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Nonreciprocal Transport in Noncoplanar Magnetic Systems without

Spin-Orbit Coupling, Net Scalar Chirality, or Magnetization

Satoru Hayami and Megumi Yatsushiro

Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

We propose a new mechanism of nonlinear nonreciprocal transport in magnetic systems. By considering
a noncoplanar magnetic ordering on a bilayer triangular lattice, we clarify that a local scalar chirality
degree of freedom is a source of nonreciprocal transport, which does not require any relativistic spin-orbit
coupling, net scalar chirality, and net magnetization. We show a close relationship between the asymmetric
band modulation and the nonreciprocal transport under the noncoplanar magnetic ordering based on the
model-parameter dependences in the real-space picture.

1. Introduction

A noncoplanar spin texture has recently been attracted
in condensed matter physics. Although its appearance in
materials has been still rare compared to collinear and
coplanar spin textures, the recent developments of ex-
perimental techniques push their searches and discov-
eries in a variety of materials, such as the all-in/all-out
spin texture in the pyrochlore structure1–5) and other cu-
bic structures6–10) and the skyrmion crystal spin texture
in both noncentrosymmetric and centrosymmetric crys-
tal structures.11–21) Simultaneously, it has been revealed
that these noncoplanar spin configurations are brought
about by the synergy among magnetic interactions that
originates from the internal electronic degrees of free-
dom, such as frustrated exchange interaction and charge-
spin-orbital coupled interaction in real and momentum
spaces.22–31)

Noncoplanar magnetic orderings manifest themselves
not only in unusual magnetism but also in anomalous
transport properties. The most typical example is the
topological Hall effect, where conduction electrons ac-
quire a gauge flux through the spin Berry phase under
the noncoplanar magnetic orderings.32–43) There, the key
ingredient is scalar spin chirality (SSC) defined as the
triple scalar product of spins as si · (sj × sk) for spin si
at site i. From the symmetry aspect, the emergence of
the topological Hall effect under nonzero SSC is natu-
ral, since its net component has the same symmetry as a
time-reversal-odd axial-vector quantity like the uniform
magnetization. In other words, the topological Hall ef-
fect occurs in the absence of the net magnetization once
the net SSC becomes nonzero in the system, as demon-
strated by various noncoplanar orderings in different lat-
tice systems, such as the face-centered-cubic,8,44) tri-
angular,27,45–50) honeycomb,51) Shastry-Sutherland,52)

kagome,53,54) and square lattices.55,56)

In the present study, we investigate another transport
phenomenon under the noncoplanar magnetic orderings
with the SSC degree of freedom by focusing on nonlinear
nonreciprocal transport against the second-order electric
field.57–59) In contrast to the linear Hall effect, the non-
reciprocal transport is caused when the spatial inversion

(P) symmetry is broken in addition to the time-reversal
(T ) symmetry.60–65) For example, swirling spin textures
with the magnetic toroidal moment as polar-vector quan-
tity accompanied by spirals and magnetic skyrmions are
prototypes to exhibit nonreciprocal transport.66–76) The
emergence of the nonreciprocal transport is microscopi-
cally understood from an asymmetric modulation of the
electronic and magnon band structures in the presence
of the relativistic spin-orbit coupling (SOC).77–88) Mean-
while, it was recently shown that the asymmetric band
structure can be engineered by the SOC-free antiferro-
magnets (AFMs) with the aid of the local SSC,89–93)

which results in the nonreciprocal transport in frustrated
magnets under an external magnetic field even in the ma-
terials with the negligibly small SOC.94)

To further gain an understanding of the relationship
between nonreciprocal transport and local SSC, we con-
struct a minimal and fundamental magnetic system, i.e.,
a noncoplanar magnetic ordering with the all-out-type
spin configuration on a bilayer triangular lattice. We
show that nonreciprocal transport emerges once such
a magnetic ordering occurs. The mechanism lies in ef-
fective hopping arising from the local SSC, which does
not require any SOC, net SSC, and even magnetization.
We show the essential real-space hopping processes con-
tributing to the asymmetric band structure and nonre-
ciprocal transport. Our result provides a new transport
function based on the SSC degree of freedom, which will
be a useful reference to search further AFM materials
applicable to spintronic devices.

The rest of the paper is structured as follows. In
Sect. 2, we introduce a bilayer-triangular lattice model.
We show that an eight-sublattice noncoplanar spin tex-
ture on the bilayer-triangular lattice is a minimum model
to exhibit the nonreciprocal transport without SOC, net
SSC, or magnetization. Then, we discuss the asymmet-
ric band structure and nonreciprocal transport under the
noncoplanar ordering in Sect. 3. We find that the local
SSC plays an important role in inducing SOC-free nonre-
ciprocal transport. We summarize our results in Sect. 4.
In Appendices A and B, we present the detailed model
parameter dependences of the nonlinear conductivity in
addition to the local SSC.
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Fig. 1. (Color online) (a) Bilayer triangular-lattice structure.

The solid (dashed) bonds represent the intralayer (interlayer) hop-

ping paths. The black solid parallelogram stands for the magnetic
unit cell, which includes eight sublattices A–H. (b) Eight-sublattice

spin texture. The black circle represents the inversion center of the

crystal structure. The red (blue) arrow stands for the spin with
the +sz (−sz) component. (c) The real-space inplane spin texture

for layer 1 (left panel) and layer 2 (right panel), where χintra
1 and

χintra
2 represent the local SSC in each triangle plaquette.

2. Model

We aim at investigating the relationship between non-
linear transport and local SSC. For that purpose, we
suppose the situation where there are no net SSC and
magnetization but local SSC under the magnetic order-
ings. Such a situation can be theoretically engineered by
considering the two types of triangles consisting of three
spins so as to have the local SSC with the opposite sign
and by aligning them to vanish a net component. As an
example, we consider a bilayer triangular-lattice system
in Fig. 1, where the upper-layer sites (E, F, G, and H)
are located at the center of the upward triangle in the
lower layer consisting of A, B, C, and D. We hereafter
refer to the lower (upper) layer as layer 1 (layer 2). We
take the length between the nearest-neighbor sites in the
same plane as the length unit and also set the length be-
tween E and the center of the upward triangle ABC as
the unity. The tight-binding Hamiltonian is given by

H = −
∑
ijσ

tijc
†
iσcjσ −

∑
iσσ′

hi · c†iσσσσ′ciσ′ , (1)

where c†iσ (ciσ) is the creation (annihilation) operator
for site i and spin σ =↑, ↓. The first term in Eq. (1)
represents the kinetic energy of electrons; we consider
the nearest-neighbor hopping t (tz) in the intralayer (in-
terlayer). The second term in Eq. (1) stands for the
site-dependent mean-field term hi that arises from the
Coulomb interaction; σ is the vector of the Pauli ma-
trices. To investigate the situation where no net SSC
and magnetization are present, we consider an eight-
sublattice AFM ordering consisting of A–H in Fig. 1(a),
whose spin texture is characterized by the all-out-type
one in Fig. 1(b): hA = h(−

√
2/3,−

√
2/3,−1/3), hB =

h(
√

2/3,−
√

2/3,−1/3), hC = h(0, 2
√

2/3,−1/3), hD =

h(0, 0,−1), hE = −hD, hF = −hC, hG = −hB, and
hH = −hA. Although there is an inversion center be-
tween the upward tetrahedron ABCE and downward
tetrahedron DFGH at hi = 0 as shown by the black cir-
cle in Fig. 1(b), the onset of the magnetic ordering leads
to the breaking of the P symmetry while keeping the PT
symmetry. It is noted that the site symmetry at sites D
and E is different from the others under this noncopla-
nar ordering; the expectation values of spins at sites D
and E are not equal to the others, i.e., |〈sA〉| = |〈sB〉| =
|〈sC〉| = |〈sF〉| = |〈sG〉| = |〈sH〉|, |〈sD〉| = |〈sE〉|, and

|〈sA〉| 6= |〈sD〉| where si = (1/2)
∑
σσ′ c

†
iσσσσ′ciσ′ . In

addition, the system does not show a net magnetization;∑
i〈si〉 = 0. In the following, we set t = 1 as the energy

unit of the Hamiltonian in Eq. (1) and fix tz = 0.8.
The P-symmetry breaking is also found in the real-

space SSC distribution, which is calculated by the triple
scalar product of spin moments, χijk = 〈si〉·(〈sj〉×〈sk〉)
in each plaquette for layer 1 (layer 2) in the left (right)
panel of Fig. 1(c). In each layer, there are two types of tri-
angles to have different SSCs with |χintra

1 | (pink triangle)
and |χintra

2 | (yellow triangle), whose signs are opposite in
the two layers, as shown in Fig. 1(c). As the P operation
that transforms between (A, B, C, D) and (H, G, F, E)
does not change the sign of χintra

1 and χintra
2 , the SSC

distribution has odd parity regarding the P operation.
Meanwhile, the combination of P and T operations re-
covers the original SSC distribution, since the sign of the
SSC is reversed under the T operation.

Although we here focus on the transport property by
supposing the eight-sublattice noncoplanar ordering in
Figs. 1(a) and 1(b), we discuss two possible scenarios
to stabilize this noncoplanar ordering. One scenario is
the multiple-Q instability. From the momentum-space
viewpoint, the noncoplanar ordering is characterized by
the triple-Q state with equal intensities at three wave
vectors, k = b1/2, b2/2, and −(b1 + b2)/2 where bλ
(λ = 1–3) are the reciprocal vectors, in addition to the
uniform component k = (0, 0). Since a similar triple-Q
spin configuration, which is obtained by reversing the di-
rections of sD and sE so as to vanish the intensity at
k = (0, 0), is stabilized when considering the effect of
the ring-exchange interaction95) and Fermi surface insta-
bility,27,45–49,96) the present triple-Q spin configuraion
might be stabilized by taking into account additional
exchange interaction and/or anisotropy to induce the
k = (0, 0) component. Another scenario is the symme-
try lowering of the lattice structure in the paramagnetic
state. For example, when we consider the lattice struc-
ture consisting of two tetrahedrons ABCE and DFGH by
differently setting the intratetrahedron hopping and in-
tertetrahedron hopping, the all-out spin texture in each
tetrahedron is realized by considering the strong intrate-
trahedron AFM exchange interaction. In such a situa-
tion, the following result for the nonreciprocal transport
remains the same qualitatively.
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Fig. 2. (Color online) (a) The band structure under the non-

coplanar ordering in Fig. 1(b) at h = 2. (b) The isoenergy surfaces
in the magnetic Brillouin zone (a) at ne = 0.18 (upper panel) and

ne = 0.34 (lower panel). (c) SSC distribution [χ1 (blue) and χ2

(green)] across two triangular-lattice planes, where the spin tex-
ture is omitted. (d) Real-space two hopping processes (path 1 and

path 2) contributing to the asymmetric band modulation along the

x direction.

3. Results

3.1 Asymmetric band structure

Figure 2(a) shows the band structure under the non-
coplanar ordering for h = 2 along the high-symmetric
lines of the magnetic Brillouin zone. Each band is dou-
bly degenerate owing to the PT symmetry. One clearly
finds that the asymmetric band modulation in terms of
the Γ point appears along the K’-Γ-K line, while the
band is symmetric along the M1-Γ-M2 line. The angle
dependence of the asymmetric band modulation is given
by kx(k2x − 3k2y), which satisfies the threefold rotational
symmetry, as shown by the isoenergy surfaces in the cases
of ne = 0.18 and ne = 0.34 in the upper and lower pan-
els of Fig. 2(b), respectively. It is noted that there is a
slight threefold band modulation at low filling ne = 0.18.
The emergence of the asymmetric band deformation cor-
responds to the active magnetic toroidal octupole T3a.97)

To examine the important model parameters for the
asymmetric band deformation, we evaluate a quantity
consisting of products among the lth power of the Hamil-
tonian matrix at wave vector k, Hl(k), as Tr[Hl(k)] −
Tr[Hl(−k)].87,89,90) As a result, the lowest-order contri-
bution is obtained as h3tt2z(cos kx − cos

√
3ky) sin kx in

the order of l = 6. The h3 dependence indicates the ne-
cessity of the noncoplanar spin configuration, as detailed
below. Moreover, one notices that the expression includes
the interlayer hopping proportional to t2z as well as the
intralayer hopping t. In short, the local SSC extending
over two layers connected by tz is essential to induce the
asymmetric band modulation. Indeed, the local SSC de-
fined on the interlayer triangle plaquette is distributed
in a threefold symmetric way so that the inversion sym-
metry is broken, as shown in Fig. 2(c). We plot the local
SSC defined by 〈si〉 · (〈sj〉 × 〈sk〉) for i, j ∈ A, B, C, D
and k ∈ E, F, G, H in Fig. 2(c), which are denoted by χ1

and χ2; χ1 consists of the triangles including site D or E,
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Fig. 3. (Color online) (a) Contour plot of σx;xx in the plane of

ne and h. (b,c) h dependences of σx;xx, χ1, and χ2 for (b) ne = 0.18
and (c) ne = 0.34. (d) Two hopping processes (path 1’ and path

2’) contributing to σx;xx.

while χ2 does not contain both sites D and E. The SSC
distribution for the other interlayer triangle plaquettes
for i, j ∈ E, F, G, H and k ∈ A, B, C, D is obtained by
reversing the sign of χ1 and χ2 owing to the PT symme-
try.

To further investigate the dominant microscopic hop-
ping processes, we explicitly write down the subscript
for site index as t → tij , tz → tzij , and h → hi. By
considering the hopping processes within four triangles
(ABE, BA’F, CDG, and DC’H) along the x direction
in Fig. 2(c), one obtains the lowest-order contribution as
hyCh

z
D(hxGtzCGtzDGtC′D+hxHtCDtzC′HtzDH) sin 2kx, whose

schematic real-space processes are denoted by path 1 and
path 2 in Fig. 2(d) (The contributions for the other di-
rections are obtained by the threefold rotation opera-
tion). This expression indicates the importance of the lo-
cal SSC, χ1 = 〈sC〉·(〈sG〉×〈sD〉) and 〈sC〉·(〈sD〉×〈sH〉),
which are proportional to hyCh

x
Gh

z
D and hyCh

z
Dh

x
H, respec-

tively, as well as the interlayer hopping paths tzCGtzDG

and tzC′HtzDH. Meanwhile, in the lowest order, the hop-
ping processes within two triangles (ABE and BFA’),
which include χ2, do not contribute to the asymmetric
band deformation.

3.2 Nonreciprocal transport

Next, we discuss the nonreciprocal transport prop-
erty. We calculate the Drude-type nonlinear conductivity,
which is closely related to the asymmetric band modula-
tion.88,94) Starting from the second-order Kubo formula,
one obtains as

ση;µν = − e3τ2

2~3N
∑
k,n

fnk∂η∂µ∂νεnk, (2)

where ση;µν is the Drude-type nonlinear conductivity
tensor in Jη = ση;µνEµEν for η, µ, ν = x, y, z. In Eq. (2),
e, τ , ~, and N are the electron charge, relaxation time,
the reduced Planck constant, and the number of sites, re-
spectively; we set e = τ = ~ = 1 and N = 8× 24002. εnk

3
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and fnk are the eigenenergy of the Hamiltonian in Eq. (1)
and the Fermi distribution function with the band index
n, respectively (we set the temperature T = 0.01). From
the symmetry, nonzero components in the noncoplanar
ordered state are given by σx;xx = −σx;yy = −σy;xy =
−σy;yx; we discuss the bahavior of σx;xx.

Figure 3(a) shows the contour plot of σx;xx while
changing the electron filling per site ne (ne = 2 corre-
sponds to full filling) and h. As shown in Fig. 3(a), σx;xx
becomes nonzero in almost all the regions, although their
parameter dependences, especially for ne in the small
h region, are complicated. This might be attributed to
the multi-band effect owing to the multi-sublattice sys-
tem. Indeed, σx;xx for low filling monotonically behaves
so that the Fermi surface becomes simple [upper panel of
Fig. 2(b)], as shown in the case of ne = 0.18 in Fig. 3(b);
|σx;xx| developes while increasing h. It is noted that such
a monotonic behavior is unchanged for different hop-
ping parameters, tz, as discussed in Appendix A. On
the other hand, a nonmonotonic behavior including the
sign change against h is found in the intermediate ne
region, as shown in Fig. 3(a); we display the result at
ne = 0.34 in Fig. 3(c), where σx;xx shows several sudden
sign reversals in the small h region.

The important hopping process in σx;xx is in-
vestigated by expanding σx;xx in the polyno-
mial form of products of Hl(k) and the ve-
locity operator, vk = ∂H(k)/∂k; σx;xx =∑
ll′l′′ C

ll′l′′
∑

k Tr[vxkHl(k)vxkHl
′
(k)vxkHl

′′
(k)]

where Cll
′l′′ is the model-independent coefficient.98) The

contribution to the Drude-type nonlinear conductivity
is obtained as the real part after taking the trace. Then,
the lowest-order contribution to σx;xx is obtained as
h3tt2z for l = l′ = l′′ = 1, which well corresponds to the
model-parameter dependence of the asymmetric band
deformation, as discussed above. This result indicates
that the local SSC over two layers that leads to the
asymmetric band modulation plays a key role in induc-
ing the nonreciprocal transport. Moreover, by a similar
procedure to the asymmetric band modulation, we find
that two loops over interlayer triangles (DC’H and
CDG) give the lowest-order contribution, as denoted by
path 1’ and path 2’ in Fig. 3(d). Thus, the local SSC χ1

spanned by DC’H and CDG contributes not only to the
asymmetric band modulation but also to nonreciprocal
conductivity. In particular, one finds a good qualitative
correspondence between them for small ne except for
their sign in Fig. 3(b), where the shape of the Fermi
surface is simiple.94)

To further look into the correspondence between σx;xx
and χ1, we modulate the noncoplanar spin configuration
by modifying hi in two ways: One is the angle modu-
lation of hi at sites A–C and F–H and the other is the
amplitude modulation of hi at sites D and E. For the for-
mer, we introduce an angle parameter θ measured from
the negative (positive) z axis for A–C (F–H), as shown
in Fig. 4(a); θ = cos−1(−1/3) ' 0.608π corresponds to
the previous case.

Figure 4(b) shows the θ dependences of σx;xx, χ1, and
χ2 for ne = 0.18 and h = 2. All the quantities vanish for
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Fig. 4. (Color online) (a) Schematic picture for the angle modu-

lation θ. (b) θ dependences of σx;xx, χ1, and χ2 for ne = 0.18 and
h = 2. (c) Schematic picture for the amplitude modulation w. (d)

w dependences of σx;xx, χ1, and χ2 for ne = 0.18 and h = 2.

θ = 0 and π, since the spin configuration reduces to the
collinear one. |σx;xx| takes the maximum at θ ' 0.608π.
The local SSC χ1 shows the almost symmetric behav-
ior regarding θ while taking the maxima at θ ' 0.48π,
whereas χ2 shows the almost antisymmetric behavior;
the sign change of χ2 is owing to the reversal of all the
three spins 〈szi 〉, which leads to the sign reversal of the
SSC. Thus, χ1 seems to show a better correspondence to
σx;xx compared to χ2, which is consistent with the micro-
scopic analysis in terms of the model-parameter depen-
dence where the hopping processes on the triangle with
χ1 contributes to the lowest order in σx;xx. The almost
symmetric tendency against θ is also found in σx;xx at
other low and high fillings apart from the half-filling. In
this region, it has a qualitative correlation to χ1 rather
than χ2, as presented in Appendix B.

For the latter modulation, we introduce a weight pa-
rameter w for hD and hE like hD → whD, as shown
in Fig. 4(c), where a negative w presumably causes the
sign change of χ1 while keeping the sign of χ2. We show
the behaviors of σx;xx, χ1, and χ2 at ne = 0.18 and
h = 2 against w in Fig. 4(d). The sign-reversal behavior
is found in σx;xx and χ1, while it does not occur in χ2 in
Fig. 4(d), although the σx;xx and χ1 show the sign change
at different w, which might arise from the higher-order
hopping processes that are relevant to χ2. A similar cor-
respondence between σx;xx and χ1 is found for the other
fillings, as shown in Appendix B. On the whole, the
results in Figs. 4(b) and 4(d) indicate that σx;xx has a
qualitative correlation to χ1 when the Fermi surface is
relatively simple.

4. Summary

To summarize, we have investigated the nonlinear non-
reciprocal transport in noncoplanar AFMs. By construct-
ing a minimal tight-binding model on the bilayer trian-
gular lattice, we elucidated the essence of nonreciprocal
transport driven by the magnetic phase transition. We
showed that the local SSC degree of freedom becomes

4
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Fig. A·1. (Color online) Contour plot of (a) σx;xx, (b) χ1, and

(c) χ2 in the plane of tz and h for low filling ne = 0.18.

a source of the asymmetric band modulation, which
results in inducing nonreciprocal transport even with-
out SOC, net SSC, or net magnetization. Furthermore,
we discussed the important real-space hopping processes
in nonreciprocal transport. The candidate materials are
XNb3S6 (X = Co, Fe, and Ni)99,100) and Ru2MnX ′

(X ′ = Si and Sb),101) where similar noncoplanar spin
textures have been suggested.

Appendix A: Model parameter dependence of
nonreciprocal transport

We present the behaviors of σx;xx, χ1, and χ2 as func-
tions of tz and h for low filling ne = 0.18 in Figs. A·1(a),
A·1(b), and A·1(c), respectively. As shown in Fig. A·1(a),
|σx;xx| increases while increasing h independent of tz. It
is noted that σx;xx vanishes for tz = 0, which is consis-
tent with the model parameter analysis in Sect. 3.2 in
the main text. In Figs. A·1(b) and A·1(c), both χ1 and
χ2 also show the monotonic behaviors against h. Thus,
h dependence of σx;xx, χ1, and χ2 appears to be similar
for low filling so that the Fermi surface becomes simple
even when changing tz except for tz = 0.

Appendix B: Filling dependence of nonrecipro-
cal transport

We show the filling dependence of σx;xx, χ1, and
χ2 while changing θ and w, which are introduced in
Figs. 4(a) and 4(c) in the main text, respectively, in
Figs. B·1(a)–B·1(f). Figure B·1(a) shows σx;xx as func-
tions of ne and θ, where the data at ne = 0.18 cor-
responds to those in Fig. 4(b). The data indicate that
|σx;xx| tends to become larger for θ ' 0.5π and be a
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Fig. B·1. (Color online) Contour plot of (a,d) σx;xx, (b,e) χ1,

and (c,f) χ2 in the plane of ne and (a-c) θ [(d-f) w], which corre-
sponds to the situation in Fig. 4(a) [Fig. 4(c)].

symmetric in terms of θ, especially for low filling. Such
behavior has a correspondence to χ1 rather than χ2, as
shown in Figs. B·1(b) and B·1(c).

Similarly, the w dependence of σx;xx in Fig. B·1(d)
is characterized by the antisymmetric behavior against
w independent of ne; σx;xx shows the sign change while
changing w at fixed ne. As discussed in Sect. 3.2 in the
main text, such a tendency is similar to that of χ1 instead
of χ2, the former of which shows the sign change against
w.

S.H. thanks S. Seki for useful discussions. This research
was supported by JSPS KAKENHI Grants Numbers
JP19K03752, JP19H01834, JP21H01037, JP22H04468,
JP22H00101, JP22H01183, and by JST PRESTO (JP-
MJPR20L8). Parts of the numerical calculations were
performed in the supercomputing systems in ISSP, the
University of Tokyo.

1) J. Yamaura, K. Ohgushi, H. Ohsumi, T. Hasegawa, I. Ya-
mauchi, K. Sugimoto, S. Takeshita, A. Tokuda, M. Takata,
M. Udagawa, M. Takigawa, H. Harima, T. Arima, and Z. Hi-

roi, Phys. Rev. Lett. 108, 247205 (2012).

2) H. Sagayama, D. Uematsu, T. Arima, K. Sugimoto, J. J.
Ishikawa, E. O’Farrell, and S. Nakatsuji, Phys. Rev. B 87,

100403 (2013).
3) S. M. Disseler, Phys. Rev. B 89, 140413 (2014).
4) Y.-P. Huang, G. Chen, and M. Hermele, Phys. Rev. Lett.

112, 167203 (2014).
5) C. Donnerer, M. C. Rahn, M. M. Sala, J. G. Vale, D. Pincini,

J. Strempfer, M. Krisch, D. Prabhakaran, A. T. Boothroyd,
and D. F. McMorrow, Phys. Rev. Lett. 117, 037201 (2016).

5



J. Phys. Soc. Jpn. FULL PAPERS

6) J. Jensen and P. Bak, Phys. Rev. B 23, 6180 (1981).
7) S. Kawarazaki, K. Fujita, K. Yasuda, Y. Sasaki, T. Mizusaki,

and A. Hirai, Phys. Rev. Lett. 61, 471 (1988).

8) R. Shindou and N. Nagaosa, Phys. Rev. Lett. 87, 116801
(2001).

9) J. L. Alonso, J. A. Capitán, L. A. Fernández, F. Guinea, and

V. Mart́ın-Mayor, Phys. Rev. B 64, 054408 (2001).
10) S. Hayami, T. Misawa, Y. Yamaji, and Y. Motome, Phys.

Rev. B 89, 085124 (2014).
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