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Nonreciprocity and magnetic-free isolation based
on optomechanical interactions
Freek Ruesink1, Mohammad-Ali Miri2, Andrea Alù2 & Ewold Verhagen1

Nonreciprocal components, such as isolators and circulators, provide highly desirable

functionalities for optical circuitry. This motivates the active investigation of mechanisms that

break reciprocity, and pose alternatives to magneto-optic effects in on-chip systems. In this

work, we use optomechanical interactions to strongly break reciprocity in a compact system.

We derive minimal requirements to create nonreciprocity in a wide class of systems that

couple two optical modes to a mechanical mode, highlighting the importance of optically

biasing the modes at a controlled phase difference. We realize these principles in a silica

microtoroid optomechanical resonator and use quantitative heterodyne spectroscopy to

demonstrate up to 10 dB optical isolation at telecom wavelengths. We show that

nonreciprocal transmission is preserved for nondegenerate modes, and demonstrate

nonreciprocal parametric amplification. These results open a route to exploiting various

nonreciprocal effects in optomechanical systems in different electromagnetic and mechanical

frequency regimes, including optomechanical metamaterials with topologically non-trivial

properties.
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L
orentz reciprocity stipulates that electromagnetic wave
transmission is invariant under a switch of source and
observer1, and its implications widely permeate physics. To

violate reciprocity and obtain asymmetric transmission, suitable
forms of time-reversal symmetry breaking are required2. In
optical and microwave systems this is usually achieved using
magneto-optic material responses. However, a vibrant search for
alternative methods to break reciprocity, mimicking a magnetic
bias, has taken shape in recent years3–13. This is fuelled by the
typically weak magneto-optic coefficients in natural materials
and/or their associated losses, and the technological promise of
integrated on-chip nonreciprocal devices14, including isolators
and circulators. A promising approach relies on spatiotemporal
modulation of the refractive index to break time-reversal
symmetry. Such modulation allows imparting a nonreciprocal
phase on the transfer of a signal between two optical modes6,15

or establishing a form of angular momentum biasing to create
nonreciprocity4,16,17.

Pronounced optical time-modulation can be realized in cavity
optomechanics18,19, where the displacement x of a mechanical
resonator alters the resonance frequency oc of an optical cavity20.
Simultaneously, light can control the mechanical motion through
radiation pressure, surpassing the need for external modulation.
In recent years, these interaction dynamics have been exploited
for mechanical cooling21–23, optical amplification24, wavelength
conversion25–27 and optomechanically induced transparency28

(OMIT). Hafezi and Rabl29 theoretically predicted that
optomechanical interactions in ring resonators can enable
nonreciprocal responses, and associated asymmetric cavity
spectra were recently observed10,11,30. In other recent work, it
was recognized that the mechanically-mediated signal transfer
between two optical modes can be made nonreciprocal with
suitable optical driving31,32, a mechanism that enables phonon
circulators and networks with topological phases for sound and
light31,33,34.

Here we show that all of the above systems can be understood
from a single description involving two optical modes coupled to
a joint mechanical mode. This allows the definition of minimal
conditions to achieve ideal optomechanical nonreciprocity,
that is, a nonreciprocal phase shift of p or unity isolation with
vanishing insertion loss in any optomechanical system. As we
show in the following, optimal nonreciprocity requires (1) driving
the optical modes with a p/2 phase difference and (2) an
asymmetry between the optical modes with respect to the output
ports. Experimental results obtained on a ring resonator system

that meets these minimal conditions are presented, showing the
on-chip implementation of an optical isolator and demonstration
of a nonreciprocal optomechanical amplifier.

Results
Nonreciprocal mode transfer and optomechanical isolation.
Consider a basic system (Fig. 1a) of two optical modes with
frequencies (o1, o2), both coupled to a mechanical mode with
frequency Om

35. The Hamiltonian of this system is20

H ¼ ‘

X

j¼1;2

oj xð Þawj aj þ‘Omb
wb; ð1Þ

where a and b denote the photon and phonon annihilation
operators, respectively, and oj xð Þ¼ �oj �Gjx¼ �oj�Gjxzpf ðbþ bwÞ,
with xzpf the mechanical zero-point motion and Gj the optical
frequency shift per unit displacement. If both optical modes are
driven by a strong coherent laser to an intracavity field
aj exp(� iocontrolt), the linearized Hamiltonian in a frame
rotating at ocontrol reads

HL ¼�‘
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�Djda
w
j daj þ‘Omb
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�‘

X

j¼1;2

g�j dajb
w þ gjda

w
j bþ g�j dajbþ gjda

w
j b

w
� �

;
ð2Þ

where �Dj ¼ ocontrol � �oj þGj�x is the control detuning from the
cavity frequency (shifted by the mean displacement �x), and daj
and dawj describe the small amplitude changes of the optical field.
The interaction terms on the right describe coupling between the
optical and mechanical modes at rates gj¼Gj xzpf aj, controlled
through the fields aj.

The crucial role of the relative phases of gj is immediately
revealed when considering energy-conserving pairs that mediate
inter-mode transfer. For example, photon annihilation in mode 1
upon phonon creation ðg�1da1bwÞ, and the subsequent annihila-
tion of the phonon with photon creation in mode 2 ðg2daw2bÞ leads
to a phase pickup Df¼ arg(g2)� arg(g1), whereas the reverse
process provides an opposite phase �Df (Fig. 1b)31,32. Strongest
nonreciprocity is thus achieved when the two optical modes are
driven with a phase difference Df¼p/2.

Interestingly, this requirement is readily met in ring resonators,
such as the silica microtoroid36 studied here. This well-known
optomechanical system supports a mechanical breathing mode
coupled to an even and an odd optical mode (Fig. 1c)37. A control
beam incident through an evanescently coupled waveguide
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Figure 1 | Nonreciprocity in a multimode optomechanical system. (a) Optomechanical system: two optical resonators at frequencies o1 and o2, both

coupled to a mechanical mode at frequency Om. (b) General description: the optical modes (a1,a2) are coupled to a mechanical mode b with coupling rates

g1 and g2. The path a1-b-a2 picks up a phase Df¼ arg(g2)� arg(g1) that is opposite to that of the reversed path a2-b-a1. Two input/output ports

(s1 and s2) are coupled to the optical modes with rates dij. Interfering both paths with direct scattering through the waveguide can build an optical isolator.

(c) A ring-resonator supports even and odd optical modes (a1, a2), superpositions of clockwise (acw) and counter-clokwise (accw) propagating modes.

As the two modes are p/2 out of phase with respect to a wave propagating in the waveguide, a control incident from a single input port fulfils the optimal

driving conditions to break reciprocity. The graph sketches the spatial intensity profile of the two modes along the rim of the ring-resonator as a function of

the angle y with respect to the dashed line.
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excites an equal superposition of even and odd modes with
p/2 phase difference38, such that the requirement on the
control phase to maximally break reciprocity is automatically
fulfilled. Note that our choice of the even/odd basis (in contrast
to the clockwise/counterclockwise basis considered in other
work10,29,30) immediately reveals the role of a nonreciprocal
phase in intermode coupling, unifying the description of ring
resonators and other systems.

The nature of the nonreciprocal response is determined by the
direct coupling between the two channels: if it is forbidden
(Fig. 1a), the system primarily functions as a nonreciprocal phase
shifter. If a direct pathway exists (Fig. 1c), its interference with the
resonant path that collects a nonreciprocal p phase shift enables
ideal isolation under appropriate conditions. In our experiment,
we demonstrate optical isolation by studying the two-way trans-
mittance of a probe signal at frequency oprobe through a tapered
fibre that is coupled to a microcavity (o1,2/2p¼ 194.5 THz) with
linewidth k/2p¼ 28MHz. With the control laser incident from
one direction, the transmittance is quantified using a heterodyne
spectroscopic technique, where a probe beam propagating in the
forward or backward direction is recombined with the control,
and their beat analysed (see Fig. 2a and Methods). The fact that
the measurement technique used here allows to quantify the

resulting transmittance provides a means to extract the obtained
optical isolation, in contrast to the qualitative measurements
reported in10,30.

The resulting probe transmittance (Fig. 2b) for �D1;2 ¼ �Om

and near-critical coupling conditions shows a bidirectional
transmission dip as the probe frequency is scanned across the
cavity resonance. Importantly, the OMIT window28, which results
from destructive intracavity interference of anti-Stokes scattering
of the control beam from the probe-induced mechanical
vibrations with the probe beam itself, is solely present for
co-propagating control and probe (dark green circles). For
reversed probe direction OMIT is absent (light green squares).
The device thus acts as an optical isolator, reaching up to 10 dB of
isolation (Fig. 2c).

The nonreciprocal scattering matrix. To predict the magnitude
of such nonreciprocal transmission, we use temporal coupled
mode theory39 to formulate the scattering matrix S of a
general system described by equation (2), relating input ðdsþj Þ
and output ðds�j Þ waves at frequency oprobe in the ports j¼ 1, 2
via ðds�1 ; ds�2 ÞT ¼ SðoprobeÞ ðdsþ1 ; dsþ2 ÞT. The dynamics of a
two-mode system described by a linear time-evolution operator

D1

DPMZI

VOA

Control

Laser

Control arm

Probe arm

Network

analyser

Out

Switch

In

FPC

Vacuum

D2
C2

C1
EOM

VOA

a

cb

T
ra

n
s
m

it
ta

n
c
e

Is
o
la

ti
o
n
 (

d
B

)

(�probe–�control)/2� (MHz) (�probe–�control)/2� (MHz)

0.0

0.1

0.2

0.3

35 40 45 50 55

46.5 47.0 47.5
0

2

4

6

8

10

46.5 47.0 47.5

0

0.04

0.08

Figure 2 | Experimental set-up and isolation. (a) A fibre-coupled laser signal is split into a control and probe arm, where the probe frequency is controlled

through the output of a vector network analyser (VNA) and a double-parallel Mach–Zehnder interferometer (DPMZI). An optical switch launches the

probe into a tapered fibre either co-propagating or counter-propagating to the control beam. In both situations the transmittance at the probe frequency is

extracted by analysing the beat with a calibrated control field using the VNA. Electro-optic modulator (EOM), variable optical attenuator (VOA), fibre

polarization controller (FPC), detector (D), circulator (C). The inset sketches the pump (red arrow) and probe (green arrows) configurations when control

and probe beam co-propagate (top) and counter-propagate (bottom). (b) Transmittance of the optical probe beam as a function of probe-control detuning

with the control frequency (powerB17 mW) tuned to the red mechanical sideband. When the probe beam co-propagates (dark green circles) with the

control beam, an OMIT transmission window is observed, which is absent when the control and probe counter-propagate (light green squares), resulting in

nonreciprocal optical transmission. The solid yellow line is a fit of |S21|
2 (see Methods) using independently determined values (Om, Gm)/2pE(47.04MHz,

87.7 kHz), yielding (k1,2, |g1|)/2p¼ (28MHz, 292 kHz) and Z1,2E0.45. (c) The resulting isolation, quantified as the ratio of measured probe transmittance

in both directions.
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M reads

d

dt

da1
da2

� �

¼ iM da1
da2

� �

þDT dsþ1
dsþ2

� �

; ð3Þ

where D describes the mutual coupling to the input/output fields.
The output fields are found from

ds�1
ds�2

� �

¼ C
dsþ1
dsþ2

� �

þD
da1
da2

� �

; ð4Þ

where C describes the direct coupling between the two ports.
Note that these expressions can be related to the quantum optics
input/output formalism via a redefinition of the input fields
(Supplementary Notes 1, 2 and 6). Here we prescribe the
individual optical modes to be reciprocal, such that coupling to
in- and outgoing fields is identical39. In our system, it necessitates
the choice of the even/odd mode basis. In the frequency domain,
equations (3 and 4) yield the total scattering matrix

S ¼ Cþ iD MþoIð Þ� 1DT; ð5Þ

with I the identity matrix, M the Fourier transform of operator
M, and o¼oprobe�ocontrol. In a general two-mode system, the
difference between forward and backward complex transmission
coefficients thus reads

S21 � S12 ¼
i det Dð Þ m12 �m21ð Þ

det MþoIð Þ ; ð6Þ

showing that reciprocity can be broken as long as det(D)a0 and
m12am21 (with mij the elements of M). This important result
identifies the minimal conditions to break reciprocity: a full-rank
D matrix, requiring an asymmetry in the coupling between
the two optical modes and the channels s1 and s2, and an
asymmetric evolution matrix, enforcing the coupling rate from
mode 1 to mode 2 to be different from that of mode 2 to mode 1.
As explained above, this can be implemented through
optomechanical interactions.

The evolution matrix M that describes optomechanical
interactions (Fig. 1) is obtained from the equations of motion

d

dt

da1

da2

� �

¼ i
�D1 þ ik1=2 0

0 �D2 þ ik2=2

 !

da1

da2

� �

þ i
g1 bþ bwð Þ
g2 bþ bwð Þ

� �

þDT dsþ1
dsþ2

� �

;

ð7Þ

d

dt
b ¼ � iOm �Gm=2ð Þbþ i g�1da1 þ g1da

w
1 þ g�2da2 þ g2da

w
2

� �

þ
ffiffiffiffiffiffiffi

Gm

p

bin;

ð8Þ

derived from the linearized Hamiltonian (2) including dissipation
and coupling between the mechanical resonator and its thermal
bath (rightmost term in equation (8)), which under the
experimental conditions studied here can be ignored in the
analysis (Methods). Likewise we neglect optical quantum noise.
Note that we have set coupling between the optical modes to zero,
which can always be realized through diagonalization (see
Supplementary Note 4). Solving these equations in the frequency
domain, applying the rotating wave approximation and using the
input-output relation (4), the evolution matrix (MþoI) for
oE±Om reads

MþoI ¼
�o1 � g1j j2

��
m

� g1g
�
2

��
m

� g�1 g2
��

m
�o2 � g2j j2

��
m

0

@

1

A: ð9Þ

Here, �oj ¼ oþ �Dj þ ikj=2 is the inverse optical susceptibility,
�

�
m ¼ o � Om þ iGm=2 the inverse mechanical susceptibility

and Gm the mechanical damping rate. Importantly, (m12�m21)
psinDf, highlighting the importance of the control phase
difference to obtain nonreciprocal transmission.

We define individual cooperativities Cj by Cj � 4 gj
	

	

	

	

2
= kjGm

� �

and the total cooperativity C � C1 þC2. By combining (6)
and (9), the asymmetric transmission through a two-mode system
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Figure 3 | Power-dependence and nonreciprocal amplification. (a) Difference between forward/backward transmissivities (measured, red circles and

theory (|S21|
2� |S12|

2), dashed red line) with respect to cooperativity, directly proportional to the control laser power. Together with an increase in contrast,

the insertion losses (blue diamonds) decrease with increasing cooperativity (b) The isolation as a function of probe power sent through the fibre. The

physical mechanism behind optical isolation is linear, and thus does not depend on probe power. (c) When the control beam is tuned to the blue side band

of the cavity, it can parametrically amplify the probe beam that co-propagates with it through the fibre (dark green circles). In contrast, the counter-

propagating probe beam (light green squares) experiences normal cavity extinction, thus yielding a nonreciprocal amplifier. With amplification of B3 dB,

the nonreciprocal difference in transmission is B23 dB. The solid yellow line is a fit of |S21|
2 (see Methods) yielding (k1,2, |g1|)/2pE(28MHz, 454 kHz)

and Z1,2E0.46.
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can be written (Supplementary Notes 3 and 5) as

S21 � S12 ¼ 2 sinDf
ffiffiffiffiffiffiffiffiffi

Z1Z2
p �
� 2

ffiffiffiffiffiffiffiffiffi

C1C2
p

d� þ ið Þ d1 þ ið Þ d2 þ ið Þ � C2 d1 þ ið ÞþC1 d2 þ ið Þð Þ ;
ð10Þ

where we defined the relative detuning of the probe frequency
d� � o � Omð Þ= Gm=2ð Þ and dj � oþ �Dj

� �

= kj=2
� �

from the
mechanical and optical resonance, respectively, and Zj is the
fraction of energy mode j radiates in both output channels.
Inspection of equation (10) shows that the magnitude of
asymmetric transmission at critical coupling (Z1,2¼ 1/2) is
maximally 1, when the cooperativities are large and equal. These
conditions, implemented in our experiment, enable the observed
strong optical isolation.

Dependence on power and detuning and mode degeneracy. For
degenerate optical modes and the control field tuned to either
mechanical sideband, the maximum contrast between forward
and backward transmittance is DT ¼ jS21j2 � S12j j2� ðC� 1 � 1Þ� 2

at o ¼ �Om; �D1;2 ¼ �Om

� �

, where C ¼ 2C1 ¼ 2C2. The pro-
nounced increase of DT with increasing C, and concomitant
decrease of insertion loss, are confirmed by varying the optical
drive power (Fig. 3a). The mechanism has strong potential for
near-ideal isolation at negligible insertion losses, for example in
optimized silica microtoroids, where C � 500 was demon-
strated23. Moreover, cooperativity enhances the bandwidth,
which is ultimately limited by the optical linewidth29. An
important aspect of this mechanism is that the isolation is
independent of probe power (Fig. 3b), differing fundamentally
from mechanisms exploiting static nonlinearity40,41 to create
asymmetric transmission. Note that noise photons originating
from the mechanical thermal bath contribute only 0.4% to the
measured probe signal (Methods).

For blue-detuned control �D1;2¼ þOm

� �

, the probe beam
experiences parametric amplification if control and probe are co-
propagating, while it is fully dissipated when counter-propagating
with the pump, thus yielding a nonreciprocal optical amplifier
(Fig. 3c). This feature could pose interesting signal processing
functionality, including nonreciprocal narrowband RF filtering
and insertion loss compensation.

Importantly, equation (10) shows that strong nonreciprocity
can also be obtained without optical degeneracy. If the two
modes have different frequency and/or linewidth, an optimal
control frequency can be chosen to satisfy d1¼ � d2¼b. Then

asymmetric transmittance is maximally

DT ¼ C C � 2b2
� �

1 � Cþb2
� �2 ; ð11Þ

showing that larger cooperativity can compensate the effects of
mode splitting for b41. Figure 4 shows nonreciprocal amplitude
and phase transmission with a split optical mode. A probe beam
tuned between the even and odd mode frequencies excites both
modes with unequal phases. These opposing phases are added
to the a1-a2 and a2-a1 optomechanical mode conversion
processes, respectively, changing the interference condition with
the nonresonant transmission. As a result, both co- and counter-
propagating probe fields now interact with the mechanical mode.
For a blue-detuned control beam, this yields induced absorption
for the co-propagating probe and induced transparency for the
counter-propagating probe (Fig. 4b). Note that the induced
absorption for the co-propagating beam is related to the relatively
low coupling rate (Z1,2o0.5). It can be turned into gain, as
presented in Fig. 3c, for Z1,240.5 and/or for increased optical
control power. Crucially, since for our system the relation
b 	 Om=k1;2 holds (Methods), the deviation of Df from optimal
is only 0.2%. As such, a control beam incident from one side still
ensures DfEp/2 and C1 � C2, thus fulfilling the requirements for
optimal nonreciprocity and maximizing the contrast between
forward and backward transmission. In a more general case,
optimal conditions may be implemented, for example by
supplying control fields with suitable phase and amplitude
through both input waveguides. Importantly, the fact that
nonreciprocity can be obtained without optical degeneracy
increases the range of systems that may be employed.

Discussion
We stress that the demonstrated principles are not limited to the
experimental implementation using ring resonators shown here,
but can be realized in a wide range of optomechanical
platforms20, such as LC circuits27 and photonic crystal
resonators22,26 (Fig. 5a,b). In fact, the high (GHz) frequency of
such devices has the prospect of enhancing the bandwidth with
respect to the relatively narrow range demonstrated here, towards
a range commensurate with typical signal modulation rates.
While the resonant nature of the demonstrated mechanism is of
course a limit to the general application capability, we foresee
several applications that could benefit from magnetic-free
isolation over a finite bandwidth. These include in particular
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the control arm (see Fig. 2a). The black solid line represents a fit of a double Lorentzian lineshape to the blue data points. The red shading is the area under

the two fitted Lorentzian lineshapes. (b) Transmittance of the optical probe beam as a function of control-probe detuning with the control frequency fixed at

the blue mechanical side band. When the probe beam co-propagates (|S21|
2, dark green circles) with the control beam an optomechanically induced

absorption window appears, while the oppositely propagating probe (|S12|
2, light green squares) experiences increased transmission. (c) Asymmetric phase

transmission for the same measurement as b. Light green squares correspond to arg(S12), the dark green circles to arg(S21). The solid lines in b are fitted

simultaneously to |S12|
2 (blue line) and |S21|

2 (yellow line). The resulting parameters are inserted in S12 (blue line) and S21 (yellow line) to yield the

lineshapes in c (Methods).
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the protection of on-chip monochromatic laser sources and, with
ground-state cooling21,22 or in the strong coupling regime23,
low-loss routing of signals carrying quantum information
at negligible added noise, either at optical or microwave
frequencies13,29.

The specific nonreciprocal functionality is governed by the way
these systems are coupled to input/output channels. This, in turn,
is directly related to the nonresonant scattering matrix C, as
reciprocity of optical modes dictates CD� ¼ �D (ref. 39). For the
scenarios in Fig. 5a, described by a diagonal C matrix, each
waveguide couples to a single optical mode, and the system
operates as a nonreciprocal phase shifter (gyrator) in the absence
of other optical loss. Importantly, an on-chip gyrator that is
placed in one arm of an integrated Mach-Zehnder interferometer
could be used to build an on-chip circulator42. In contrast,
isolation is most naturally achieved if C is the exchange matrix,
meaning a direct path between the two ports is present (Fig. 5b).
We note that nonreciprocity occurs also outside the resolved
side-band regime, although the behaviour there is more complex
due to mixing of sidebands at ±o.

In conclusion, we demonstrated and quantified nonreciprocal
transmission through a compact optomechanical isolator and
parametric amplifier, and developed a general theory explaining
the mechanism and unifying the description of various
implementations of optomechanical nonreciprocity in multimode
systems. Our findings identify two general requirements for
any optomechanical system to optimally break reciprocity:
asymmetric coupling of the optical modes to input/output
channels, and a drive phase-difference of p/2. Since the
requirements for optimal nonreciprocity derived here do not
rely on the handedness of optical29,30 or mechanical10,11 modes,
our theoretical formalism can be used to realize optomechanical
nonreciprocity in systems that do not exhibit circular symmetry
(Fig. 5). Extending the demonstrated principles to more modes or
channels would enable a variety of nonreciprocal functionality for
both light and sound, including on-chip circulation, gyration31

and enhanced isolation bandwidth. Finally, these nonreciprocal
systems can form the unit cell of optomechanical metamaterials
with topologically non-trivial properties, where the nonreciprocal
phase takes the role of an effective gauge field to establish new
phases for sound and light33,34.

Note added in proof: After submission, we became aware of
related work by Fang et al.43 that reports nonreciprocal
transmission in an optomechanical crystal circuit that relies on
the same principle with blue-detuned control.

Methods
Coupling matrix and drive condition in ring resonator. Time-reversal symmetry
and energy conservation dictate that CD� ¼ �D and DwD¼ diag(Z1k1, Z2k2)

39.
Applying these to the even and odd optical modes (da1, da2) of an evanescently
coupled ring resonator, and choosing c21¼ c12¼ 1, constrains the coupling
matrix D to

D ¼ 1
ffiffiffi

2
p i

ffiffiffiffiffiffiffiffiffi

Z1k1
p � ffiffiffiffiffiffiffiffiffi

Z2k2
p

i
ffiffiffiffiffiffiffiffiffi

Z1k1
p ffiffiffiffiffiffiffiffiffi

Z2k2
p

� �

: ð12Þ

Together with equations (5 and 9), this D matrix yields the complete expressions
for the scattering matrix elements

Sij ¼ cij þ i
2Aij � 2

ffiffiffiffiffiffiffiffi

CiCj
p

dijdjie
i fj �fið Þ þ diidjje

i fi �fjð Þ
� �

ffiffiffiffiffiffiffiffi

kikj
p

d� þ ið Þ di þ ið Þ dj þ i
� �

� Ci dj þ i
� �

þCj di þ ið Þ
� �
 � ; ð13Þ

where Aij is given by

Aij ¼ diidji

ffiffiffiffi

kj

ki

r

d� þ ið Þ dj þ i
� �

� Cj

 �

þ dijdjj

ffiffiffiffi

ki

kj

r

d� þ ið Þ di þ ið Þ � Ci½ 
;

ð14Þ
used to fit the data in Figs 2–4.

For a single drive field with amplitude �scontrol incident through port 1 and using
G1¼G2¼G, the coupling rates g1 and g2 are given by

g1
g2

� �

¼ Gxzpf
a1
a2

� �

¼ Gxzpf
�

� 1
o1

o ¼ 0ð Þ 0
0 �

� 1
o2

o ¼ 0ð Þ

� �

DT �scontrol
0

� �

¼ � Gxzpf �scontrol
ffiffiffi

2
p

ffiffiffiffiffiffiffi

Z1k1
p

�D1 þ ik1=2

i
ffiffiffiffiffiffiffi

Z2k2
p

�D2 þ ik2=2

0

@

1

A: ð15Þ

Thus for large detuning �D1;2

	

	

	

	� k1;2 , the optimal phase difference Df¼p/2 is
automatically satisfied by pumping through a single channel.

Experimental set-up. The silica microtoroid (diameter 41 mm) is fabricated
using techniques as previously reported (see for example ref. 37). A tuneable
fibre-coupled external cavity diode laser (New Focus, TLB-6728) is locked (using
the electro-optic modulator) to a mechanical sideband of a whispering gallery
mode at 1,542 nm using a modified Pound-Drever-Hall scheme that can be used
independent of the probe beam direction. The probe light is generated using a
commercial double-parallel Mach–Zehnder interferometer (Thorlabs, LN86S-FC)

ba

1 0

0 1(

(

C =
0 1

1 0(

(

C =x x

xx

x x

Figure 5 | General optomechanical nonreciprocity in different systems. (a) If the optical and mechanical resonators are placed in the direct propagation

path, the displayed systems have a diagonal direct scattering matrix C, which builds a nonreciprocal phase shifter. (b) However, if the optomechanical

system provides an extra (nonreciprocal) propagation path in addition to the direct scattering path, the C matrix has off-diagonal elements which

can interfere with the nonreciprocal path to yield isolation or amplification. Here, Dark and light green arrows represent wave transmission from opposite

system ports.
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operated in single-side-band carrier-suppressed mode, driven by the output of a
vector network analyser (VNA) at frequency O. The resulting probe light has
frequency oprobe¼ocontrol±O. The sign of the frequency shift, as well as the
suppression of the carrier (by 50 dB with respect to the generated probe) is
controlled by bias voltages applied to the double-parallel Mach–Zehnder inter-
ferometer. Pump and probe amplitude and polarization are controlled with variable
optical attenuators and fibre polarization controllers (Fig. 2a). The probe beam
propagating in forward or backward direction is recombined with the control beam
and their beat on fast (125MHz) low-noise photo receivers (D1/D2) is analysed
with a VNA. It should be noted that fluctuations of the optical length difference of
probe and control paths generate phase fluctuations of the beat analysed by the
VNA. To minimize these phase fluctuations on the time scale of the inverse
bandwidth (5 kHz)� 1 of the VNA, the lengths of the paths Laser/C1/D2 and
Laser/Switch/C1/D2 are matched, as well as those of the paths Laser/D1 and
Laser/Switch/C2/D1 (see Fig. 2a).

Measurement procedure and fitting. Before each measurement the probe power
in both propagation directions is balanced using a variable optical attenuator in one
of the probe arms. The polarization of both probe directions is controlled via fibre
polarization controllers, which are tuned separately to optimize the fibre-to-cavity-
mode coupling. To calibrate the transmittance at the probe frequency, a reference
measurement is performed with control and probe tuned away from the cavity
resonance. Both the reference and measurement are averages of 75 traces of a
frequency-swept probe. For each measurement, |Sij|

2 is fitted over a wide o range
used to determine �Dj and kj. Fixing these values, the same equation is fitted to a
smaller frequency range surrounding the OMIT peak to yield values for Zj and |gj|.
In all fits, Om/2p and Gm/2p are kept fixed at the independently determined values
from thermal noise spectra obtained with a spectrum analyser. For the split-mode
experiment, the fit result yields Om/2pE35.4MHz, oþ �D1;2

	

	

	

	=2pE4MHz and
k1,2/2pE12MHz. Using these values in (15) directly gives a deviation from the
optimal drive phase Df of only B0.2%. The solid curves in Fig. 4c are directly
obtained from the fit results from Fig. 4b, with no other fit parameters than a
vertically offset. The theory curve in Fig. 3a is obtained using the average value
Zj¼ 0.453 as determined from the four measurements at different control powers.

Noise due to the thermal bath. In the resolved-sideband regime, for degenerate
modes with equal driving and linewidth, the amount of detected photons
per second (Nnoise) that is generated through a coupling between the mechanical
resonator and the heat bath reads

Nnoise � GmNth�
Gcool

Gcool þGm
Z� DB

Gcool þGm
; ð16Þ

where Nth � kBT
‘Om

, Gcool ¼ 4g2

k
and the measurement bandwidth (in our experiment

the VNA bandwidth) is given by DB. From left to right, the terms in this equation
can be associated with the number of noise photons generated in the resonator, the
fraction of noise photons leaving through the optical channel, and the fraction of
noise photons in the signal bandwidth, respectively. Note that the expression can
be rewritten to yield Nnoise ¼ CNthZDBð Þ= Cþ 1ð Þ2 , from which NnoiseE4� 108 is
obtained for our system. As a probe power of 15 nW at 1,542 nm corresponds to
E1� 1011 photons/s, the thermal noise in our system contributes only marginally
(0.4%) to the measured probe signal.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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