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Nonreciprocal microwave band-gap structures
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An electrically controlled nonreciprocal electromagnetic band-gap material is proposed and studied. The
new material is a periodic three-dimensional regular lattice of small magnetized ferrite spheres. In this paper,
we consider plane electromagnetic waves in this medium and design an analytical model for the material
parameters. An analytical solution for plane-wave reflection from a planar interface is also presented. In the
proposed material, a new electrically controlled stop band appears for one of the two circularly polarized
eigenwaves in a frequency band around the ferrimagnetic resonance frequency. This frequency can be well
below the usual lattice band gap, which allows the realization of rather compact structures. The main properties
of the material are outlined.
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I. INTRODUCTION

Microwave and photonic band-gap materials are ext
sively studied in the literature~see, for a review,@1#!. They
are periodic structures made of various dielectric or me
inclusions. Naturally, all the electromagnetic phenomena
such materials are reciprocal. In this study, we introduc
nonreciprocal microwave analogy of photonic band-gap m
terials. Here we will show that a nonreciprocal stop ba
material can be realized using small magnetized fer
spheres as periodically positioned inclusions. The new c
tal has several important features:~1! the properties~in par-
ticular, location of the stop band! are electrically controlled;
~2! the stop band occurs at frequencies at which the perio
much smaller than the wavelength~a possibility for reducing
device size!; and ~3! nonreciprocal properties can be e
ploited to design novel devices. More generally speaki
combining the periodicity resonance and the ferrimagn
resonance gives more flexibility in the design of materi
with the desired properties of stop bands.

The additional low-frequency stop band that appears n
the resonant frequency of a single spherical inclusion has
same nature as in photonic crystals of metallic~modeled by
the free-electron plasma constitutive relations! spheres@2#. In
that paper, arrays of small resonant spheres were consid
using numerical simulations~as in@3# and@4#! and the Max-
well Garnett mixing rule. The main difference between ph
nomena in arrays of metal spheres and ferrite spheres
the nonreciprocal nature of the spheres. This leads to
nonreciprocal properties of the crystal as a whole, seen in
properties of eigenwaves and in reflection from a crys
boundary. From the point of view of applications, the ne
structure allows electrical control of its properties.

Regarding the modeling approach, the stop band nea
resonance of a single inclusion was explained in@2# as an
effect of mode hybridization accomplished in the effectiv
medium treatment. Moreover, it was assumed that the p
odic structure is incidental for this phenomenon. Here
make a more detailed analytical investigation of the mo
structure near and inside this band gap, comparing the re
with the effective-medium~Maxwell Garnett! approach. The
results reveal important differences in the results, wh
1063-651X/2002/66~1!/016608~8!/$20.00 66 0166
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show that the periodicity is also quite important near t
resonance of a small inclusion.

In this paper, we build an analytical model for plane-wa
propagation in nonreciprocal crystals of ferrite spheres,
give numerical examples for dispersion curves and the
flection coefficient from a half space. The present analysi
restricted to the propagation along the geometrical axis of
structure. The bias field that magnetizes the spheres is a
the same axis. The size of ferrite spheres is assumed t
small compared to the wavelength and to the lattice per
This restriction allows us to derive the dispersion relation
analytical form, which gives a clear and general physi
interpretation of the main properties of the crystal witho
recourse to numerical techniques like those used in@3# and
@4#.

The main theoretical problem in studying electromagne
properties of arrays of small particles is the calculation of
local field exciting the inclusions. For dense arrays~lattice
constant is smaller or comparable with the wavelength! the
interaction dyadic can be approximately found in analyti
form @5,6#. Analytical approximation of the local field make
it possible to develop simple boundary conditions that sim
late electromagnetic properties of nonreciprocal dipole
rays. In our studies of planar regular arrays of small ferr
spheres@7#, we have found that very broadband nonrecip
cal polarization transformation can be realized in reflected
transmitted fields. In this study, we will make use of t
analytical model for the local field, together with numeric
summation of Floquet modes. One planar array of fer
spheres can be modeled by a generalized impedance c
tion @7#. Further, the interaction between planar arrays in
three-dimensional ‘‘crystal’’ can be taken into account by
modification of the boundary condition for every layer,
was done for reciprocal arrays in@8#. The resulting theory
gives us a model that can be applied both for dense ar
and for resonant distances between the inclusions.

In the low-frequency regime, we can identify two sol
tions with two plane circularly polarized eigenwaves in t
corresponding effective medium. Comparing the eigennu
bers with the propagation factors for the axial propagation
ferrite mediaq5vAe(ms6ma), we find the effective diag-
onal (ms) and off-diagonal (ma) components of the perme
ability tensor of the crystal. For larger distances betwe
©2002 The American Physical Society08-1
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crystal planes, the effective medium concept loses its se
and we study the crystal in terms of its dispersion curves
the properties of the eigenwaves.

II. DIPOLE APPROXIMATION

We consider a regular three-dimensional simple cubic
tice with perioda of small magnetized ferrite spheres in fre
space or an isotropic dielectric. The geometry is illustrated
Fig. 1. In this study, we make an assumption that the siz
every particle~ferrite sphere! is small compared to the wave
length in the host medium. Due to the small size, elec
polarizability of the ferrite spheres can be neglected in
frequency band of interest~around the ferrimagnetic reso
nance and at low frequencies!.

The magnetic dipole moment of each particle ism
5a% •H loc , wherea% is the polarizability dyadic of an inclu
sion andH loc is the local magnetic field. For nonreciproc
particles, dyadica% has a nonzero antisymmetric part. If th
sphere is magnetized along some axisz, the polarizability
dyadica% is planar in the plane orthogonal toz, and it is given
by ~e.g.,@9#!

a% 5aI% t1 j aaJ% , ~1!

where the transverse unit dyadicI% t5I%2uzuz and the anti-
symmetric dyadicJ% 5uz3I%. The coefficients read

a5m0

v0vM

v0
22v2 V, ~2!

aa52m0

vvM

v0
22v2 V. ~3!

Here,v0 is the Larmor precession frequency proportional
constant bias magnetic fieldHmag, vM5gMs , g is the gy-
romagnetic ratio between the magnetic moment and the
gular momentum of the electron, andMs is the saturation
magnetization. Furthermore,V is the sphere volume. In th
coordinate system corresponding to circularly polarized v
tors e65(ux7 j uy)/&, this polarizability dyadic takes a
simple form:

a% 5~a1aa!e2e11~a2aa!e1e2 . ~4!

Due to the energy conservation law discussed in detail in@7#,
the polarizability of lossless inclusions must satisfy the f
lowing conditions:

FIG. 1. Inner geometry of the medium.
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Im$a% 211~a% 21!T%5

k3

6pm0
I% , ~5!

Re$a% 212~a% 21!T%50. ~6!

Here,k5vAe0m0 is the free-space wave number, andT de-
notes transposition. In the lossless case, the imaginary pa
a and the real part ofaa are responsible for dipole scatterin
from individual spheres. The above energy conservation
quirements are valid in regular crystals, where there is
scattering.

Expression~1! together with~2!, ~3! is approximate and
does not take into account radiation losses, so we sho
make corrections to these formulas in order to satisfy E
~5! and~6!. We can apply these conditions in any coordina
system with the same result. For the system correspondin
circularly polarized basis vectors we find, using Eqs.~4! and
~5!, the following relation:

ImH 1

a6aa
J 5

k3

6pm0
. ~7!

Using this result we can write, instead of formula~1!, an
expression that correctly takes into account the radia
losses:

a% 5S e1e2

a2aa
1

e2e1

a1aa
1 j

k3

6pm0
@e1e21e2e1# D 21

.

~8!

We will use this formula in our theory in order to satisfy th
energy balance exactly. Of course, it is an approximate
proach because we use formulas~2!, ~3!, assuming that they
give correct values of the real parts of the inverse pola
ability.

III. GENERAL EIGENVALUE EQUATION

The dispersion equation for the electromagnetic crys
under consideration can be obtained from the equation
the dipole moment through the local field at some arbitr
chosen~reference! particle. If we assume that an eigenwa
traveling alongz is described by the wave vectorq5quz ,
the following equation for the dipole moment of the refe
ence particlem0 holds:

@a% 21~v!2C% ~v,q!#•m050, ~9!

C% ~v,q!5 (
~ l ,m,n!Þ~0,0,0!

G% ~v,Rl ,m,n!e2 jqan, ~10!

whereC% (v,q) is the dynamic three-dimensional interactio
dyadic, G% (v,R) is the dyadic Green’s function describin
the magnetic field produced by a magnetic dipole at the p
of space with radius vectorR from the center of the dipole
and Rl ,m,n is the radius vector from the center of the refe
ence particle to the particle with indicesl, m, n.

The main problem is how to calculate the sums cor
sponding to the interaction constant. The usual approach
summation of this series is based on summation by layers
that case we have
8-2
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C% ~v,q!5 (
n52`

1`

b% ~n!e2 jqan. ~11!

Here, b% (0) is the interaction dyadic corresponding to t
zeros layer~the sum of the Green functions from all th
particles of layern50 without the reference particle!, and
b% (n) for nÞ0 are dyadics describing interactions betwe
zero andnth layers. A simple analytical method of calcul
tion of these dyadics for the axial propagation is presente
@5,6,8#. In our planar case, the interaction dyadic is simp
b% 5bI% t with

b~0!5
v

4ha2 S coskRo

kRo
2sinkRoD1 j S k3

6pm0
2

v

2ha2D ,

~12!

whereh5Am0 /e0 and parameterR05a/1.438@5,6#, and for
nÞ0

b~n!5
v

4ha2 F R08
2

R08
21~na!2

coskAR08
21~na!2

kAR08
21~na!2

2S 11
~na!2

R08
21~na!2D sinkAR08

21~na!2G
2

1

4pm0
F S 1

~ unua!32
k2

unuaD cos~kna!

1
k

~na!2 sin~kna!G2 j
v

2ha2 cos~kna! ~13!

with R085a/1.521@8#.
It is also possible to write an exact expression forb(n)

(nÞ0) using the Floquet mode expansion@10#:

b~n!52
j

2m0a2 (
m52`

1`

(
l 52`

1` Fk22S 2pm

a
D 2G

3
e2 jAk22~2pm/a!22~2p l /a!2unua

Ak22S 2pm

a
D 2

2S 2p l

a
D 2

, ~14!

where the square root branch is defined by Im&,0. For our
purposes, this series can be used for practical calculat
because of enough quick convergence even forn51. For
largern, only one leading term gives a very accurate res
Expression~13! is reasonable to use in calculations of t
layer field at positions near~as compared to the perioda! to
the array plane, where the Floquet expansion converges
slowly. On the other hand, that closed-form model is n
accurate for large distances from the layer plane, which
our case corresponds ton.1.

Using the above results, we write the eigenvalue equa
~9! for the axial propagation in form
01660
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@a% 212CI% t#•m050, C~v,q!5 (
n52`

1`

b~n!e2 jqan,

~15!

which gives nontrivial solutions when the determinant of t
dyadic is zero. The problem is easier to analyze in the co
dinate system of circularly polarized eigenvectors since
leads to two separate equations for right- and left-hand
cularly polarized eigenmodes:

1

a7aa
5C ~16!

~the plus sign corresponds to the left-hand circularly pol
ized solution!.

As discussed above, only the real parts of coefficientb
are calculated approximately by analytical or numeri
means. The imaginary parts are known exactly from the
ergy conservation law. Actually, it can be easily shown fro
Eqs. ~12!, ~13!, and ~15!, by evaluating the summation an
making use of Eq.~7!, that

Im$C% %5Im$a% 21%5
k3

6pm0
I% t. ~17!

We should note that in Eq.~16! the imaginary parts cance
out, so this is a purely real equation.

As in @8#, we can first consider an approximate solutio
From a distance, the separate dipole layers look like ‘‘hom
geneous infinite plates’’ with continuous averaged curr
densities. As a result, the interaction coefficient fornÞ0 is
@8#

b~n!'2 j
v

2ha2 e2 jkunua. ~18!

The first term in the expression forb~0! can be combined
with the termb(n), and the eigenvalue equation is then

ReH 1

as7aa
J 5

v

4ha2 S coskRo

kRo
2sinkRoD

2ReH j
v

2ha2 (
nÞ0

e2 jkunuae2 jqnaJ .

~19!

The infinite sum can be written in closed form@8#

(
nÞ0

e2 jkunuae2 jqna5
j sinka

coska2cosqa
21, ~20!

and the dispersion equation becomes

v

2ha2

sinka

coska2cosqa
5ReH 1

a7aa
J 2

v

4ha2 S coskRo

kRo

2sinkRoD . ~21!
8-3
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This can be rewritten in the classical form known f
waveguides with periodic insertions@11#:

cosqa5coska2
2 sinka

ReH 4ha2/v

a7aa
J 2S coskRo

kRo

2sinkRoD .

~22!

Here, the denominator has the meaning of the normali
equivalent sheet impedance describing every layer of the
poles @8#. This formula gives the propagation factors in
simple analytical form. We will call it the zero-Floquet mod
approach because it does not take into account evane
Floquet components.

More accurately, using the full expressions~13! or ~14!
for the interaction coefficientb(n) for nÞ0, the dispersion
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equation reads

v

2ha2

sinka

coska2cosqa
5

2ha2

v
ReH 1

a7aa
J 2

v

4ha2 S coskRo

kRo

2sinkRoD22 (
n51

` S Re$b~n!%

1
v

2ha2 sinknaD cosqna. ~23!

This equation cannot be solved analytically as Eq.~22!, and
special methods must be applied to solve this nonlinear eq
tion. The solutions give us the propagation constantsq of
eigenwaves.

Using the Floquet expansion~14!, this equation can be
rewritten in closed form:
v

2ha2

sinka

coska2cosqa
5ReH 1

a7aa
J 2

v

4ha2 S coskRo

kRo

2sinkRoD 2
1

2m0a2 (
m,lÞ0

k22S 2pm

a
D 2

AS 2pm

a
D 2

1S 2p l

a
D 2

2k2

3F sinhS aAS 2pm

a
D 2

1S 2p l

a
D 2

2k2D
coshS aAS 2pm

a
D 2

1S 2p l

a
D 2

2k2D 2cos~qa!

21G . ~24!
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Here, we should stress that this equation has an infi
number of complex roots. Approximately, it has a root ne
every singularity point (Im$q%'2j2p/aAm21 l 2;m,l
51,2,...). We are interested in the first roots—the real o
~propagating modes! and the complex ones with Im$q%
,2p/a.

In the properties of the eigenwaves, the nonreciprocal
ture of the crystal is seen from the fact that the polarizat
of eigenwaves traveling along the opposite directions of a
z are different. For waves traveling along the positivez di-
rection, only the right-circular polarized mode has a fer
magnetic band gap, while for the oppositely bound waves
left-circular polarized dipole moment distribution has t
same property. This is because the sense of the dipole
ment precession is determined by the direction of the b
field.

IV. REFLECTION COEFFICIENT

If one can neglect higher-order modes generated a
interface between a crystal and free space, the knowledg
the dominant propagation constant of eigenwaves~obtained
te
r

s

a-
n
is

-
e

o-
s

n
of

above! is enough to find the characteristic impedance of
medium and the reflection coefficient from finite-size
samples~for example, from a half space!. Let us consider a
planar interface between a half space filled with a square
lattice of ferrite spheres~z.0, or index n>0! and free
space. Suppose that a normally incident plane electrom
netic waveHe2 jkz is exciting the medium. The layer-to-laye
distribution of the dipole moments in the material is assum
to be a plane wave described by the propagation constaq,
which can be found as the dominant solution of dispers
Eq. ~23!. q is real if there is such a solution of the dispersi
equation or it is a complex number with the largest~nega-
tive! imaginary part, corresponding to the main evanesc
mode with the slowest decay factor. This means that we
glect the transition layer and assume that the first layer
spheres is already excited in the same way as spheres i
bulk. In the theory of dielectrics, it is known that the surfa
effect correction is actually rather small@12,13#.

Let us write the equations for the dipole moment of so
Nth layer located deep inside the medium (N@1) in terms of
the local magnetic field produced by all the spheres and
incident wave:
8-4
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m0e2 jqaN5a% •S He2 jkaN1 (
n52N

1`

b~n!e2 jqa~n1N!m0D .

~25!

Using Eq.~15! we have

(
n52N

1`

b~n!e2 jqanm05S a% 212 (
n52`

2N21

b~n!e2 jqanD •m0 .

~26!

For layers with large numbersn in termsb(n), the evanes-
cent Floquet modes can be neglected~18!, which means that
the sum in the right-hand side can be easily calculated:

(
n52`

2N21

b~n!e2 jqan52 j
v

2ha2 (
n5N11

1`

e2 j ~k2q!na

52 j
v

2ha2

e2 j ~k2q!a~N11!

12e2 j ~k2q!a . ~27!

Furthermore, we get

m05 j F v

2ha2

e2 j ~k2q!a

12e2 j ~k2q!aG21

H. ~28!

The reflected magnetic field produced by the excited lat
is

HR52
j v

2ha2 (
n50

1`

e2 j ~k1q!anm052
j v

2ha2

m0

12e2 j ~k1q!a .

~29!

Finally, the reflection coefficient~for magnetic fields! reads

RH52
12e2 j ~q2k!a

12e2 j ~q1k!a 5ejka
sin@~k2q!a/2#

sin@~k1q!a/2#
. ~30!

To prevent possible confusion, we rewrite the reflection
efficient in terms of the electric field~the two values simply
differ by sign!. For electric fields

R52ejka
sin@~k2q!a/2#

sin@~k1q!a/2#
. ~31!

Nonreciprocal properties of the crystal are clearly se
from this formula. Because the propagation factorq is dif-
ferent for the two eigenmodes~right- and left-circularly po-
larized dipole moments of the spheres!, the reflection phe-
nomenon is nonreciprocal. Right-hand circularly polariz
incident waves effectively excite the spheres, and the
flected plane wave is left-hand circularly polarized. In t
opposite case, if the incident plane wave is left-hand cir
larly polarized, the propagation constantq is very close tok,
and the reflection coefficient~31! is very small.
01660
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V. CHARACTERISTIC IMPEDANCE AND EFFECTIVE
PARAMETERS

Since the reflection coefficient is known, we can intr
duce normalized wave impedanceZ of the mediumdefining
it through

R5
Z21

Z11
. ~32!

In doing so, we get

Z52 cotan~ka!sin~qa/2!ejka/2. ~33!

The result depends on the reference plane. It appears ad
tageous to rewrite the above equations for the plane at a
period distance from the first layer grid of the medium:

R52
sin@~k2q!a/2#

sin@~k1q!a/2#
, ~34!

then

Z5
tan~qa/2!

tan~ka/2!
. ~35!

In this definition, it is obvious that ifq is purely imaginary,
then

Z5 j
tanh~ uqua/2!

tan~ka/2!
, ~36!

and we have full power reflection as from a magnetic wa
uRu51.

Furthermore, we candefineeffective permittivity and per-
meability through the wave impedance and the propaga
constant:

eeff5
q

kZ
, meff5

qZ

k
. ~37!

In this definition, the use of the effective permittivity an
permeability together with the standard Maxwell bounda
conditions will give the correct reflection coefficient. Spat
dispersion of the medium is seen from dependence of
effective parameters on the propagation constant.

VI. QUASISTATIC LIMIT

In the low-frequency limit, when it can be assumed th
ka!1 andqa!1, the eigenvalue equation can be simplifi
by approximating the sine and cosine functions for sm
argument values. The eigenvalue equation reduces to
form

~qa!2

2
5

~ka!2

2
1

~ka!2

2m0a3S ReH 1

a7aa
J 2CD , ~38!
8-5
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C5
1

2m0a2 F 1

2R0
1 (

n51

` S R08
2

@R08
21~na!2#3/22

1

pan3D G .

~39!

The solution of this equation and the effect of the infin
sum is considered in detail in@8#. As a result, one arrives a
the static limit, which coincides with the Lorenz-Lorentz fo
mula@C51/(3m0a3)#. Using Eqs.~37! and~35! for smallka
and qa, we obtain the relative effective permittivity«eff51
and the relative effective permeabilitymeff5q2/k2. Thus, we
obtain a formula that has the same meaning as the Max
Garnett mixture rule:

meff511
1

m0a3 ReH 1

a7aa
J 2

1

3

. ~40!

This can be written, using the expression for the polariza
ity factors, as

meff511
1

a3

V S v07v

vM
D2

1

3

5ms6ma . ~41!

Here, it is easy to identify the effective diagonal and o
diagonal componentsms andma of the permeability, respec
tively ~as shown in the above formula!, and write them in the
classical form@9#:

ms511
ṽ0ṽM

ṽ0
22v2 , ma5

vṽM

ṽ0
22v2 . ~42!

In this formula, ṽ05v02 f vM/3 is the shifted resonanc
frequency,ṽM5 f vM , and f 5V/a3 is the ferrite volume
fraction. This simple and expected result has a clear me
ing. ParametervM is proportional to the magnetization de
sity. In the composite, this parameter is reduced by the
ume fraction ratio f. The resonance frequencyv0 is
proportional to the external bias field, which is reduced
the Lorentz factorf /3.

VII. NUMERICAL EXAMPLE

As an illustrative example, we consider a microwa
crystal formed by a simple cubic lattice of small monocrys
spheres of yttrium iron garnett ferrite (Y3Fe5O12). The satu-
ration magnetization of Y3Fe5O12 corresponds tovM /(2p)
54.9 GHz, and we choose the bias field so that the re
nance frequencyv0 /(2p)510 GHz. The sphere radius isr
51 mm and the lattice period isa53 mm. For further com-
parisons with the composite properties, the resonant curv
an individual ferrite sphere is shown in Fig. 2. The absol
value of the polarizability for right-hand circularly polarize
field a1aa is plotted as a function of the frequency. In th
model of lossless scatterers, the quality factor is determi
by scattering losses given by formula~8!. Note that the reso-
nant curve is rather narrow.

We have made calculations of the band-gap structure
the nonreciprocal crystal under consideration using
proaches~22! and~24!. In the first case, only the fundamen
tal Floquet mode in the periodical medium was taken i
01660
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account. The second approach accurately includes all
Floquet modes in the model. A new ferrimagnetic band g
with 0.76 GHz width~9.76–10.52 GHz! was found for the
right-circular polarization~see Fig. 3! and, naturally, no band
gap was found for the left-circular polarization. All the re
sults below correspond to the right-hand circularly polariz
eigenmodes. For the orthogonal polarization, the medium
nearly transparent in the frequency band of analysis. Le
note that the usual lattice band gaps appear at much hi
frequencies.

At frequencies within the band gap, all solutions for t
propagation constant are purely imaginary. The imagin
part of the propagation constant~decay constant! is plotted in
Fig. 4 for the main evanescent modes with the slowest de

Comparing the results that follow from the exact and a
proximate formulas, we have found that the difference
tween approximate~22! and exact~23! solutions is no more
than 0.1% for the propagating modes~at frequencies outside
the band gap!. Calculation and comparison of decay co
stants inside the band gap by formula~22! ~zero-Floquet
mode approach!, ~23! ~exact approach!, and~40! ~quasistatic

FIG. 2. Resonant curve for a single sphere in free space. Ri
circularly polarized incident field.

FIG. 3. Band-gap structure~right circular polarization!.
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NONRECIPROCAL MICROWAVE BAND-GAP STRUCTURES PHYSICAL REVIEW E66, 016608 ~2002!
approach! lead to the following observations.
~1! All these formulas give us correct information abo

the frequency position and the width of the ferrimagne
band gap.

~2! The zero-Floquet mode solution contains two types
evanescent modes: one has a purely imaginary propag
constant Re(q)50 ( f .9.8 GHz) and the other has Re(q)
5p/a ( f ,9.8 GHz).

~3! The exact approach also gives two branches of s
tions: one with Re(q)50 and the other with Re(q)5p/a.
These branches continue into the propagation bands~f
,9.76 GHz andf .10.52 GHz!.

~4! The quasistatic approach~Maxwell Garnett formal-
ism! gives totally wrong results in a small area near the b
tom of the band gap@in particular, we get Re(q).p/a at
these frequencies#.

Calculations of the reflection coefficient from a half spa
filled by the nonreciprocal crystal under consideration ha
been made using formula~34!, and the result is plotted in
Fig. 5. The reflection coefficient grows with the frequen
until the bottom of the band gap is reached, where it
comes equal to11. In the stop band, it becomes comple
and the phase changes inside the band gap so that the r
tion coefficient becomes equal to21 at the top of the band
gap. In the upper propagation band, its absolute value de
again as the frequency becomes much higher than the r
nant frequency. This expected resonatorlike behavior s
ports validity of the analysis.

Note that, due to inclusion interactions in a regular latti
the width of the band gap is dramatically wider than t

FIG. 4. Structure of the ferrimagnetic band gap: two branche
the exact solution with Re(q)50 and Re(q)5p/a, respectively
~thick lines!, together withq522p j /a asymptote~thin line!, com-
pared with the Maxwell Garnett approach~dotted line! and zero-
Floquet mode approach~22! ~dashed line!.
es
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resonant curve of an isolated sphere, as is seen from c
parison with Fig. 2.

VIII. CONCLUSIONS

Nonreciprocal electromagnetic stop band structures h
been proposed. A simple analytical theory of dispersion
cubic lattices of small ferrimagnetic spheres has been
sented for the axial propagation along the direction of a m
netization field. The dispersion equation has been sol
both analytically, using a kind of averaging, and numerica
in the exact formulation. The approximate solution leads t
very simple analytical formula for the propagation consta
Numerical calculations show that this approach has a v
small mismatch with the exact one for the propagat
modes. For the analysis inside the band gap, the exact s
tion is required, in particular near the lower boundary of t
gap. The dispersion curves for the nonreciprocal crystal h
been plotted and it has been shown that this crystal ha
very interesting band-gap structure. The properties of
crystal depend very heavily on polarization. For the rig
circular polarization, an additional band gap correspond
to the ferrimagnetic resonance is found that differs from
classical lattice band gaps. For the left-circular polarizati
the ferrimagnetic band gap has not been found, as was
pected. The ferrimagnetic band gap is rather wide and
central frequency is easily tunable by the magnetization fie
At frequencies inside the gap, the lattice period can still
very small compared to the wavelengths, which is an imp
tant feature allowing the design of compact structures. T
new band gap is not complete: it exists for only one of t
two eigenpolarizations. Although the other propagation
rections have not been considered, there is no reason to
pect that the gap can exist for all propagation directions
this anisotropic medium.

f FIG. 5. Reflection coefficient.
on-
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