1}, and X is realizable 

if there exist vectors x , ,  x 2 , .  • •, x .  ~ R d such that 

s i g n d e t ( x ~ , . . . , x A d ) = X ( A l , . . . , A d )  for all A ~ A(n, d). 

Using homogeneous coordinates, we identify ( d -  D-dimensional affine space 

with a hyperplane in R d which does not contain the origin. With a g i v e n  

configuration of  n points x~, x 2 , . . . ,  x~ in the affine plane, we thus associate the 

3-chirotope X which assigns to every triple ( i , j ,  k)  the orientation of  the triangle 

Xi, Xj, Xk. 

2. Example: A Simplicial Non-Desargues Chirotope 

Consider the affine 3-chirotope D~ ° associated with the pseudoconfiguration in 

Fig. 1. Interpreting the curved lines as straight lines, we can read off the orientation 
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Fig. 1. The nonrealizable chirotope D~ °. 

[/jk]+ of each triple (i,j, k)~ A(10, 3) of points in D~ °. For example, we get 

[123]+, [124]+, [125]-, . . . .  [145]+, [146]-, [147]+, [148]+, . . . ,  [158]-, etc. It 

is possible to show that D~ ° is not realizable by a geometric argument based on 

Desargues theorem. Here, however, we want to give an algebraic nonrealizability 
proof by exhibiting a final polynomial for D~ °. Recall the following well-known 
identities: 

Proposition 2.1 (Grassmann-Pliicker Syzygies). Given any field K and x, y, z 

K 3, we abbreviate the determinant det(x, y, z) by the bracket [xyz]. Then for all 

a, b, e, d, e, f e K 3 w e  have the identities 

{ a l bcde } := [ abc ][ ade ] - [ abd ][ ace ] + [ abe ][ acd ] = O, 

{[dbc] [ade] [abd]\ 

<abclaef):= [abc][abc][def]- detl[ebc] [aec] [abe]l = O. 

\ [fbc] [afc] [abf]] 

Nonrealizability Proof for D~ °. Assume that there exist points xl, x2, .. •, x~0 in 
the real Euclidean plane such that for all i,j, k the oriented area [ijk] of the 

triangle xi, xj, Xk has the sign as prescribed in Fig. 1. 
The following expression vanishes by Proposition 2.1: 

{1 2345}[234][153][126][126][230][137][183][293] 

-{2 1340}[234][153][153][126][126][137][183][293] 

+{1 2360}[234][134][152][152][263][137][183][293] 

-{3 1246}[ 134][ 152][ 152][263][ 120][ 137][ 183][293] 

-{2 1356}[234][134][152][126][103][137][183][293] 

+{3 1250}[234][134][152][126][126][137][183][293] 

-{1 i 2358}[134][263][137][293][ 120]([234][ 153][ 126] + [134][152][263]) 

+{2 1369}[234][153][137][183][120]([234][153][ 126] + [134][152][263]) 

-{3 1247}[153][263][183][129][120]([234][153][126]+[134][152][263]) 

+( 1231789)[ 134][ 153][263][ 120]([234][ 153][ 126] + [ 134][ 152][263]). 
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By expanding the Grassmann-Pliicker terms (. • • I" " "} and (. • . I" ' ") in the above 

polynomial, we obtain after cancellation of  several summands 

[123][145][234][153][126][126][230][137][183][293] 

+[123][240][234][153][153][126][126][137][183][293] 

+[123][160][234][134][152][152][263][137][183][293] 

+[123][364][t34][152][152][263][120][137][183][293] 

+[123][256][234][134][152][126][103][137][183][293] 

+[ 123 ][350][234][ 134][ 152][ 126][ 126][ 137][ 183 ][293] 

+[123][296][234][153][137][183][120]([234][153][126] + [134][152][263]) 

+[123][374][153][263][ 183][129][120]([234][153][126] + [134][152][263]) 

+[123][185][134][263][137][293][120]([234][153][126] + [134][152][263]) 

+([123121789] + [172][183][293] + [172][283][139] + [182][237][ 139] 

+[129][137][283]) 

• [134][153][263][120]([234][153][126]+[134][152][263]). 

All brackets occurring in this polynomial, e.g., [123], [145] . . . .  , [374], [153] . . . .  , 

have to be positive in any realization of  D3 ~° as is seen from Fig. 1. This is 

a contradiction because the sum of  10 positive numbers cannot vanish. This 

completes the nonrealizability proof of D~ °. U] 

Such a polynomial which "obviously" shows the nonrealizability o fa  chirotope 

is called a final polynomial, a notion that is more precisely defined in Section 6. 

In this section our main goal is to describe the steps that lead to the construction 

of  the above final polynomial. 

For that purpose we suggest that the reader forgets the above proof and 

assumes that D~ ° is realizable. Under this assumption there exists a real 3 x 10 

matrix A of homogeneous coordinates for D~ ° with 

A =  1 0 - b  e h - k  n - q  . 

0 1 c - f  i - l  - o  r 

It can be read from Fig. 1 that all variables a, b, . . . .  u have to be positive. For 

example, we have [124] = c > 0 for the oriented area [124] of  the triangle 1, 2, 4. 

With the method in Section 3, it can be shown that the positivity of  all 21 

variables together with the following 10 inequalities forms a reduced system for 

D~ °, i.e., D~ ° is realizable if and only if the inequality system (1)-(10) has a 

solution within the positive real numbers. We called D~ ° a simplicial non- 

Desargues chirotope because the mutations of  D~ ° (see Section 3) have the 
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structure o f  the Desargues-configurat ion.  

[123][145] = b f  - ce  > O, 

[123][185] = eo  - f n  > O, 

[123][160] = h u  - it > O, 

[123][240] = cs - a u  > O, 

[123][256] = f g  - d i  > O, 

[123][296] = ip - g r  > O, 

[123][364] = b g - a h  > 0 ,  

[123][374] = a k  - b j >  O, 

[123][350] = d t  - es  > O, 

[123121789] = r jn  - lnp  - l m q  - o jq  - o k p  - r k m  > O. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

To decide the realizabili ty of  D~ °, we could proceed  f rom this point  on by naive 

var iable  el imination:  consider  for  example  the var iable  c which is conta ined  only 

in (1) and  in (4). All variables  being posit ive,  these two inequalit ies can be 

rewrit ten as 

au b_f. 
$ e 

Hence ,  a real number  c satisfying (1) and  (4) exists if  and only if  

b f s - a e u > O ,  (11) 

and the system (1)-(10)  can be replaced by the nine inequalities (2), (3), (5), 

(6), (7), (8), (9), (10), and  (11) in one less variable.  

Such e lementary  solving techniques can be used finally to derive 0 < 0 which 

shows the contradict ion.  In order  to obtain a final po lynomia l  f rom this derivat ion,  

we trace the steps which lead to new polynomia l s  as in (11) by  forming  positive 

l inear  combina t ions  o f  vanishing polynomials .  Therefore ,  we consider  all 

inequali t ies as (vanishing) Gras smann-P l i i cke r  identities under  the addi t ional  

condi t ion that  all occurr ing brackets  are positive. 

p ,  = [123][145] - b f +  ce, 

P2 = [123][185] - e o  + f n ,  

P3 = [123][160] - h u  + it, 

P4 = [123][240] - cs + au ,  

P5 = [123][256] - f g  + di,  

P6 = [123][296] - ip  + gr, 

P7 = [ 123][364] - bg + ah ,  

P8 = [123][374] - a k  + bj, 

P9 = [123][350] - d t +  es, 

P,o = [ 123][ 123][789] - r jn  + l n p  + i m q  + o j q  + o k p  + rkra. 
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Solving for  c as in the derivation of  (11) yields the new polynomial  

p~l: = spl + ep, = [123][ 145]s + [ 123][240]e - bfs + aue. 

Solving for h yields 

Pl2 := ap3 + up7 = [ 123][ 160]a + [ 123][364] u - bgu + ira. 

Solving for d yields 

P13 := tp5 + ip9 = [ 123][256]t + [ 123][350]i + eis - f g t .  

Solving for t yields 

p14 := fgP12 + iapl3 

= [123][160]afg + [123][364]fgu + [123][256]ait 

+[ 123 ] [350] aii + aeiis - bfggu. 

Solving for  s yields 

pls: = aeiipl~ + bfp14 

= [ 123 ][ 145] aeiis + [ 123 ][240] aeeii + [ 123 ][ 160] abffg + [ 123 ] [364] bffgu 

+[ 123 ][ 256 ]ab f  it + [123 ][ 3 50 ]abf  ii + u( aei - bfg )( aei + bfg ). 

Partially solving for j yields 

p16 := rnps + bplo 

= [123][374]rn + [123][123][789]b 

- a k r n  + blnp + blmq + bojp + bokp + brkm. 

Partially solving for r yields 

PIT TM gP16 + aknp6 

= [123][296]akn + [123][374]grn + [123][123][789]bg 

- a i k n p  + bglnp + bglmq + bgjop + bgkpo + bgrkm. 

Partially solving for o yields 

P~8 := bgkpp2 + ep~7 

= [123][296]aekn + [123][374]egrn + [123][ 123][789]beg + [123][185]bgkp 

+beg( Inp + lmq + jop + rkm) - knp( aei - bfg). 
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Finally, solving for ( a e i -  bfg) yields 

P19 := u( aei + bfg)pls + knpp15 

= [123][145]aeiiknps + [123][240]aeeiiknp + [123][160]abffgknp 

+[ 123 ][ 364 ]bffgknpu + [ 123 ][ 256]abfiknpt + [ 123 ][ 350 ]abfiiknp 

+[123 ][185 ]bgkpu(aei + bfg ) + [ 123 ][ 296 ]aeknu(aei + bfg ) 

+[123 ][ 374]egrnu( aei + bfg ) 

+([ 123][ 123][789] + lnp + Imq + jop + rkm ) begu ( aei + bfg ). 

To see that P19 equals the above final polynomial, we would have to replace all 

variables by brackets according to the matrix A, e.g., a by [234], b by [134 ] , . . . ,  

etc. With these substitutions, the expressions Pl, P2 . . . .  , Plo equal the syzygy 

coefficients in the first representation of  the final polynomial, e.g., Pl = {112345}, 

P2 =--{211340}, which completes the argument. 

J. Bokowski, J. Richter, and B. Sturmfels 

3. Inequality Reduction for Chirotopes 

We have seen in the example in Section 2 that simplifying the original problem 

to a relatively small inequality system, which still carries the entire information, 

is a very helpful first step in deciding the realizability of geometric structures. In 

this section we describe a method of constructing a small reduced system for a 

given simplicial d-chirotope X with n points. Here ~ ~ A(n, d) is called a reduced 

system for X if X is uniquely determined by its restriction to ~,  i.e., X'I~ =x l~  

implies X ' = X  for every chirotope X'. 

As before, we use the abbreviation {tr] r} := {0"1 • • • O'd-21 ¢1 " " " ~'4} for the three 

term syzygies 

[tr~ • • • ~'a-zr172] " [cr~ . • . cra_2r3¢4] 

+ [cr~ ""cra-2r~r4]" [cr~.. "crd-2":2r3], 

where t e A ( n ,  4), ore A(n, d - 2 ) .  A syzygy {tr l r  } is said to determine a tuple 

[o'~'i~r~] in X if X(O', ri, %) is uniquely determined by the values of  X for the other 

five tuples occurring in {or] ~} and the chirotope condition for that syzygy. Given 

a subset ~ c A(n, d) ,  then (~ )  denotes the closure of  ~ in the following sense: 

we add to ~ the set of  brackets [~, ~'~, %]e A(n, d) which are determined in X 

by some syzygy {tr]r} whose other five brackets are already in ~. By iterating 

this process we eventually get (~) .  

The problem is now to find a small subset ~ ~ A(n, d) with (~ )  = A(n, d). In 

this section we describe an algorithm for constructing such a reduced system. 
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4 3 

1 

Fig. 2. 

5 2 

1 

The chirotopes X~ and X agree for all mutations of  X~. 

We first consider d-tuples A which are necessarily contained in every reduced 

system of X: we say that A e A(n, d) is a mutation if it is not determined by any 

three-term syzygy [24], and we write Mut(x) for the set of mutations ofx.  Because 

of the results of [24], the mutations of a simplicial d-chirotope X are in one-to-one 

correspondence to the simplicial regions of the associated arrangement of 

pseudohyperplanes, and IMut(x)[- n if X is realizable and n is the number of 

points of )6 

There are chirotopes X for which Mut(x) is already a reduced system, e.g., 

the chirotope R 9 to be discussed in Section 5 has this property. In general, this 

cannot be expected. The alternating chirotope 2(s: A(5, 3)~  {+1} has mutations 

Mut(x):= {[123], [2341, [345], [145], [1251} but there is another chirotope 

X: A(5, 3) --> {-1, +1} with 

X(1, 2, 3) = X(2, 3, 4) = X(3, 4, 5) = X(1,4, 5) = X(1, 2, 5) = +1, 

see Fig. 2. 

Since all later computations are most conveniently carried out with respect to 

a basis fl ~ A(n, d), it is reasonable to add the set 

V, := { [ ~ , , . . . ,  fl,_,, k,/3,+, , . . . , /3a11 k ~ ¢3, i~ { 1 , . . . ,  d}} 

of "variables" (with respect to/3) to the set of mutations. Observe that we are 

free to choose among ( d )  possible bases. 

R e m a r k 3 . 1 .  

fl reads 

Given any A e A(n, d), the expansion of [A] with respect to a basis 

[[A,O~... ~,] 

[Al=det{[A2fl2 " ' ~ a ]  

[~,x,"'~1 "" [~,~2""x,1\ 
[~,~'.'-~.] "" [~,~2 ~]] 

where without loss of generality [/3] = 1 is assumed. 
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The above d x d determinant reduces to a k x k determinant where k = ]A\/31. 

In order to choose a suitable basis/3, we introduce a certain monotone "weight" 

function w:N-->N. Let f l ~ A ( n , d )  such that the expression v(/3):= 

w(Ix\/31) is minimized. In practice the following two weight functions 

turned out to be most useful: 

(i) Counting the number of " too big" determinants: 

{~ if k<--m" 
w(k) = if k >  m, 

where m is fixed. 

(ii) Counting the total number of occurrences of  variables in determinants: 

w(k) := k 2. 

NOW the following "filling up" algorithm determines a small reduced system. 

Algorithm 3.2. 

Input: Simplicial chirotope X: A(n, d)--, {-1,  +1},/3 ~ A(n, d). 

Output: Small reduced system 9~ for X. 

1. Let 9~:= Mut(x)w V~ ,~ :=  Q. 

2. Determine ~ := (~) .  

3. I f  ~ = A(n, d):  

3.1. Then GO TO 5. 

3.2. Else: Pick g cA(n ,  d ) \ ~  such that 1 \/31 is minimal. 

4. Let ~ : =  ~ w{/z}, M := At u {/,}. Go to 2. 

5. I f  d,t := O. 

5.1. Then STOP, 9~ is a reduced system. 

5.2. Else: Pick h ~ ,  Jff:=Jff\{A}. 

5.3. If  (~ \{h})  = A(n, d), then ~ = ~\{A}. 

5.4. GO TO 5. 

At this point we still have the freedom to switch to another basis/3 in order to 

get a more simplified reduced system. 

4. On the Construction of Final Polynomials 

Once a reduced system for an oriented matroid is constructed, we are left with 

the problem of  deciding whether this system has a solution within the real 

numbers. In principle this decision can be made with Collins's algebraic cylindrical 
decomposition method [14] or any other decision procedure for real algebraic 

varieties. A new algorithm with a better asymptotic complexity than Collins's 

method has recently been obtained by Grigoryev and Vorobjov [17]. 

In practice, however, there is still a long way to go before these general purpose 

methods can be successfully applied in solving problems relevant to research 
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in geometry. As an illustration consider the problem of  finding a symmetric 

embedding of M6bius's torus with seven vertices in dimension 3 which has been 

studied in [6]. This simplest of  all cases that we were interested in could be 

reduced by the methods discussed in Section 3 to the following seven inequalities 

in four variables: 

d > 0 ,  b - l > 0 ,  - c > 0 ,  a-b+ac>O, 

b-ad>O, ad+bc-bd>O, b+c+d-ad- l>O.  

B. Kutzler solved this system with the SAC-II implementation of Cottins's 

method at the University of Linz in about 2 hours of CPU time, and slightly 

bigger systems could not be solved within 24 CPU hours. Nevertheless, there 

is some hope that Collins's algorithm can be significantly improved for our 

special type of problems, and we expect better computational results in the near 

future. 

In the following we summarize some underlying and guiding ideas which, in 

all problems studied so far, have lead to final polynomial proofs for the nonrealiza- 

bility of the oriented matroids in question. 

While the existence of such a final polynomial in the case of nonrealizability 

is a consequence of a real version of Hilbert's Nullstellensatz [27], it is still very 

hard in practice to find the final polynomial. Substantial experience has been 

gained in calculating by hand with the support of computer-aided reductions. 

Yet our approach is still far from being complete and generally applicable. 

So far final polynomials have been applied in different geometrical problems 

of  interest such as the smallest nonrealizable matroid polytope M963 [1], [2], in 

the case of  Altshuler's sphere ~0 M425, [7], in the two examples given in this paper, 

and in searching for symmetrical realizations of  a manifold with a minimal 

number of  vertices [5]. 

In all these cases the reduced system was small enough, and the solving 

technique used to find a solvability sequence or used in the above example to 

get inequality (11), etc., succeeded and was afterwards transformed as above into 

a suitable polynomial in the syzygy ideal to get a final polynomial. 

Perhaps it was the special structure of these examples, they were homogeneous 

in nature, they had integer coefficients, and at the beginning all variables occurred 

linearly. A careful check was needed to discover how to start solving for variables; 

this led to hand-calculated decisions in all these cases. 

Computer-aided implementations using these properties and /or  a special 

variant of  Coltins's method might bring a substantial improvement in this 

direction. For  a new computational approach see [8]. 

5. A Configuration Without a Solvability Sequence 

In [10] the first and the third author introduced the concept of  solvability 

sequences as a sufficient algorithmic criterion for the realizability of simplicial 

chirotopes. This criterion has been used to decide geometric realizability in a 
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large number of  instances [11]. It is an important property of chirotopes with a 

solvability sequence that their realization space is contractible [10, Theorem 5]. 

Although an affirmative answer to this question was extremely unlikely, it 

remained an open problem whether all realizable chirotopes do have a solvability 

sequence, in which case nonrealizability of  simplicial chirotopes could have been 

proven in an exhaustive search of  all variable orderings. In this section we disprove 

this conjecture by giving an example, discovered by the second author, of a 

simplicial 3-chirotope with nine vertices which does not admit a solvability 

sequence. 

Recall the following definitions from Section 5 of  [10]. Let X be a simplicial 

d-chirotope with n elements. Pick a basis [3 ~ A(n, d),  and, as in Section 3, let 

Vt3 denote the set of  (bracket) variables with respect to this basis. Viewing the 

AeA(n ,  d) as coordinate functions of  the realization space ~7 x of  X, every A~ 

A(n, d) can be expressed as a determinant in certain variables from V~ using 

Remark 3.1. 

For a given total order ( v ~ , . . . ,  YdS,-d)) of the set of variables V~ define 

A, := {A e A(n, d): dA/Ovj = 0 for j > i}. 

The sequence ( v l , . . . ,  Vd<n-d)) is called a solvability sequence f o rx  if the following 

condition holds: 

for all 7 /1 , . . . ,  r/i_1 ~ R with 

sign A(rh,..., ~7i_~) = X(A) for all Ae A~_~ 

there exists an r/i e R such that 

sign A(rh,..., 7/~) = x(A) for all AcAi.  

In other words, (vt . . . .  , Vdt,-d)) is a solvability sequence for g if the "greedy 

method" of  assigning real numbers r/i to the variables v~ in the prescribed order 

necessarily yields a coordinatization of  X. 

Naturally, a similar definition makes sense on the level of  points. We call a 

d-chirotope X on an n-element set E reducible if either [E I = d, that is, X is a 

simplex, or there is a point e e E such that for all X c R d with X ~ 6x\(e ~ there 

exists an x ~ R d such that X u x e ~?x. Notice that every 2-chirotope is reducible. 

The motivation for this definition is that it suffices to consider only nonreducible 

cases in order to decide realizability. Consider the 3-chirotope R~ associated with 

the point configuration in Fig. 3. 

Theorem 5.1. The realizable chirotope R 9 is not reducible. 

Proof. Since R 9 has the combinatorial symmetry tr = (123456)(789) it is sufficient 

to consider representatives from the two orbits of  tr, say, point 1 and point 8. In 
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Fig. 3. 

17./ A ~.gl 

The simplicial chirotope R~ without a solvability sequence. 

Fig. 4(a) and (b) realizations of R9\ l  and R9\8 are given, which cannot be 

extended to a realization of  R 9. To see this, consider the thick lines in Fig. 4(a) 

and (b). It is easy to check that there is no point simultaneously satisfying all 

orientation conditions as indicated by the arrows at the thick lines. Hence, by 

definition R 9 is not reducible. [] 

We remark that the line arrangement associated with the oriented matroid R 9 

can be obtained by deletion from the unique tight arrangement with 10 lines, see 

Figure 5 of  [23], which also is not reducible, An oriented matroid X being tight 

means that every mutation of a rank-2 minor of  X induces a mutation of X. 

Proposition 5.2. I ra  simplicial 3-chirotope X admits a solvability sequence then X 

is reducible. 

Proof. Let X be a simplicial 3-chirotope with n points, and assume that for some 

basis /3 ~ A(n, 3) the set of  variables Vo can be ordered to give a solvability 

sequence for X. Suppose that v3~,-3):= (/3\/3~) u k, k~/3, is the last element of this 

solvability sequence. As above, we write 

A3(n_3)_l := { A E A(n, d): 0A ---0}. 

(a) (b) 

Fig. 4. R~ is not reducible. 
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To see that X is reducible, we need to show that every realization X c R 3 of  

x \ k  extends to a realization X u Xk c R 3 of  X- Every rank-2 oriented matroid 

being reducible, the induced realization of  ( X / ~ i ) \ k  can be extended to a reali- 

zation of  (X/~i ) .  This means that we can assign real numbers to the variables 

[(fl \f l j)  u k], j E {1, 2, 3}\{i}, in a way that is compatible with X- This assignment 

together with X gives us real numbers rh . . . .  , r/3(~_3)_t such that sign(A) = x(A) 

for all A E A 3 ( n _ 3 ) _  I . 

Since v3(n-3) was assumed to be the last element in a solvability sequence, we 

can find an r/3(n-3)e R which completes the sequence r / t , . . . ,  ~3(n-3)-~ to a 

realization of X. Retranslated in geometric language: every realization of x \ k  

extends to a realization of  X. This proves the claim. [] 

Theorem 5.1 together with Proposition 5.2 implies 

Corollary 5.3. The realizable chirotope R 9 does not admit a solvability sequence. 

Let us close this section with the remark that although R 9 does not admit a 

solvability sequence, it does fulfill the isotopy property. To see this, consider the 

following short nondeterministic construction algorithm for all realizations of  R 9. 

1. Realize R9\{1, 6}. (Every 3-chirotope with seven points is realizable.) 

2. Delete point 7. 

3. Insert points 1 and 6. 

4. Insert point 7. 

It can be shown that every realization of R 9 can be arrived at in this way, and, 

moreover,  the induced maps on the realization spaces are homotopy equivalences, 

compare [22]. Hence, this construction procedure shows that the realization space 

of R 9 is contractible, therefore path-connected. 

In Fig. 5(a)-(c)  an example of this construction sequence is given. Details of  

the topological argument will be omitted here. 

\ 
2 

\ 

(a) (b) (c) 

\ 

Fig. 5. Geometric construction showing the isotopy property for R~. 
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6. Existence of Final Polynomials for Matroids and Oriented Matroids 

The main theme of this paper is the construction of final polynomials as nonreal- 

izability proofs for oriented matroids. Naturally, it is a fundamental question 

whether this method is generally applicable, i.e., whether for every nonrealizable 

object there exists a final polynomial. 

Using methods from real algebraic geometry, it can be shown that the answer 

to this question is "yes." A discussion of the algebraic details and proofs for all 

theorems in this section are contained in th t  monograph [27]. Here we restrict 

ourselves to giving the precise definition of final polynomials for matroids and 

oriented matroids and to stating, without proof, results of the existence for final 

polynomials. We also include a final polynomial proof for Pappus's theorem as 

an example for the unoriented case. 

Given integers n-> d-> 1 and a field K, consider the polynomial algebra 

K[A(n, d)] freely generated over K by all brackets [A], h e A(n, d). As usual, 

we write [;t~o ) • • • A~a)] := sign rr. [;ti • • • Ad] for any permutation zr. Let lng.d 

denote the ideal generated in K[A(n, d)] by all quadratic syzygies 

d + l  

E ( - 1 ) ' .  [ s t , , . . . ,  a ,_ , ,  x , + , , . . . ,  ,t<,+,] • [ x , ,  ~ ,  . . . . .  ~<,_,],  
i = 1  

where ~t ~ A(n, d + l ) ,  /~ c a ( n ,  d -  1). Viewing K[A(n, d)] as the ring of poly- 

( ) -dimensional vector space n AdK~,I , rd is thevanish-  nomial functions on the d 

ing ideal of the Grassmann variety of simple d-vectors. The coordinate ring 

K[A(n, d)] / I~d of this variety is (in the terminology of White [29]) the bracket 

ring with coefficients in K of the uniform rank-d matroid on an n-element set. 

Now let M be any rank-d matroid on E = {1, 2 . . . .  , n} [30]. We assign to M 

the two sets of all bracket polynomials that must (resp. cannot) vanish under a 

coordinatization. Let I ~  denote the ideal in K[A(n, d)] which is generated by 

{[A], A dependent in M}, and let S~4 denote the multiplicative semigroup with 

unit generated by {[A], A is basis of M}. In other words, I ~  consists of all linear 

combinations of nonbasis brackets with polynomial coefficients, and S~ consists 

of all nonzero monomials which are products of basis brackets. 

A polynomial f e  K[A(n, d)] is called a final polynomial for M if f e  lnK, d 

(S~ + I~ ) .  With this definition we can state the desired "theorem of the alternate" 

for realizability of  matroids. 

Theorem 6.1. Let M be a matroid and let K be a field. Then one and only one of  

the following statements is true: 

(i) There exists a final polynomial for M with coe~cients in K. 

(ii) M is realizable over some finite algebraic field extension of K. 

In particular, we have 

Corollary 6.2. A matroid M is not realizable over an algebraically closed field K 

if and only i f  there exists a final polynomial for M with coe~cients in K. 
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1 
B 

42 . , / - x  

Fig. 6. The non-Pappus matroid NP. 

E x a m p l e  6.3. The non-Pappus matroid NP, see Fig. 6, is the rank-3 matroid on 

E = {1,  2 , . . . ,  9} defined by its nonbases (three point lines) 

•={[129],[138],[156],[345],[489],[579],[678],[237]}.  

This matroid is not realizable over any field K. For, assume there exist x~ ~ K 3, 

i = 1 . . . .  ,9,  such that xi, xj, Xk are linearly dependent if and only if [/jk] ~ N, 

then x~, x3, xs and xs, XT, x9 being both dependent implies by Pappus's theorem 

that the three vectors x2 = (xl v Xg) ̂  (x3 v XT), x4 = (x3 v xs) A (Xs V Xg), and X 6 : 

(x~ v xs) A (X8 v X7) are linearly dependent as well; in contradiction to [246] ~ J(. 

Let us give a nonrealizability proof  for NP (and hence a proof  for Pappus's 

theorem) by establishing a final polynomial. The polynomial 

p:={411267}[148][157][437][197]+{112479}[148][157][437][467] 

+{113478}[149][247][157][467]+{114567}[148][247][347][197] 

+{411357}[148][427][167][179]+{411789}[247][157][167][413] 

+{7t1459}[247][148][167][143]+{711468}[247][157][149][134] 

+{711234}[194][148][157][467] 

is a linear combination of  three term syzygies and hence contained in the above 

defined ideal r •9.3. By expanding the expressions {i Ijklm}, we obtain a sum of 27 

monomials of degree six, 18 of  which vanish by cancelling in pairs. It remains 

p=[246][147][148][157][437][197]+[129][147][148][157][437][467] 

+[138][147][149][247][157][467]+[156][147][148][247][347][197] 

-[435][147][148][427][167][179]-[489][147][247][157][167][413] 

+[759][147][247][148][167][143]+[768][147][247][157][149][134] 

+ [723][ 147][ 194][ 148][ 157][467]. 
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Since all underlined brackets are contained in N, the last eight summands are 

contained in the ideal I~p. On the other hand, [246][147][148][157][437][197] 
S~p, and hence p~ K r r I 9 , 3 ~ ( S N p q - I N p ) ,  that is, p is a final polynomial for the 

non-Pappus matroid NP. 

In considering the above bracket ring and ideals with integer coefficients, we 

obtained the following generalization of this example. 

Remark 6.4. A matroid M is not realizable over any field K if and only if there 

exists a final polynomial for M with integer coefficients. 

Let us now turn to the case of oriented matroids or chirotopes. Therefore, 

assume that K is an ordered field, and let K[A(n,  d)] a n d  InK, d be as above. 

Given a (not necessarily simplicial) d-chirotope g on E = {1, 2 . . . .  , n}, we assign 

to X the three sets Ix r ,  Nx r ,  and P~ of bracket polynomials which are respectively 

zero, nonnegative, and positive in any realization of g. First let (as above) Ix g 

denote the ideal in K[A(n,  d)] which is generated by {[A]e A(n, d), x(A) =0}. 

For simplicial chirotopes we have clearly Ix K = {0}. 

Let Px g denote the multiplicative semigroup with unit generated by the positive 

brackets {[ A ], X (A) = + 1}, the negated negative brackets { -  [ A ], X (A) = - 1 }, an d 

the positive elements in the ordered field K. Finally, define Nx r to be the quadratic 

semiring in K[A(n, d)] which is generated by Px g and the set K[A(n, d)]  2 of all 

squares. 

A polynomial f c  K[A(n, d)]  is called a final polynomial for X if f c  I,rd C~ 

+ P~ ). (Compare with the example in Section 2.) With this definition 

we have 

Theorem 6.5. Let X be a chirotope and let K be an ordered feld.  Then one and 

only one of  the following statements is true: 

(i) There exists a final polynomial for M with coefficients in K. 

(ii) M is realizable over some finite algebraic ordered field extension of  K. 

The proof of Theorem 6.5 is derived from the real version of  the NullsteUensatz 

using straightforward algebraic methods. See Section 4 of [27] for a detailed 

exposition. Since every realizable chirotope (over some ordered field) is realizable 

over the real algebraic numbers we have 

Corollary 6.6. A chirotope X is not realizable if  and only if  there exists a final 

polynomial for X with rational coefficients. 
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