Reprinted with permission from P.A. Belov, S.A. Tretyakov, A.J. Viitanen, Physical Review E 66, 016608 (2002). © 2002 by the American Physical Society.

PHYSICAL REVIEW E 66, 016608 (2002
Nonreciprocal microwave band-gap structures

P. A. Belov, S. A. Tretyakov, and A. J. Viitanen
Department of Electrical and Communications Engineering, Helsinki University of Technology, P.O. Box 3000, FIN-02015 HUT, Finland
(Received 29 January 2002; published 24 July 2002

An electrically controlled nonreciprocal electromagnetic band-gap material is proposed and studied. The
new material is a periodic three-dimensional regular lattice of small magnetized ferrite spheres. In this paper,
we consider plane electromagnetic waves in this medium and design an analytical model for the material
parameters. An analytical solution for plane-wave reflection from a planar interface is also presented. In the
proposed material, a new electrically controlled stop band appears for one of the two circularly polarized
eigenwaves in a frequency band around the ferrimagnetic resonance frequency. This frequency can be well
below the usual lattice band gap, which allows the realization of rather compact structures. The main properties
of the material are outlined.
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I. INTRODUCTION show that the periodicity is also quite important near the
resonance of a small inclusion.

Microwave and photonic band-gap materials are exten- In this paper, we build an analytical model for plane-wave
sively studied in the literaturésee, for a review1]). They ~ Propagation in nonreciprocal crystals of ferrite spheres, and
are periodic structures made of various dielectric or meta@ive numerical examples for dispersion curves and the re-
inclusions. Naturally, all the electromagnetic phenomena irflection coefficient from a half space. The present analysis is
such materials are reciprocal. In this study, we introduce &€stricted to the propagation along the geometrical axis of the
nonreciprocal microwave analogy of photonic band-gap mastructure. Th_e bias fle_ld that magnetizes the_ spheres is along
terials. Here we will show that a nonreciprocal stop bandN® same axis. The size of ferrite spheres is ass_umed to be
material can be realized using small magnetized ferrit mall compared to the wavelength and to the lattice period.

. o - . his restriction allows us to derive the dispersion relation in
spheres as periodically positioned inclusions. The new crys: P

. N analytical form, which gives a clear and general physical
:f"" Tas Isev?ral |rr;;irc])rtat[1t fegtt;]rgﬂs) tr:e E[)r.Opﬁrtle:{": p|<’|:1 r-d' interpretation of the main properties of the crystal without
Icular, location ot the stop ban@re electrically controlied, - .4y rse to numerical techniques like those useB]jrand

(2) the stop band occurs at frequencies at which the period i A
much smaller than the wavelengt possibility for reducing The main theoretical problem in studying electromagnetic
device sizg and (3) nonreciprocal properties can be ex- pronerties of arrays of small particles is the calculation of the
ploited to design novel devices. More generally speakingjocal field exciting the inclusions. For dense arrajgtice
combining the periodicity resonance and the ferrimagnetiGonstant is smaller or comparable with the wavelengtie
resonance gives more flexibility in the design of materialsinteraction dyadic can be approximately found in analytical
with the desired properties of stop bands. form [5,6]. Analytical approximation of the local field makes
The additional low-frequency stop band that appears nedt possible to develop simple boundary conditions that simu-
the resonant frequency of a single spherical inclusion has thiate electromagnetic properties of nonreciprocal dipole ar-
same nature as in photonic crystals of metalirodeled by rays. In our studies of planar regular arrays of small ferrite
the free-electron plasma constitutive relatiospshere$2]. In  sphereg7], we have found that very broadband nonrecipro-
that paper, arrays of small resonant spheres were consideredl polarization transformation can be realized in reflected or
using numerical simulation@s in[3] and[4]) and the Max-  transmitted fields. In this study, we will make use of the
well Garnett mixing rule. The main difference between phe-analytical model for the local field, together with numerical
nomena in arrays of metal spheres and ferrite spheres is summation of Floquet modes. One planar array of ferrite
the nonreciprocal nature of the spheres. This leads to neapheres can be modeled by a generalized impedance condi-
nonreciprocal properties of the crystal as a whole, seen in théon [7]. Further, the interaction between planar arrays in a
properties of eigenwaves and in reflection from a crystathree-dimensional “crystal” can be taken into account by a
boundary. From the point of view of applications, the newmaodification of the boundary condition for every layer, as
structure allows electrical control of its properties. was done for reciprocal arrays [8]. The resulting theory
Regarding the modeling approach, the stop band near thgives us a model that can be applied both for dense arrays
resonance of a single inclusion was explained2has an and for resonant distances between the inclusions.
effect of mode hybridization accomplished in the effective- In the low-frequency regime, we can identify two solu-
medium treatment. Moreover, it was assumed that the periions with two plane circularly polarized eigenwaves in the
odic structure is incidental for this phenomenon. Here wecorresponding effective medium. Comparing the eigennum-
make a more detailed analytical investigation of the modabers with the propagation factors for the axial propagation in
structure near and inside this band gap, comparing the resultsrrite mediag=we(us* u,), we find the effective diag-
with the effective-mediuntMaxwell Garnett approach. The onal (us) and off-diagonal f,) components of the perme-
results reveal important differences in the results, whichability tensor of the crystal. For larger distances between
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Z Ferrite spheres 1 i k3 .
Elm{a +(a )}—677#0', 5
Refa - (a HT}=0. (6)

Here,k= wepu is the free-space wave number, ahde-
notes transposition. In the lossless case, the imaginary part of
« and the real part o, are responsible for dipole scattering
from individual spheres. The above energy conservation re-
quirements are valid in regular crystals, where there is no
scattering.

Expression(1) together with(2), (3) is approximate and
does not take into account radiation losses, so we should
crystal planes, the effective medium concept loses its sensmake corrections to these formulas in order to satisfy Egs.
and we study the crystal in terms of its dispersion curves an¢b) and(6). We can apply these conditions in any coordinate
the properties of the eigenwaves. system with the same result. For the system corresponding to

circularly polarized basis vectors we find, using E¢s.and
II. DIPOLE APPROXIMATION (5), the following relation:

FIG. 1. Inner geometry of the medium.

()

We consider a regular three-dimensional simple cubic lat- 1 k®
tice with perioda of small magnetized ferrite spheres in free

space or an isotropic dielectric. The geometry is illustrated in

Fig. 1. In this study, we make an assumption that the size og/sing this result we can write, instead of formu®, an
every particleferrite sphergis small compared to the wave- expression that correctly takes into account the radiation
length in the host medium. Due to the small size, electridosses:

ata,| 6wy

polarizability of the ferrite spheres can be neglected in the e.e e e 3 -1
; ; : = +C— -S4
frequency band of interesround the ferrimagnetic reso- d:( +j 6 [e;e_+e_e,]
nance and at low frequencies a-a; atag THo 8
The magnetic dipole moment of each particle ris (8)

=a-H,, Wherea is the polarizability dyadic of an inclu- e will use this formula in our theory in order to satisfy the
sion andHq is the local magnetic field. For nonreciprocal energy balance exactly. Of course, it is an approximate ap-
particles, dyadKI_l’ has a nonzero antisymmetric part. If the proach because we use formu(ﬁ% (3), assuming that they
sphere is magnetized along some axishe polarizability  give correct values of the real parts of the inverse polariz-
dyadica is planar in the plane orthogonalzpand it is given  apjlity.

by (e.g.,[9])

c=v=a|=t+jaaj, (1) IIl. GENERAL EIGENVALUE EQUATION

) - ) The dispersion equation for the electromagnetic crystal
where the transverse unit dyadig=1—u.u, and the anti-  ,nqer consideration can be obtained from the equation for

symmetric dyadicJ=u,xI. The coefficients read the dipole moment through the local field at some arbitrary
O chosen(reference particle. If we assume that an eigenwave
az,uozo—MzV, (2)  traveling alongz is described by the wave vectgre=qu,,
W~ w the following equation for the dipole moment of the refer-
oy y . ence particleng holds:
ay=— . = =
0w [@ X(w)~Clw,a)]- me=0, ©

Here,wq is the Larmor precession frequency proportional by
constant bias magnetic field,,g, o= yMs, v is the gy-
romagnetic ratio between the magnetic moment and the an- )
gular momentum of the electron, aMd; is the saturation whereC(w,q) is the dynamic three-dimensional interaction

magnetization. FurthermorM is the Sphere volume. In the dyadiC, é((,(),R) is the dyadic Green’s function describing
coordinate system corresponding to circularly polarized vecthe magnetic field produced by a magnetic dipole at the point
tors e. = (u,+juy)/v2, this polarizability dyadic takes a of space with radius vectd® from the center of the dipole,
simple form: andR , , is the radius vector from the center of the refer-
a=(a+ay)e e, +(a—ay)e,e_. (4)  ence particle to the particle with indicésm, n

The main problem is how to calculate the sums corre-
Due to the energy conservation law discussed in detalin  sponding to the interaction constant. The usual approach for
the polarizability of lossless inclusions must satisfy the fol-summation of this series is based on summation by layers. In
lowing conditions: that case we have

Clw,q)= G(w,Rma)e 980 (10

a (I,m,n)#(0,0,0)
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+
B(nyeiaan (11) [&1-CI]-my=0, C(w,q)= _2 B(n)ejaan
(15

O

(0,9)=

n

M

Here, 5(0) is the interaction dyadic corresponding to thewhich gives nontrivial solutions when the determinant of the

zeros layer(the sum of the Green functions from all the dyadic is zero. The problem is easier to analyze in the coor-
particles of layem=0 without the reference partigleand y ' > P : . y . .
dinate system of circularly polarized eigenvectors since this

B(n) for n#0 are dyadics describing interactions betweenigags 1o two separate equations for right- and left-hand cir-
zero andnth layers. A simple analytical method of calcula- cularly polarized eigenmodes:

tion of these dyadics for the axial propagation is presented in

[§,6,81. In our planar case, the interaction dyadic is simply 1
B=pI, with aiaa=C (16)
o [cok K3 ) i . i .
5(0)= , Ro—sinkRo i B s _(the plus sign corresponds to the left-hand circularly polar
4pac\ kR, 6Ty 27na ized solution.
(12 As discussed above, only the real parts of coefficights

are calculated approximately by analytical or numerical
where =/ uq/ €y and parameteR,=a/1.438[5,6], and for ~means. The imaginary parts are known exactly from the en-

n#0 ergy conservation law. Actually, it can be easily shown from
Egs.(12), (13), and(15), by evaluating the summation and
o Ry cosk /—R62 +(na)? making use of Eq(7), that
n)= -
AN = 12 Ro*+(na)®  kyR;Z+(na)? B ) k3
Im{C}=Im{a 1} = I. (17

6o

( (na)z ) P 12 2
—| 1+ =5——=|sinkyRy“+ (na)

Ry2+ (na)?

We should note that in Eq16) the imaginary parts cancel
out, so this is a purely real equation.

As in [8], we can first consider an approximate solution.
From a distance, the separate dipole layers look like “homo-
geneous infinite plates” with continuous averaged current

.y 52 cogkna) (13) Ei:]nsmes. As a result, the interaction coefficient figt O is

1 k2

(Inf2)* [nla

1
4

cogkna)

k
+Wsin(kna)

with Rj=a/1.521[8].
It is also possible to write an exact expression £§n)
(n#0) using the Floquet mode expansidrO]:

) )
BN~ —]5 e M. (18)

The first term in the expression fg@0) can be combined

to e , 2m) 2 with the termB(n), and the eigenvalue equation is then
O L
20" m=— 1= - a Re[ 1 ’ o [coskR, kRO)
— = 2 Sin
o Vk2—(2mm/a)?— (2rl/a)|n|a astaa) 4na’\ kR,
X ; (14 1) . .
2am\2 [2ml\?2 - RQ{J a2 E ejkn|ae]qna}-
K2— N na~ nxo
a a (19
where the square root branch is defined bwP¥0. For our The infinite sum can be written in closed foifig]
purposes, this series can be used for practical calculations
because of enough quick convergence evennferl. For ) ) j sinka
largern, only one leading term gives a very accurate result > e Mknlagrigna____ (20
. . . X : 70 coska—cosga
Expression(13) is reasonable to use in calculations of the "
layer field at positions nedas compared to_the perial to and the dispersion equation becomes
the array plane, where the Floguet expansion converges very
slowly. On the other hand, that closed-form model is not ® sinka 1 © |coskR,
accurate for large distances from the layer plane, which in 5 :Re[ - ]_ 5
our case corresponds o> 1. 27a” coska—cosqa avas) 4na”\ KR
Using the above results, we write the eigenvalue equation
(9) for the axial propagation in form —sinkRo). (22
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This can be rewritten in the classical form known for equation reads
waveguides with periodic insertiof&1]:

w sinka  27a’ R 1 o [coskR,
2 sinka 27a® coska—cosgqa = ara,| 4na®| kR,
cosga=coska— > .
dnalw coskR, %
R - sink —gj —
aFag kR, Ro 5'”kRo) 2 n§=:1 (Re{,B(n)}
(22)
w .
Here, the denominator has the meaning of the normalized + msmkna cosqna (23

equivalent sheet impedance describing every layer of the di-
poles[8]. This formula gives the propagation factors in a This equation cannot be solved analytically as &%), and
simple analytical form. We will call it the zero-Floquet mode special methods must be applied to solve this nonlinear equa-
approach because it does not take into account evanesceitn. The solutions give us the propagation constantsf
Floquet components. eigenwaves.

More accurately, using the full expressiofis3) or (14) Using the Floquet expansiofi4), this equation can be
for the interaction coefficienB(n) for n#0, the dispersion rewritten in closed form:

27Tm)2
K2—| —
o) sinka 1 ® [ coskR, 1 a
> =Rej — - > SinkR, | — 5 E
2na“ coska—cosga aFay] 4na\ kR, 2p0@° mI+0 \/ 27m\?2 [2ml\2
— ) +—] -k
2mm\? [2ml\?
sinlf a\/|—] +|—] —k?
a a
1]. (24)

2
+

N

271\ ?
—) —k2>—cos(qa)
a

Here, we should stress that this equation has an infinitabove is enough to find the characteristic impedance of the
number of complex roots. Approximately, it has a root neatmedium and the reflection coefficient from finite-sized
every singularity point (Ir{q}m—ij/a\/szrlz;m,l samplegfor example, from a half spagelet us consider a
=1,2,...). We are interested in the first roots—the real oneplanar interface between a half space filled with a square cell
(propagating modgsand the complex ones with K  lattice of ferrite spheresz>0, or index n=0) and free
<2mla. space. Suppose that a normally incident plane electromag-

In the properties of the eigenwaves, the nonreciprocal nanetic waveHe %% is exciting the medium. The layer-to-layer
ture of the crystal is seen from the fact that the polarizationyjstribution of the dipole moments in the material is assumed
of eigerjwaves traveling along th_e opposite directio_n_s (_)f axigg pe a plane wave described by the propagation congtant
z are different. For waves traveling along the positwéi-  \hich can be found as the dominant solution of dispersion
rection, only the right-circular polarized mode has a ferri-gq (23) g s real if there is such a solution of the dispersion
magnetic band gap, while for the oppositely bound waves th%quation or it is a complex number with the largéstga-

left-circular poIariz'ed' dipole moment distribution has thetive) imaginary part, corresponding to the main evanescent
samte property. Th'sd's tbecausde éhetsen(;e 0{. the ?'tphmebmﬂﬁode with the slowest decay factor. This means that we ne-
ment precession Is determined by the direction of the I""I"tjlect the transition layer and assume that the first layer of

field. spheres is already excited in the same way as spheres in the
bulk. In the theory of dielectrics, it is known that the surface
effect correction is actually rather sméll2,13.

Let us write the equations for the dipole moment of some

If one can neglect higher-order modes generated at aNth layer located deep inside the mediul®{ 1) in terms of
interface between a crystal and free space, the knowledge ttie local magnetic field produced by all the spheres and the
the dominant propagation constant of eigenwalggained incident wave:

IV. REFLECTION COEFFICIENT
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moe 198N=g.| He IkaN4 g ,B(n)ejqa(”*mmo).
o 25
Using Eqg.(15) we have
oo ~N-1
> ﬁ(n)eiqa”mo=(&l— > ﬁ(n)eiqan) -mp.
n=-N n= (26)

For layers with large numbersin termsB(n), the evanes-
cent Floguet modes can be neglect&8), which means that
the sum in the right-hand side can be easily calculated:

-N-1 +o0
. w .
n)e_ann:—' — e_J(k_q)na
nzz—oC Al ] 2na n:%+l

w e jk-maN+1)

=-] 2pa8 1—e 1 @a - 27
Furthermore, we get
® g ik-ga -1
mO:] 27]a2 1_e—j(k—q)a H (28)

PHYSICAL REVIEW &6, 016608 (2002

V. CHARACTERISTIC IMPEDANCE AND EFFECTIVE
PARAMETERS

Since the reflection coefficient is known, we can intro-
duce normalized wave impedangeof the mediumdefining
it through

rR=Z1 32
Z+1 (32
In doing so, we get

Z=2 cotarika)sin(qa/2)ek¥?, (33

The result depends on the reference plane. It appears advan-
tageous to rewrite the above equations for the plane at a half
period distance from the first layer grid of the medium:

o sin (k—q)a/2]

sin(k+q)a/2]’ (34)
then
tanqa/2)
" tankal2) (35

In this definition, it is obvious that i is purely imaginary,
then

The reflected magnetic field produced by the excited lattice

IS
jw = jow m
—j 0
Ho=— e J(k+q}anm = — - .
R 277a2n§0 O 2pa’1-e ikiaa

(29
Finally, the reflection coefficienffor magnetic fieldsreads

1-elake  sinf(k—q)a/2]

Ru= siM(k+q)a/2]”

Tl e lavka (30)

_tanh(|g|a/2)
tan(ka/2)

(36)

and we have full power reflection as from a magnetic wall:
IR|=1.

Furthermore, we cadefineeffective permittivity and per-
meability through the wave impedance and the propagation
constant:

qz
/J«eff:T-

q

Eef‘fzﬁv (37)

To prevent possible confusion, we rewrite the reflection codn this definition, the use of the effective permittivity and

efficient in terms of the electric fielg¢he two values simply
differ by sign. For electric fields

Re — ejkasirl[(k— q)al/2]

sif(k+q)a/2]" (3Y)

Nonreciprocal properties of the crystal are clearly seen

from this formula. Because the propagation fadais dif-
ferent for the two eigenmoddsight- and left-circularly po-
larized dipole moments of the spherethe reflection phe-

permeability together with the standard Maxwell boundary
conditions will give the correct reflection coefficient. Spatial
dispersion of the medium is seen from dependence of the
effective parameters on the propagation constant.

VI. QUASISTATIC LIMIT

In the low-frequency limit, when it can be assumed that
ka<1 andga<1, the eigenvalue equation can be simplified
by approximating the sine and cosine functions for small
argument values. The eigenvalue equation reduces to the

nomenon is nonreciprocal. Right-hand circularly polarizedigrm
incident waves effectively excite the spheres, and the re-

flected plane wave is left-hand circularly polarized. In the
opposite case, if the incident plane wave is left-hand circu
larly polarized, the propagation constanis very close td,
and the reflection coefficieri81) is very small.

(qa)?  (ka)?
2 2

(ka)?

Rd

a+agy

(39

2,(1,03.3

||
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1 [1 R)2 1 x10"
=—|—+ - . 3
c 2u0a%| 2Ry ,121 ([R62+(na)2]3’2 man®
(39 25
The solution of this equation and the effect of the infinite
sum is considered in detail {i8]. As a result, one arrives at 2t
the static limit, which coincides with the Lorenz-Lorentz for- =3
mula[ C=1/(3u,a%)]. Using Eqs(37) and(35) for smallka s 15
and ga, we obtain the relative effective permittivity.s=1 3
and the relative effective permeabilify.s=g%/k?. Thus, we 1}
obtain a formula that has the same meaning as the Maxwell
Garnett mixture rule: 05|
1
Meff= 1+ 1 1 . (40) 0 : : . . s
1102’ Re{ ) 1 9 92 94 96 98 10 102 104 106 108 11
° aFa 3 Frequency (GHz)
This can be written, using the expression for the polarizabil- F|G. 2. Resonant curve for a single sphere in free space. Right-
ity factors, as circularly polarized incident field.
Me=1+ —3 — =Ust Ug. (41)  account. The second approach accurately includes all the

a’(wo+rw| 1 . . :

hall )_ - Floquet modes in the model. A new ferrimagnetic band gap

V1 on 3 with 0.76 GHz width(9.76—10.52 GHgwas found for the

right-circular polarizatior{see Fig. 3 and, naturally, no band
gap was found for the left-circular polarization. All the re-
sults below correspond to the right-hand circularly polarized
eigenmodes. For the orthogonal polarization, the medium is
nearly transparent in the frequency band of analysis. Let us

Here, it is easy to identify the effective diagonal and off-
diagonal componentg and u, of the permeability, respec-
tively (as shown in the above formuyjand write them in the
classical form9]:

WDy WDy note that the usual lattice band gaps appear at much higher
Ms=1lt =—o—, pa==2—>. (42 frequencies.

. . ) At frequencies within the band gap, all solutions for the
In this formula, o= wo—fwy/3 is the shifted resonance propagation constant are purely imaginary. The imaginary
frequency,y=fwy, and f=V/a® is the ferrite volume part of the propagation constajecay constanis plotted in
fraction. This simple and expected result has a clear meargig. 4 for the main evanescent modes with the slowest decay.
ing. Parametet, is proportional to the magnetization den-  Comparing the results that follow from the exact and ap-
sity. In the composite, this parameter is reduced by the volproximate formulas, we have found that the difference be-
ume fraction ratiof. The resonance frequencyw, is  tween approximaté22) and exact23) solutions is no more
proportional to the external bias field, which is reduced bythan 0.1% for the propagating modext frequencies outside
the Lorentz factorf/3. the band gap Calculation and comparison of decay con-
stants inside the band gap by formul22) (zero-Floquet
Vil NUMERICAL EXAMPLE mode approadh (23) (exact approadh and(40) (quasistatic

As an illustrative example, we consider a microwave
crystal formed by a simple cubic lattice of small monocrystal 25
spheres of yttrium iron garnett ferrite {¥es0,,). The satu-
ration magnetization of Yre;0,, corresponds tawy, /(2)
=4.9 GHz, and we choose the bias field so that the reso-
nance frequencwg/(27) =10 GHz. The sphere radius iis
=1 mm and the lattice period =3 mm. For further com-
parisons with the composite properties, the resonant curve of
an individual ferrite sphere is shown in Fig. 2. The absolute
value of the polarizability for right-hand circularly polarized
field a+ «, is plotted as a function of the frequency. In the
model of lossless scatterers, the quality factor is determined
by scattering losses given by formul). Note that the reso-
nant curve is rather narrow.

We have made calculations of the band-gap structure of 0 T S S,
the nonreciprocal crystal under consideration using ap- 0 Bl 02 03 04 U2 06 07 04 B9 |
proacheg22) and(24). In the first case, only the fundamen- Normalized propagation constant ga/m
tal Floquet mode in the periodical medium was taken into FIG. 3. Band-gap structur@ight circular polarizatiohn

’ 4
4’ _ Wave number in free space

14/

20+

15+
Ferrimagnetic band gap

10

Frequency (GHz)

Propagation constant
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1 F
10.6}
------------- 0.8 I
104} —2n/a _ 06 Abs(R)
~ N 8 04}
= 102} g
g - 3 0.2+
c.:>‘ 10 Maxwell Garnett approach | g 0 F=========------------- i
5} 2 5l Vi
& Exact solution Re(g)=n/a g 02 i
£ osf ceeziH ] G 04} i
B T T A — I~ Im(R) : E::
06 1 Re(R)
961 Exact solution Re(¢)=0 08} Vi
-1t ) ‘I\'E 1
>4 -10° -10" -10? 0 5 10 15
Normalized decay constant Im(g)a/(27) Frequency (GHz)
FIG. 4. Structure of the ferrimagnetic band gap: two branches of FIG. 5. Reflection coefficient.

the exact solution with Rgf=0 and Ref)=n/a, respectively ) )
(thick lines, together withg= — 2j/a asymptotgthin line), com-  resonant curve of an isolated sphere, as is seen from com-
pared with the Maxwell Garnett approa¢tiotted ling and zero-  parison with Fig. 2.

Floguet mode approad22) (dashed ling VIIl. CONCLUSIONS

approach lead to the following observations. Nonreciprocal electromagnetic stop band structures have
(1) All these formulas give us correct information about been proposed. A simple analytical theory of dispersion for
the frequency position and the width of the ferrimagneticcubic lattices of small ferrimagnetic spheres has been pre-
band gap. sented for the axial propagation along the direction of a mag-
(2) The zero-Floquet mode solution contains two types ofnetization field. The dispersion equation has been solved
evanescent modes: one has a purely imaginary propagatidsoth analytically, using a kind of averaging, and numerically
constant Ref)=0 (f>9.8 GHz) and the other has Rg( inthe exact formulation. The approximate solution leads to a
=qla (f<9.8 GHz). very simple analytical formula for the propagation constant.
(3) The exact approach also gives two branches of soluNumerical calculations show that this approach has a very
tions: one with Ref)=0 and the other with Rgj=mn/a. small mismatch with the exact one for the propagating
These branches continue into the propagation bafids modes. For the analysis inside the band gap, the exact solu-
<9.76 GHz andf>10.52 GHa. tion is required, in particular near the lower boundary of the
(4) The quasistatic approactMaxwell Garnett formal- gap. The dispersion curves for the nonreciprocal crystal have
ism) gives totally wrong results in a small area near the botbeen plotted and it has been shown that this crystal has a
tom of the band gapin particular, we get Rej>w/a at  very interesting band-gap structure. The properties of the
these frequencigs crystal depend very heavily on polarization. For the right-
Calculations of the reflection coefficient from a half spacecircular polarization, an additional band gap corresponding
filled by the nonreciprocal crystal under consideration haveo the ferrimagnetic resonance is found that differs from the
been made using formulE4), and the result is plotted in classical lattice band gaps. For the left-circular polarization,
Fig. 5. The reflection coefficient grows with the frequencythe ferrimagnetic band gap has not been found, as was ex-
until the bottom of the band gap is reached, where it bepected. The ferrimagnetic band gap is rather wide and its
comes equal tor1. In the stop band, it becomes complex, central frequency is easily tunable by the magnetization field.
and the phase changes inside the band gap so that the refléd-frequencies inside the gap, the lattice period can still be
tion coefficient becomes equal tel at the top of the band very small compared to the wavelengths, which is an impor-
gap. In the upper propagation band, its absolute value decayant feature allowing the design of compact structures. The
again as the frequency becomes much higher than the respew band gap is not complete: it exists for only one of the
nant frequency. This expected resonatorlike behavior sugwo eigenpolarizations. Although the other propagation di-
ports validity of the analysis. rections have not been considered, there is no reason to ex-
Note that, due to inclusion interactions in a regular lattice pect that the gap can exist for all propagation directions in
the width of the band gap is dramatically wider than thethis anisotropic medium.
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