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The pursuit of the non-Hermitian skin effect (NHSE) in various physical systems is of great
research interest. Compared with recent progress in non-electronic systems, the implementation
of the NHSE in condensed matter physics remains elusive. Here, we show that the NHSE can
be engineered in the mesoscopic heterojunctions (system plus reservoir) in which electrons in two
channels of the system moving towards each other have asymmetric coupling to those of the reservoir.
This makes electrons in the system moving forward and in the opposite direction have unequal
lifetimes, and so gives rise to a point-gap spectral topology. Accordingly, the electron eigenstates
exhibit NHSE under the open boundary condition, consistent with the description of the generalized
Brillouin zone. Such a reservoir-engineered NHSE visibly manifests itself as the nonreciprocal charge
current that can be probed by the standard transport measurements. Further, we generalize the
scenario to the spin-resolved NHSE, which can be probed by the nonreciprocal spin transport. Our
work opens a new research avenue for implementing and detecting the NHSE in electronic mesoscopic
systems, which will lead to interesting device applications.

I. INTRODUCTION

In quantum mechanics, a closed system is described
by a Hermitian Hamiltonian, which gives rise to real
energy spectrum and unitary evolution of the system1.
In reality, however, physical systems unavoidably cou-
ple to the environment, which may lead to the exchange
of energy, particles and information2. In many cases,
the physics of open systems can still be effectively de-
scribed by a non-Hermitian Hamiltonian3,4, which have
been widely studied in various physical systems, such
as photonic/optical systems5–8, cold atoms9–11, and con-
densed matter systems12–18. Exotic physical phenom-
ena attributed to non-Hermiticity have been discovered,
such as unidirectional transport19–30, enhanced sensitiv-
ity31–35, and single-mode lasing36–38, which will lead to
important applications4.

Recent progress in non-Hermitian physics is the dis-
covery of the non-Hermitian skin effect (NHSE)39–41, in
which all the bulk states are driven to the system bound-
aries under the open boundary condition (OBC)39–74.
The NHSE is a unique phenomenon due to the non-
Hermiticity, which stems from the point gap topology
of the complex spectrum under the periodic boundary
condition (PBC)62–65. In the presence of the NHSE,
the conventional bulk-boundary correspondence in the
topological band theory fails and instead, the non-Bloch
band theory should be employed39–42. Very recently, the
NHSE has been observed in a variety of non-electronic
systems, such as optics66–68, acoustics75–77, cold atoms78,
topoelectrical circuit70–72 and classical mechanic sys-
tems73,74. On the contrary, synthesis and detection of
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FIG. 1. Proposed heterojunction composed of the system
(S) coupled to a reservoir (R), the latter introducing a non-
Hermitian self-energy Σ 6= Σ† to S. Two leads L1 and L2 are
coupled only to S and another lead (not shown) is coupled to
R. Due to the reservoir-engineered non-Hermiticity, the prop-
agation of wave packet in S exhibits nonreciprocity in the
x-direction, i.e., the wave packet propagating leftward decays
much faster than that propagating rightward. (b) Complex
band structure in S (colored line) with the electron lifetime
denoted by the color. A relative momentum shift δkx between
the band of S and that of R (shadow region) leads to asym-
metric coupling between them. (c) Complex energy spectrum
with the point gap topology.

the NHSE in solid-state systems remain elusive, despite
that the state-of-the-art fabrication techniques of meso-
scopic electronics indicate a plenty of room for its imple-
mentation.

In this paper, we propose to engineer and detect the
NHSE in an electronic mesoscopic heterojunction, as
shown in Fig. 1(a), which is composed of two parts: a
system (S) and a reservoir (R), coupled to each other.
Due to the coherent coupling, S becomes non-Hermitian,
and can be effectively described by the Green’s function
as

gr(ω) =
1

ω −Heff(ω)
, Heff(ω) = HS + ΣrR(ω), (1)
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where the effective Hamiltonian Heff of S consists of the
bare Hamiltonian HS and the retarded self-energy ΣrR(ω)
due to the coupling between S and R. The self-energy is

in general non-Hermitian with ΣrR 6= Σr†R ; see Fig. 1(a).
Given that the dynamics of the electrons in S is gov-
erned by the Green’s function gr or equivalently, the ef-
fectively Hamiltonian Heff in Eq. (1), very interesting
non-Hermitian effects can be implemented in S by prop-
erly engineered ΣrR. Here, we focus on the special type
of ΣrR that can give rise to the NHSE. If S is coupled to
R asymmetrically for kx > 0 and kx < 0 in Fig. 1(b),
there will be unequal lifetimes of electrons in S moving
forward and backward. The resultant Heff yields a point
gap topology in its complex spectrum under the PBC
[Fig. 1(c)], and accordingly, the wave functions under
the OBC exhibit the NHSE [Figs. 2(d-f)], which can be
well described by the generalized Brillouin zone (GBZ)
[Fig. 2(c)].

The great advantage of our proposal is that the non-
Hermitian phenomena can be probed by the standard
transport measurements. To achieve this, two leads L1,2

in Fig. 1(a) are designed to connect only to S so that
the current flowing between them provides a direct mea-
sure of the non-Hermitian effects in S. Moreover, such
non-Hermitian physics in S can be incorporated straight-
forwardly into the framework of non-equilibrium Green’s
function theory for quantum transport79. We will show
that the point gap topology of the complex spectrum
gives rise to nonreciprocal charge transport between L1

and L2. Such a non-Hermitian scenario can be general-
ized to the spin-resolved situation and lead to nonrecip-
rocal spin transport.

The rest of the paper is organized as follows. In Sec. II
and Sec. III, we show how to engineer both the conven-
tional and spin-resolved NHSE in the 1D systems by cou-
pling to the reservoir and discuss the resultant nonrecip-
rocal charge and spin transport phenomena, respectively.
In Sec. IV and Sec. V, the main results of the nonrecipro-
cal charge and spin transport are generalized to 2D sys-
tems. Finally, some discussions and prospects are given
in Sec. VI.

II. NONRECIPROCAL CHARGE TRANSPORT
IN 1D SYSTEM

To be concrete, we start with a 1D system arranged
in the x-direction coupled to a reservoir, which simu-
lates a nanowire deposited on a 2D substrate. Assuming
the PBC in the x-direction, the whole system can be de-
scribed by the following Hamiltonian (lattice constant set

to unity) as

H = HS +HR +HT,

HS =
∑
kx

εs(kx)c†kxckx , HT =
∑
kx

(
t0c
†
kx
akx,0 + H.c.

)
,

HR =

y=−∞∑
kx,y=0

[
εr(kx)a†kx,yakx,y + (tyra

†
kx,y

akx,y−1 + H.c.)
]
.

(2)

Here, εs(kx) = 2ts cos kx − Us is the electronic energy in
S measured from its band bottom Us with ts the hop-
ping strength, εr(kx) = 2txr cos (kx + δkx) − Ur is the x-
direction energy dispersion in R also measured from its
band bottom Ur with txr the relevant hopping strength,
and tyr is the y-direction hopping in R. δkx describes the
deviation in momentum kx between the bands of S and R,
which mimics the asymmetric band structures of S and
R that generally exist for different materials, as shown in
Fig. 1(b). The interface coupling t0 (� tyr) takes place
between S and the outmost layer of R. High quality of
the interface is assumed such that the coupling between S
and R ensures kx conservation. The Fermi operators ckx
and akx,y correspond to S and R, respectively, the latter
being written in the mixed reciprocal and real spaces for
respective directions. The subscript y = 0,−1, · · · ,−∞,
which simulates the R connected to another lead in the
bottom [cf. Fig 1(a)].

By integrating out the reservoir part of Eq. (2), the
effective Hamiltonian Heff(ω) in S can be obtained,
with the kx-dependent retarded self-energy as [cf. Ap-
pendix B]

ΣrR(kx, ω) =
[
ε− sgn(ε+ 1)

√
ε2 − 1

]
t20/t

y
r ,

ε = [ω − εr(kx)]/(2tyr),
(3)

where sgn(·) is the sign function. Negative imaginary
part of the self-energy, Im(ΣrR) < 0, arises as |ε| < 1 due
to the electronic coupling of S and R and accordingly, the
energy E = εs(kx) + ΣrR becomes complex. The condi-
tion means that for a given kx, only those electron wave
functions in S with energy ω satisfying |ω − εr| < 2tyr
decay with motion and at the same time appear in R
through the interface. Here, the momentum difference
δkx or more generally, the asymmetry in the bands of S
and R is the key ingredient for engineering the NHSE.
It leads to unequal decay of the ±kx states in S with
Im[E(kx, ω)] 6= Im[E(−kx, ω)] and so breaks the reci-
procity; see Figs. 2(a) and 2(b). The inverse lifetime of
electrons in S is given by τ−1(kx, ω) = −Im[E(kx, ω)],
which is proportional to velocity vRy (kx, ω) along the y
direction of electrons in R [cf. Appendix B].

In what follows we focus on quantum transport at zero
bias (ω = 0). In Fig. 2(a) we show ImE as a function of
kx and Ur with tyr > txr . It is found that there are two
types of non-Hermitian regions. In region (i) of |Ur| <
2(tyr − txr ), E(kx) is entirely complex for all kx states
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. (a) ImE as a function of Ur and kx, which contains the information of the electron lifetime in S. (b) Complex energy
band with Ur = 1.5 and Us = 0, whose imaginary part is shown by the color. (c) GBZs calculated by the effective Hamiltonian

Heff of S for Ur = ±1.5, 0.1 denoted in (a), in which β̃ = (|β| − 0.99)eiArg[β]. (d-f) Normalized eigenfunctions under OBC
for various Ur corresponding to those in (c). Insets: Complex spectral winding under PBC (solid line) and energy spectrum
under OBC (dashed line) with Us = 0. (g-i) Zero-bias differential conductance as a function of Us that corresponds to the
non-Hermitian properties in (d-f), respectively. Other parameters are ω = 0, ts = txr = 1, tyr = 2.01, t0 = 0.1tyr and δkx = π/3.
For the results calculated under the OBC, the length of the system in the x direction is L = 400.

and there appears nontrivial winding [insets of Figs. 2(d-
f)]. If tyr < txr , there will be no such a full complex-
spectrum region. In region (ii) of |Ur| ∈ 2(tyr−txr , tyr+txr ),
complex energy spectrum appears only for a subset of kx
states, in which there still be a point gap. In both non-
Hermitian regions, electrons in S moving forward and in
the opposite direction have unequal lifetimes, which leads
to the NHSE. On the contrary, for |Ur| > 2(tyr + txr ), no
electron in S can enter R so that there is no NHSE.

It is known that the ways of spectral winding under
the PBC determine the properties of the skin modes un-
der the OBC64,65. To investigate the NHSE, we rewrite
Hamiltonian (2) of the whole system in both directions
in real space and calculate the self-energy of S by solving
the surface Green’s function of R numerically [cf. Ap-
pendix C]. The effective Hamiltonian of S reads H latt

eff =∑
i,j tjic

†
jci with tji the dressed hopping from site i to j.

Different from HS, H latt
eff involves long-range hopping. In

the non-Hermitian regions (i, ii), we have H latt
eff 6= H latt†

eff ,
since the hopping terms of tji 6= t∗ij break the reciprocity.

The eigenfunctions Ψ of H latt
eff are numerically solved un-

der the OBC in the x-direction, as shown in Figs. 2(d-f),
exhibiting obvious NHSE. The full complex spectrum in
region (i) indicate that all eigenstates under the OBC are
the skin modes. The location where these skin modes pile
up is determined by the specific way of the spectral wind-
ing, as shown in insets of Figs. 2(d-f) with arrows repre-
senting the direction in which kx increases. The clockwise
and anti-clockwise winding takes place for different Ur,
and correspond to the skin patterns stacked on the right
and left boundaries, respectively; see Figs. 2(d) and 2(f).
There also exists interesting “∞”-shaped winding64,65,
which gives rise to the skin modes stacked simultaneously
on both boundaries, see Fig. 2(e). The skin patterns ob-
tained above are consistent with the description by the
GBZ39 in Fig. 2(c) [cf. Appendix D]. In region (ii), the
nontrivial winding persists for the complex energy spec-
trum [cf. Appendix E].

Compared with the energy spectrum, more informa-
tion is involved in the complex band structure shown
in Fig. 2(b). Specifically, its real and imaginary parts
will determine the quantum transport taking place in S.
The asymmetric band structures result in nonreciprocal
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transport in S, which is embodied in the effective Hamil-
tonian Heff or the Green’s function gr. Such an effective
description can be incorporated into the framework of
the non-equilibrium Green’s function method to study
the transport properties. The differential conductance
between leads L1,2 is defined as80

Gαβ(eV ) =
∂Iβ
∂Vα

=
e2

h
Tr
[
ΓβGrΓαGa

]
ω=eV

,

Gr,a = gr,a +
∑
α=1,2

gr,aΣr,aα Gr,a,Γα = i(Σrα − Σaα),
(4)

where subscripts α, β = 1, 2 indicate the lead labels. The
full retarded (advanced) Green’s function Gr (Ga) can be
solved by the Dyson equation with self-energy Σr,aα and
corresponding linewidth function Γα due to the coupling
with lead Lα.

The NHSE can be detected by the transport signatures
between leads L1 and L2. The zero-bias differential con-
ductance Gαβ is calculated by Eq. (4) on the discrete
lattices and its dependence on Us is plotted in Figs. 2(g-
i). The one-to-one (up-to-down) correspondence between
Figs. 2(g-i) and Figs. 2(d-f) can be easily understood
physically. The zero-bias conductance for a given Us re-
flects the information at the Fermi level so that the non-
reciprocal conductance varying with Us can be regarded
as a complex spectral tomography. Although the skin
modes are not completely stacked at the boundary, some-
what different from those in simple non-Hermitian lat-
tices39, the conductance in Figs. 2(g,i) exhibits a strong
nonreciprocity with the current flowing in one direction
being much greater than that in the opposite direction.
Such a diode-like effect stems from the unequal lifetimes
of electronic states with opposite momentum, or equiva-
lently, the point gap topology [cf. Fig. 1]. The degree of
nonreciprocity, i.e., the ratio between the current flow-
ing in the two opposite directions enhances as the length
of the system becomes larger. The forward direction of
the diode is determined by the ways of spectral winding
in Figs. 2(d,f), which is also consistent with the direc-
tion in which the skin modes are stacked. For the simple
winding, nonreciprocal transport with the same forward
direction takes place for all energies. On the other hand,
the “∞”-shaped winding in Fig. 2(e) results in an energy-
dependent nonreciprocity, see Fig. 2(h). Specifically, the
curves of G12 and G21 intersect at the energy just corre-
sponding to the crossing point of the “∞”-spectrum, as
shown in Figs. 2(e) and 2(h). In this case, the nonrecip-
rocal transport effect is greatly reduced due to the nearly
equal G12 and G12. The above discussion focuses on the
non-Hermitian region (i). In region (ii), both nonrecip-
rocal and reciprocal transport can be realized in different
energy windows [cf. Appendix E].

Note that the non-Hermitian physics in S is embod-
ied in self-energy ΣrR induced by the coupling to R.
From a mathematical point of view, the calculation of
ΣrR and Σr1,2 induced by L1,2 is on an equal footing.
Therefore, the conductance can be calculated in a con-
ventional way80 by regarding the whole setup (S+R) in

Fig. 1(a) as a scattering region connecting to three termi-
nals, which ensures the correctness of our results. Physi-
cally, however, the two types of self-energies play distinc-
tive roles: proper engineering of ΣrR yields interesting
non-Hermitian effect while leads L1,2 are just used for its
detection.

III. NONRECIPROCAL SPIN TRANSPORT IN
1D SYSTEM

The scenario of the NHSE in heterostructures can be
generalized straightforwardly to the spin-resolved case.
Let’s replace HS in Eq. (2) by

H̃S =
∑

kx,σ=↑,↓

εσs (kx) c†kx,σckx,σ , (5)

where εσs (kx) = 2ts cos (kx + δkσx)− Us is the dispersion
for electrons with spin σ. The opposite shift of the mo-
mentum δk↑,↓x = ∓δk′x for the two spin states can be
induced by the Rashba spin-orbit coupling. HR and HT

are the same as those in Eq. (2) except that the spin de-
generacy in R is now considered and δkx = 0 is taken.
Note that only the relative momentum shift of the bands,
rather than their absolute values, has physical effects.

From the effective Hamiltonian H̃eff of S, we numeri-
cally obtain spin-dependent complex band structures, as
shown in Figs. 3(a). The time-reversal symmetry en-
sures to have an equal lifetime for the states with op-
posite momentum and spin, i.e., τ↑(kx, ω) = τ↓(−kx, ω).
The picture shown in Fig. 3(a) indicates that the spin
splitting of the bands will lead to spin-resolved nonre-
ciprocity. Accordingly, the NHSE becomes spin depen-
dent in Fig. 3(b), where the spectral winding and the
skin-mode accumulation occur in opposite directions for
opposite spin polarizations, which is also verified by the
GBZs in Fig. 3(c). The above picture predicts reciprocal
transport for charge but nonreciprocal transport for spin.

The charge conductance Gcij = G↑ij + G↓ij and spin con-

ductance Gsij = G↑ij−G
↓
ij are plotted in Figs. 3(d,e). It is

found that two different spin states have equal contribu-
tion to Gcij , but opposite contribution to Gsij . The pre-
dicted transport properties are manifested as Gc12 = Gc21

and Gs12 = −Gs21. Such nonreciprocal spin transport can
be used as a spin filter with the spin polarization being
controlled conveniently by the current direction.

IV. NONRECIPROCAL CHARGE TRANSPORT
IN 2D SYSTEMS AND MAGNETIC FIELD

EFFECT

The general scenario of the reservoir-engineered NHSE
and the resultant nonreciprocal transport is not re-
stricted to a specific spatial dimension. In this section,
we show that nonreciprocal charge transport can be im-
plemented in 2D heterostructures as well. We adopt the
following lattice Hamiltonian
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(a) (b) (c)

(d) (e)

FIG. 3. (a) Spinful complex energy bands with the arrows denoting the spin polarizations. (b) Skin modes and spectral winding
(insets). (c) GBZs for both spins. (d) Charge and (e) spin conductance as a function of Us. The parameters are ω = 0, δkx = 0,
Ur = 1.5 and δk′x = π/5 with the others the same as those in Fig. 2.

(a) (b)

FIG. 4. (a) ImE as a function of kx and ky with the dashed
lines being the ReE contours (E is the eigenvalue of H2D

eff in
Eq. (7)). (b) Zero-bias differential conductance as a function
of U ′s. The relevant parameters are U ′r = 4.1, ω = 0, t′xr =
t′yr = t′s = 1, t′zr = 3.5, t′0 = 0.1t′zr , B = 0 and ∆kx = π/3.
The length (x direction) and width (y direction) are L = 100
and W = 200, respectively.

H2D
S =

∑
x,y

(
t′sc
†
x+1,ycx,y + t′se

iBxc†x,y+1cx,y −
U ′s
2
c†x,ycx,y + H.c.

)
, H2D

T =
∑
x,y

(
t′0c
†
x,yax,y,z=0 + H.c.

)
,

H2D
R =

z=−∞∑
x,y,z=0

(
t′xr e

i∆kxa†x+1,y,zax,y,z + t′yr e
iBxa†x,y+1,zax,y,z + t′zr a

†
x,y,z+1ax,y,z −

U ′r
2
a†x,y,zax,y,z + H.c.

)
,

(6)

where t′s is the hopping in the system and t′xr , t
′y
r , t
′z
r are

those in the reservoir, U ′s and U ′r are the energies of
the band bottoms, t′0 is the interface coupling, and the

momentum deviation ∆kx again mimics the asymmetric
band structures. For the later study of the magnetic field
effect, we have also introduced a magnetic field B in the
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(a) (b)

FIG. 5. Conductance as a function of the magnetic field B.
The parameters are the same as those in Fig. 4.

(a) (b)

FIG. 6. (a) Charge and (b) spin conductance as a function of
U ′s. The parameters are t′zr = 3.1, t′0 = 0.1t′zr , tsoc = 0.2, L =
W = 40 and the others are the same as those in Fig. 4

z direction, which is reflected in the phase factor eiBx.

Without a magnetic field, Hamiltonian (6) has transla-
tional invariance in both the x and y directions. Similar
to the 1D case, we solve the effective Hamiltonian for the
system under the PBC in both directions as

H2D
eff (ω,k) = 2t′s cos(kx) + 2t′s cos(ky)− U ′s + Σ′rR(ω,k) ,

Σ′rR =
[
ε′ − sgn (ε′ + 1)

√
ε′2 − 1

]
t′20 /t

′z
r ,

ε′ =
[
ω + U ′r − 2t′xr cos(kx + ∆kx)− 2t′yr cos(ky)

]
/(2t′zr ).

(7)

In Fig. 4(a), we plot ImE as a function of kx and ky.
One can see that although the Fermi surface of the sys-
tem is symmetric about kx = 0, ImE does not. As a
result, nonreciprocal charge transport takes place which
is manifested as G12 6= G21 in Fig. 4(b).

It has been known that a magnetic field will strongly
suppress the non-Hermitian skin effect in 2D sys-
tems81,82. In Fig. 5, we plot the conductance as a func-
tion of the magnetic field. One can see that a small mag-
netic field strongly suppresses both G12 and G21 and so
the nonreciprocal charge transport disappears. The sen-
sitivity of the non-Hermitian skin effect to the magnetic
field provides an effective way for the control of the non-
reciprocal charge transport in 2D heterojunctions.

V. NONRECIPROCAL SPIN TRANSPORT IN
2D SYSTEMS

In this section, we investigate nonreciprocal spin trans-
port in 2D systems. Similar to the 1D case, we consider
the system to be the 2D electron gas with Rashba spin-
orbit coupling, which is described by the Hamiltonian

H̃2D
S =

∑
k

c†khs(k)ck,

hs(k) = ε̃s(k) + 2tsoc(sin kxσy − sin kyσx),

(8)

where ε̃s(k) = 2ts(cos kx+cos ky)−U ′s , tsoc is the spin de-
pendent hopping due to the Rashba spin-orbit coupling,

the Fermi operator ck = (c↑k, c
↓
k)T has two spin compo-

nents and Pauli matrices σx,y act on the spin. H2D
R and

H2D
T are the same as those in Eq. (6) except that the

spin degeneracy in the reservoir is now considered and
∆kx = 0 and B = 0 are taken. The self-energy Σ′rR
due to the reservoir is the same as that in Eq. (7) with
∆kx = 0. Here, ImE is symmetric about kx = 0 but
instead, the bare Hamiltonian (8) possesses a spin de-
pendent band splitting, which yields reciprocal charge
transport but nonreciprocal spin transport, similar to
the 1D case. Given the specific spin texture of the 2D
electron gas, the nonreciprocity that occurs in the x di-
rection should be most visibly revealed by the spin cur-
rent defined with its polarization along the y direction.
The corresponding conductance is denoted by G→ij and
G←ij , whose superscripts→,←mean the spin components
along the y,−y directions, respectively. In Fig. 6, we plot
the charge conductance Gcij = G→ij + G←ij and spin con-
ductance Gsij = G→ij − G←ij . The same as the 1D case,
two different spin states have equal contribution to Gcij ,
but opposite contribution to Gsij . The predicted trans-
port properties are again manifested as Gc12 = Gc21 and
Gs12 = −Gs21. Interestingly, the nonreciprocal spin cur-
rent can have opposite sign in different energy regions,
which stems from the rich spin texture of the 2D Rashba
gas compared with that in the 1D case.

VI. DISCUSSIONS AND PROSPECTS

We discuss the experimental implementation of our
proposal. The main ingredients, mesoscopic heterostruc-
tures with multiple terminals, are common setups stud-
ied in mesoscopic physics80, which can be fabricated with
mature technology. To achieve the NHSE, materials with
proper band structures and good tunability by external
fields are favorable. For the spinless NHSE and nonrecip-
rocal charge transport, the time-reversal symmetry must
be broken. In our example described by Eqs. (2) and (6),
such a symmetry breaking is introduced by a relative
momentum shift δkx (or ∆kx) for clarity. In reality, any
band structures of S and R that lead to unequal lifetimes
of electrons counter-propagating in S are sufficient for the
NHSE. For example, the study of the heterostructures of
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topological matter has shown that their band structures
have strong external field tunability83,84, so that both
nonreciprocal charge and spin transport is expected to
be realized in these systems. Moreover, the coexistence
of the Rashba spin-orbit coupling and a Zeeman field in
the 2D electron systems can also give rise to an asymmet-
ric coupling to the reservoir and the resultant NHSE85,86.
For the spin-resolved NHSE, the time-reversal symmetry
does not need to be broken so that the Rashba spin-orbit
coupling is sufficient for such an effect and the resultant
nonreciprocal spin transport. Finally, we remark that the
engineering of the NHSE in mesoscopic systems can be
further extended to other scenarios including electron-
electron, electron-phonon, electron-impurity scattering
and so on12–15. Regardless of different physical origins,
the NHSE in the electron systems can be probed by the
transport measurement schemes proposed in this work.

In this paper, we construct the lattice model, calcu-
late the self-energy and transport properties using the
KWANT package87.
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Appendix A: Surface Green’s function of the
reservoir

To arrive at the retarded self-energy induced by the
semi-infinite reservoir, we follow the procedure in Ref.88.
The Hamiltonian of the reservoir can be rewritten in the
general form of

HR =

−∞∑
y=0

a†yH0ay + a†y−1H−1ay + a†yH1ay−1, (A1)

where only the y coordinate is shown in the subscript of
the Fermi operator ay. Under the open boundary con-
dition (OBC) in the x direction, ay is a vector written
in real space as ay = (ax=1,y, ax=2,y, · · · , ax=L,y)T; while
under the periodic boundary condition (PBC), the eigen-
states in the x direction can be labeled by kx and so
ay = akx,y. The sites of y = 0 are the outmost layer of
the reservoir that are coupled to the system. The ma-
trices H0 and H±1 are the unit-cell Hamiltonian and the
hopping Hamiltonian of the reservoir, respectively. Both

H0 and H±1 are Nu.c. × Nu.c. square matrices, with
Nu.c. = L (L the length of the system in the x direction)
under the OBC and Nu.c. = 1 under the PBC, respec-
tively.

We denote the retarded Green’s function of the reser-
voir by gr and the surface Green’s function GrR = gr00 is
just the matrix element for the outmost layer. To obtain
GrR, we need to solve the quadratic eigenvalue equation(

(ω −H0)λn −H1λ
2
n −H−1

)
un = 0 , (A2)

for a given ω, where un is the right eigenvector corre-
sponding to the eigenvalue λn. We also need to calculate
the group velocity vn of the Bloch modes given by

vn = −1

~
Im
(
2u†nH1λnun

)
. (A3)

Solving the quadratic eigenproblem in Eq. (A2) yields
2Nu.c. eigenvalues and eigenvectors, which can be divided
into two groups:

• Nu.c. modes moving in the −y direction with |λn| <
1 or |λn| = 1 ∧ vn > 0. These eigenvalues are
denoted by λn,< and the corresponding eigenvec-
tors are un,< which we collect into the matrix
U< = (u1,<, . . . ,uNu.c. ,<).

• Nu.c. modes moving in the y direction with |λn| > 1
or |λn| = 1 ∧ vn < 0. These eigenvalues are
denoted by λn,> and the corresponding eigenvec-
tors are un,> which we collect into the matrix
U> = (u1,>, . . . ,uNu.c. ,>).

Then the surface Green’s function can be solved by

GrRH−1 = U<Λ<U
−1
< , (A4)

and if H−1 is invertible we have

GrR = U<Λ<U
−1
< H−1

−1 , (A5)

where Λ< =


λ1,< 0

λ2,<

. . .

0 λNu.c. ,<

 is the diago-

nal matrix composed of the eigenvalues λn,<. With the
surface Green’s function, the retarded self-energy can be
obtained as

ΣrR = t20GrR , (A6)

where t0 is the coupling strength between the reservoir
and the system.

Appendix B: Derivation of Eq. (3) and the lifetime

Under the PBC in the x direction, we have H0 =
2tx cos(kx + ∆kx)− Ur and H1 = H−1 = tyr in Eq. (A1),
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TABLE I. A submatrix of H latt
eff with the diagonal elements being the onsite potential and the upper and lower diagonal elements

being the nearest-neighbor hopping. The relevant parameters are the same as those in Fig. 2 and Ur = 1.5.

7.50× 10−3 − 1.69× 10−2i 1.00− 5.51× 10−3i −8.03× 10−4 − 4.64× 10−4i 1.37× 10−4i

1.00 + 3.15× 10−3i 7.50× 10−3 − 1.69× 10−2i 1.00− 5.51× 10−3i −8.03× 10−4 − 4.64× 10−4i

8.03× 10−4 − 4.64× 10−4i 1.00 + 3.15× 10−3i 7.50× 10−3 − 1.69× 10−2i 1.00− 5.51× 10−3i

1.37× 10−4i 8.03× 10−4 − 4.64× 10−4i 1.00 + 3.15× 10−3i 7.50× 10−3 − 1.69× 10−2i

making use of the good quantum number kx. The
quadratic eigenproblem reduces to

λ2 − 2ελ+ ε2 = ε2 − 1 ,

ε(kx, ω) =
ω + Ur − 2txr cos(kx + ∆kx)

2tyr
,

(B1)

which yields two roots of λ:

λ± = ε±
√
ε2 − 1 . (B2)

Without loss of generality, tx,yr are chosen to be real and
so is ε. If |ε| ≤ 1, the roots contain an imaginary part
so that |λ±| = 1, which corresponds to the propagat-
ing modes in the reservoir. To get the retarded surface
Green’s function, we need to pick up those modes propa-
gating in the −y direction by their group velocity. Here,
the group velocity in Eq. (A3) reduces to

v± = −1

~
Im (2tyrλ±) , (B3)

and for tyr > 0, λ− corresponds to the outgoing modes
that we want. Then the retarded surface Green’s function
of the reservoir is

GrR = λ−/t
y
r . (B4)

If |ε| > 1, the roots are real numbers, and only those
evanescent modes with |λ| < 1 are relevant. In this case,
the surface Green’s function can be expressed as

GrR = λsgn(−ε)/t
y
r . (B5)

Inserting GrR into Eq. (A6) yields the self-energy

ΣrR(kx, ω) =

{(
ε− sign (ε)

√
ε2 − 1

)
t20/t

y
r |ε| ≥ 1 ,(

ε− i
√

1− ε2
)
t20/t

y
r |ε| < 1 ,

(B6)
which can be incorporated into the unified form of
Eq. (3).

From Eqs. (A6) (B3) and (B4), one can obtain the
relation between the lifetime of the quasiparticle in the
system and the velocity in the reservoir as

1

τ(kx, ω)
= −Im

[ΣrR(kx, ω)

~

]
=

1

2

(
t0
tyr

)2

vRy (kx, ω) ,

(B7)
where vR

y = v−. One can see that the lifetime of the
quasiparticle in the system is inversely proportional to
the electron velocity along the y direction in the reservoir.

Appendix C: Retarded self-energy in real space and
nonreciprocal hopping

Under the OBC, the matrices H0, H±1 in Eq. (A1) are

H0 =


−Ur txr 0 · · ·
txr −Ur txr · · ·
...

...
...

...

· · · 0 txr −Ur


L×L

,

H±1 =


tyr 0 0 · · ·
0 tyr 0 · · ·
...

...
...

...

· · · 0 0 tyr


L×L

,

(C1)

with L the length of the lattice in the x direction. Fol-
lowing the procedure illustrated in Sec. A, we obtain the
retarded self-energy matrix (ΣrR)L×L under the OBC.
Combining the bare lattice Hamiltonian of the system,

H latt
S =


−Us ts 0 · · ·
ts −Us ts · · ·
...

...
...

...

· · · 0 ts −Us


L×L

, (C2)

and the self-energy (ΣrR)L×L yields the effective non-
Hermitian lattice Hamiltonian H latt

eff = H latt
S + (ΣrR)L×L,

which can be expressed in the general form H latt
eff =∑

i,j tjic
†
jci. In the non-Hermitian regions (i, ii) discussed

in Sec. II, we have H latt
eff 6= H latt†

eff . For clarity, we exem-

plify the matrix elements of H latt
eff in Table I, where the

effective Hamiltonian contains long-range hopping and
importantly, the hopping terms satisfying tji 6= t∗ij break
the reciprocity and lead to the non-Hermitian skin effect.

Appendix D: Calculation of the generalized
Brillouin zone

The generalized Brillouin zone (GBZ) is the key con-
cept of non-Bloch band theory, which provides an effec-
tive description of the non-Hermitian skin effect. Here,
we illustrate the numerical procedure for the calculation
of the GBZ following Refs.39,61:

• Rewrite the eigenvalue equationHeff (ω, kx)−E = 0
into Heff (ω, β)−E = 0 with the parameter defined
by β = eikx .



9

(a) (b) (d)(c)

FIG. 7. Comparison between the transport properties and complex spectrum [insets] in (a) non-Hermitian region (i) and (b-d)
non-Hermitian region (ii). Ur = 2.0, 3.0, 5.0, 5.5 in (a-d), respectively. The other parameters are the same as those in Fig. 2.

• Solve the eigenvalues EOBCs of the lattice Hamil-
tonian H latt

eff under the OBC with ω = 0.

• Insert EOBC into the equation Heff (ω, β)−EOBC =
0 and find two roots β1,2 of β for each EOBC. Plot
all the roots on the complex plane, which give the
GBZ in Fig. 2(c).

Appendix E: Results for non-Hermitian region (ii)

For tyr > txr > 0, the system is in non-Hermitian region
(ii) if |Ur| ∈ 2(tyr − txr , t

y
r + txr ), and for tyr < txr , only

non-Hermitian region (ii) exists. The main difference be-
tween the two non-Hermitian regions is that the energy
spectrum in region (i) is entirely complex while that in
region (ii) also contains real parts, which can be seen in

Fig. 2(a). This fact is reflected by the spectral loop under
the PBC, in which certain segments of the loop lie on the
real axis; see Figs. 7(b-d). In those states with real ener-
gies, electrons can propagate without loss and give rise to
quantized conductance; see G21 in Figs. 7(b-d). Mean-
while, whether nonreciprocal transport takes place or not
depends on the energy, which can still be inferred from
the complex spectrum. Each energy ReE has two states
[±kx in Fig. 2(b)], which may split into two branches due
to unequal ImE and give rise to a point gap or may co-
incide at the real axis with ImE = 0 for both states. For
the former case, the conductance satisfies G12 6= G21 and
exhibits strong nonreciprocity while for the latter case,
one has G12 = G21 and the nonreciprocity disappears;
see the results in Figs. 7(c,d) in different energy regions.
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