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Nonrelativistic closed string theory
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We construct a Galilean invariant nongravitational closed string theory whose ex-
citations satisfy a nonrelativistic dispersion relation. This theory can be obtained by
taking a consistent low energy limit of any of the conventional string theories,
including the heterotic string. We give a finite first order worldsheet Hamiltonian
for this theory and show that this string theory has a sensible perturbative expan-
sion, interesting high energy behavior of scattering amplitudes and a Hagedorn
transition of the thermal ensemble. The strong coupling duals of the Galilean su-
perstring theories are considered and are shown to be described by an eleven-
dimensional Galilean invariant theory of light membrane fluctuations. A new class
of Galilean invariant nongravitational theories of light-brane excitations are ob-
tained. We exhibit dual formulations of the strong coupling limits of these Galilean
invariant theories and show that they exhibit many of the conventional dualities of
M theory in a nonrelativistic setting. @001 American Institute of Physics.
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[. INTRODUCTION

One of the legacies of the second superstring revolution is the realization that the different
superstring theories describe very special corners of the space of vacua of a single hypothetical
structure dubbed M Theory. Another important lesson that has emerged is that there are regions of
the space of vacua describable by a theory without gravity. Two beautiful examples of such
theories are Matrix Theohyand Maldacena’s conjectufélhe realization that there are consistent
limits of M Theory without gravity has led to a geometrical understanding of some field theory
dualities and to new, hitherto unknown, field theories in higher dimensions.

The nongravitational limits studied thus far involve considering certain low energy limits of
M Theory in the presence of branes. Typically, these limits lead to a theory where the appropriate
effective description is given in terms of the massless degrees of freedom propagating on the
branes. Such low energy limits lead, for example, to gauge theories in various dimensions. In such
examples, the massive open string states on the branes and the entire closed string spectrum
decouple from the low energy physics and the truncation to the theory of the massless fluctuations
is consistent. These low energy theories are described by field theories.

Recently, very interesting generalizations have been found in which closed strings decouple
but the massive open string excitations on the branes need to be taken into account for physical
processed” These theories appear in low energy limits of branes in near critical electric field
backgrounds and are not conventional field theories due to the presence of a tower of massive
excitations. Since massive states cannot be neglected, the field theory truncation is nofthitary.
These nongravitational theories describe all the fluctuations on the branes. For example, one can
obtain a consistent open string theory without any closed string states. Such theories arise from
studying D-branes in a background electric fi¢hICOS,>* M5-branes in a three-form back-
ground (OM)® and Neveu—Schwarz five-branes in various constant Ramond—Rapafarch
backgroundgOD).8-1°
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In this paper we find that there are corners of the moduli space of vacua of M Theory without
branes that are described by nongravitational theories whose excitations live in space—time. These
massive excitations satisfy a nonrelativistic dispersion relation and the theory that describes their
dynamics is unitary and has a sensible perturbative descriftibenever one is availableSince
background branes are not required to define these nonrelativistic theories, they can be obtained by
taking certain low energy limits of all five superstring theories, including the heterotic string. We
will call these theories nonrelativistic closed string theo(dRCS.

The simplest limit leading to NRCS is obtained by considering string theory in the presence of
a near critical NS—NS two-form field without any D-brafvehen the NS—NS two-form exceeds
the critical value, the space—time energy of a closed string becomes unbounded below and can
become indefinitely negative as we increase the winding number the context of
(1+1)-dimensional NCOS, Klebanov and MaldacEr@bserved that when the spatial direction is
compactified on a circle, that there are finite energy winding closed string states that do not
decouple from the open strings. An example of NRCS can be obtained by considering precisely
the NCOS limit without any D-brane. Naively, one might think that, in the absence of D-branes,
that a constant NS—NS two-form can be gauged away and that one ends up getting a conventional
relativistic closed string theory. This is obviously true in noncompact space. However, in the
presence of a circle, the background NS—NS field modifies the spectrum, which remains relativ-
istic. Once the NCOS limit is taken, there is a truncation of the low energy spectrum and one
obtains a new theory with a Galilean invariant Hamiltonian. Perhaps surprisingly, the closed string
theory in the NCOS limit without any D-brane has a well-behaved perturbative expansion, de-
scribed by the Lagrangian in Sec. Ill. It is also interesting to study the worldsheet theory we
propose when the worldsheet has a boundary. Then, our formalism reproduces the relativistic open
string spectrum of NCOS and its interactions.

In Sec. Ill, we give a worldsheet Lagrangian for NRCS, which has Galilean invariance and
from which we derive the nonrelativistic spectrum of closed strings and their interactions. The
Lagrangian we propose can be derived from the conventional Polyakov path integral quantization
of the relativistic string by rewriting it in variables that are conducive to taking the low energy
limit that defines NRCSsee Sec. Il for details of the limit We explicitly solve the Virasoro
constraints, thus yielding the spectrum, show that the theory is unitary and that it has a sensible
perturbative expansion. The string spectrum, being nonrelativistic, does not contain a massless
graviton and it is thus nongravitational in nature. However, there is an instantaneous Newtonian
potential between the massive strings. This string theory exhibits interesting properties such as an
unusual high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal
ensemble.

NRCS depends on two parameters, the effective string segleand the effective string
coupling constangy. One may ask what is the strong coupling dual of these theories. For the
superstrings, this can be reliably answered. We find that the strong coupling limits of supersym-
metric NRCS are given by a Galilean invariant eleven-dimensional theory of light membranes
which we call GM (Galilean membrane theoryThis eleven-dimensional theory has a unique
dimensionful parametdr; which is the effective Planck length. The relation between the NRCS
superstrings and GM is reminiscent to the relation between the conventional superstrings and M
theory. For example, Type IIA NRCS with coupliggand string scaler; is equivalent to GM on
a circle of radiusR such thatR=g+/al; andl=g"3\/aly. The conventional dualities and rela-
tions with M theory still hold, such that, for example. Type 1IB NRCS hasaf2,Z) symmetry.

We discuss these relations in Sec. VII. It is interesting that duality symmetries in string theories do
not rely on relativistic invariance nor the presence of gravity.

There are many interesting generalizations that can be made that lead to nonrelativistic,
nongravitational theories. The construction of such theories is quite general. The basic idea is to
study the low energy limit of M Theory vacua in the presence of any of the many possible gauge
fields available. Then, one can take a low energy, near critical limit such that all states of M
Theory become infinitely massive, and thus decouple, except for those states that couple to the
constant near critical background gauge field. Tuning to the critical value, defined such that that
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energy coming from the background field precisely cancels the rest energy of the states in ques-
tion, ensures that even though we are taking a low energy limit, that there are states that survive
and satisfy a nonrelativistic dispersion relation. For example, if we tune the background NS—NS
B field to its critical value, then one obtains finite energy nonrelativistic fluctuations of strings
winding around the circle. Clearly, such NRCS can be defined in Type Il, Type | and heterotic
theories. Moreover, if one considers, for example, a near critical R—-R gaug€fjeldand takes

a low energy limit, then there are light Dp-brari@sorder for the constant backgroufy, ; field

to affect the energy of a Dp-brane, the brane has to be wrappeg-ayae, otherwise the gauge

field can be gauged away without changing the energetibgch are nonrelativistic that decouple

from all the rest of the modes and lead to decoupled Galilean invariant theories which we will call
GDp (Galilean Dp-brane theorigsThe myriad of gauge fields that exist in M Theory vacua can

be used to define new nongravitational Galilean invariant theories. We study such theories in Sec.
VII. The dualities of the underlying relativistic M Theory, lead to interesting webs of dualities for
these nonrelativistic theories. These nonrelativistic theories may be a promising ground in which
to address some of the important questions of M Theory without the complication of gravity.

The rest of the paper is organized as follows.

In Sec. Il a very general low energy limit is presented which yields a finite nonrelativistic
dispersion relation from the spectrum of a charged relativistic brane. The limit, when applied to
the fundamental closed string, yields the spectrum of NRCS. Generalizations to other relativistic
objects in M Theory are briefly described.

In Sec. lll we find the worldsheet theory of NRCS. We quantize the Galilean invariant, first
order Hamiltonian and find under what conditions there is a physical closed string spectrum. We
then reproduce the NRCS spectrum in Sec. Il within our Hamiltonian formalism. We compute the
BRST cohomology of the string and show that there are no ghosts in the spectrum. The possibility
of adding a boundary to the worldsheet is considered. The formalism of Sec. Il results in the
spectrum and worldsheet correlation functions of NCOS. Using this formalism, it is straightfor-
ward to prove the decoupling of the massless open string states on worldsheets with any number
of handles and holes when the longitudinal direction is noncompact. This extends the result of Ref.
11 to all orders in the perturbative expansion.

Section 1V is devoted to performing tree level computations in NRCS. We show that scatter-
ing amplitudes have the correct pole structure required by unitarity and have a peculiar behavior
of high energy fixed angle scattering amplitudes in NRCS. Despite the absence of gravity in this
theory, we exhibit a Newtonian potential among the nonrelativistic strings.

In Sec. V we compute loop amplitudes and show that NRCS is a sensible theory in perturba-
tion theory. We evaluate the Helmholtz free energy at one loop and reproduce from it the spectrum
of NRCS found in Sec. Il. We find that NRCS behaves similarly to the long string near the
boundary ofAdS;.12 We exhibit the existence of a Hagedorn temperature in NRCS and sketch
higher loop computations. We also study in some dé&tgibint loop amplitudes and show that the
amplitudes are finite.

In Sec. VI we elucidate the relation between NRCS and the discrete light-cone quantization
(DLCQ) of closed string theory. NRCS is related by T-duality to the discrete light-cone quanti-
zation(DLCQ) of closed string theory. Therefore, the formalism developed in this paper provides
a useful description of DLCQ string theories as well.

In Sec. VIl we study Galilean invariant theories of light branes and some of their dualities. In
eleven dimensions we study the Galilean invariant theory of membrane fluctugBdmsand
five-brane fluctuationgGF). In ten dimensions we discuss the theory of nonrelativistic light
Dp-branes(GDp) and light Neveu—Schwarz five-branéSNS). These theories lie in the same
moduli space and exhibit the same dualities that the underlying relativistic M theory possesses. In
particular we show that the strong coupling limits of some NRCS have an eleven-dimensional
description in terms of light-brane excitations.
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II. NONRELATIVISTIC LIMIT

In this section we show that by taking a low energy limit of the theory of a relatiyisticane
and by tuning the+ 1 gauge field that couples to it, that one can obtain an exact nonrelativistic
dispersion relation. The idea is to study the low energy spectrum in a scaling limit in which the
background gauge field cancels the rest energy of the brane and such that the nonrelativistic
approximation becomes exact. In this limit, all the states of the theory decouple, except the light
p-brane excitations. We present the truncation to a nonrelativistic theory in a very simple toy
model which captures the essence of the limit which defines NRCS and the other generalizations
we describe in this paper.

For simplicity, consider a relativistic charged point particle of nrasd charge coupled to
a gauge fieldA,, propagating in a geometry with metric componeggs= —1 andg;; arbitrary
with i, j# 0. The Lagrangian which describes its motion is given by

L:—m\/—>'<2+eA#>'<”. (2.2

Worldline reparametrization invariance implies Einstein’s dispersion relation,

po=Vm*+g'(pi—eA)(pj—eA) +eh. (2.2)

Consider the following low energy limit:

m ~
gj=—"8;, eA=-mteh, 23

asm—o. In this limit, Einstein’s relatior{2.2) reduces to the following nonrelativistic dispersion
law:

1 “
po=m(pi—eA1-)2+er. (2.9

Although a constant gauge field can be locally gauged away and does not affect the equations of
motion, it changes the energy spectrum in the sector of the theory carrying electric charge. In fact,
the shift in the energy due to the gauge field precisely cancels the rest mass of the particle and
ensures that the energy remains finite in the li@iB). Turning on a background field and tuning

it to the critical value is an efficient way of rearranging the spectrum of the theory such that only
states charged under the gauge field have finite energy, the neutral states acquire infinite proper
energy.

The charged point particle model can also be used to show that the there are finite energy,
nonrelativistic winding closed string states in the NCOS limit whenever the near critical
NS—NSBy;-field is along a compact spatial direction. The mass of a closed string winding
w-times around a circle of radilR is

wR
m2= (—,

a

2 2(N+N)
—_— (2.5

a

whereN andN are the amounts of stringy excitations in the left and the right mover oscillators of
the string. Moreover, the winding string states are charged undé&i (thg gauge field obtained by
reducing the NS—N®-field along the circle. The charge is given by

eAy=—27RwWBy;. (2.6

We now take the NCOS limit in the point particle analogg2.4),
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gij=—%ij, €A=——1|1 (2.7

U off (¢4

a’ WR( a’ )
Taking @’ —0 results in the following nonrelativistic spectrum:

Po= o, T2wR T WR 28

Thus the NCOS limit can be thought of an example of the nonrelativistic [iZn8. Note that
demanding positive energy states selects strings winding only in a particular direction. Indeed, the
closed string spectruit2.8) coincides with the one found by Maldacena and Klebanov in Ref. 11.

In the next section we give a Galilean invariant, finite first order Hamiltonian that describes these
closed strings and verify that there is a consistent perturbative expansion.

The nonrelativistic limit we found if2.3) can also be generalized to any state of M Theory
which is charged under a gauge field. If one considers winding fundamental closed strings in the
near critical NS—-NB; background of any of the known string theories, one obtains NRCS
theories. But we could have considered any of the branes of M Theory. One could, for example,
consider a wrapped membrane of M Theory on any two-c{sdg on a two-torus or a two-cycle
of a Calabi—Yal in a critical three-form background. Then, the membrane is charged under a
gauge fieldA, obtained by reducing the three-form on the two-cycle. In the l{g&\8) one obtains
a nonrelativistic theory without gravity. Likewise, for any other brane. Just like in NCOS, posi-
tivity of the energy selects only those states which are wrapped in a particular direction, states of
opposite orientation are unphysical. In Sec. VII we will find low energy limits leading to Galilean
theories of branes and study their strong coupling duals.

IlI. LAGRANGIAN AND QUANTIZATION

In this section we construct the worldsheet theory of NRCS and analyze its spectrum and
interactions. We consider a certain low energy limit of string theory in a near critical NS—NS
B-field. The bosonic worldsheet action which describes this background is givéheby the
worldsheet and target space metric are taken to be of Lorentzian signature

1
So=——— | d?o(gun XM PXN—27a'Byne?® 9. XM dpXN), (3.1

Ao’
whereM, N=0,...,9 andh, b=0,1. NRCS is obtained by choosing tBefield with a time-like and
a space-like component. Without loss of generality we considgs;&B background. NRCS is
obtained by taking the following zero slope, near critical field liftitis is precisely the NCOS
limit of Refs. 3, 4 but without any D-brane

! ! !
o aeff

o
5 7 g/,w: Nuvs glja_rff5IJ v Os=9 71 (32)

2’7TCt’,Bo]_:1_
2agg e

!

asa’—0 whereu, v=0,1 andi,j=2,...9, andx/y is the finite effective string scale of NRCS and
g its effective coupling constant.
Using

y=X04+X, H=-X0+X1 (3.3
for the target space coordinates,

z=g/(o*+oh), Z=gllr"=h, (3.4
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for the worldsheet coordinates, and the background giveé.R), the action(3.1) can be written
for finite o’ as

1 —_  _— —_  _— —
So:—mfd22(67&7+a'y¢9')/—277a’B(&‘y&'y—&‘y&yH—Zgij aX" Xy, (3.5

We now perform a Euclidean rotation in both the worldsheet and target space such that the
Euclidean action is

1 _ _ — — —
Sosz d?z(oN\ dy+dy dy—2mwa'B(dy dy— dy dy)+2g;; aX' aX!). (3.6

Note that, unlike the case ofBfield with only space-like components, there is no factor iof
the term in the Euclidean action dependingRn
In order to obtain a finite worldsheet description in the NRCS limit, it is convenient to

introduce Lagrange multiplierd andE. In these variables the worldsheet the@y) is given by

d?z/ — _ 2a’ _ 14+27ma'B 1 —
S$i= | 5| BIVHBIY= {5 g BBt ——5 Iy Iyt g X' X! |, (37

where (3.6) is reproduced by integrating oy andﬁ. Therefore, in the strict decoupling limit
(3.2), one has the following Lagrangian description of NRCS:

oo f d’z
=) 2w
We note that the worldsheet theory of NRCS is defined in terms of more variables than a con-

ventional critical string theory since we have exgand g8 variables. However, the CFT defined

by (3.8) has the correct Virasoro central charge to define a consistent string éatierthe next
subsection for more detajldt is interesting to note that the Lagrangigh8) is invariant under the
Galilean group in the transverse coordinates. This is consistent with the nonrelativistic spectrum
that we will find for NRCS. It is crucial, for this symmetry to be realized, that the description has
the extra variable@ and 3.

We will concentrate on the conformal field theory 8f 8 and y, y since the transverse
coordinates lead to familiar contributions. The equations of motion fBraad y to be holomor-
phic andg andy to be antiholomorphic. The Lagrange multipligforcesy to be a holomorphic
map from the worldsheet to the {11)-dimensional part of the target space parameterized by
coordinatesX® and X*. Therefore, it describes a worldsheet instanton and the third term in the
Lagrangian(3.8) (1/8magy)dy dy is the instanton action. We will show in the rest of this section
that this Lagrangian reproduces the spectrung2i®). Moreover, we will see that if the string
worldsheet has a boundary th@&8) reproduces the open string spectrum of NCOS and string
interactions. In our formalism, one can show that the decoupling of the massless open string
modes exhibited by Ref. 11 at the disk level can be extended to all orders in perturbation theory.
Thus,(3.8) can be used to perform manifestly finite worldsheet computations for NCOS theories.
In the later sections, we will use this Lagrangian to describe amplitudes involving closed strings
and higher loops.

- — 1 — 1 J—
BIy+ B dy+ ——3dy dy+ — X' 9X;|. (3.9
4a’eff A

A. Closed string spectrum

Here we consider a worldsheet without boundaries. The equations of moti@8pimply

that 8(z) andy(z) are holomorphic and th&(z) andy(z) are antiholomorphic. Their OPE’s are
given by
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-1 o -1
B@)y(W)~-—— BD)yW)~——,

1 — 1
YDBW)~ = FDBW) ~ ==, 39

7—

g|

w

Y(2)7(W)~regular, B(2)B(W)~ =62 (z—w).

2aeﬁ

The variableg3 andy behave analogously to the bosonic ghost system, except for the contact term
in B(z) B(w). The conformal dimension of is (0, 0) while the conformal dimension g8 is (1,
0). Moreover, their contribution to the Virasoro central charge takes the requiredcral@eNote
that although it seems that we have added more degrees of freedom to the description, the
worldsheet degrees of freedom are identical to those of two worldsheet scalars. A similar story
holds for theg andy system.

We will first consider the case when tké coordinate is noncompact. Then we can expand the
operators as

Y2)= 2 2 BD)= 2 B (3.10

Sincey is holomorphic an! is noncompact the standard space—time momentum tegnisimot
allowed. Otherwisey would be multi-valued function of, which is only possible if the string is
winding. The oscillator modes satisfy the following commutation relation:

[7naﬂm]25n+m,0- (3.1

We now study the Virasoro constraints for NRCS. The energy momentum tensor is given by

T(2)=—Bay, (3.12

and the Virasoro generators are

Ln:§ MBn—m¥Ym- (3.13

In particular,L is the excitation level of thés, y) system, whose spectrum is positive definite.
Therefore the Virasoro constraiht+L,=1 has no solutiongexcept for the tachyon, which is

projected out in supersymmetric theojiesherel , is the Virasoro generator for the rest of the
system, which we assume to be positive definite. Thus, the closed string has no physical states.
This can be easily understood. If all coordinates are noncompact the background NBSHdits
can be gauged away without changing the Hamiltonian of the theory and the closed string spec-
trum is the usual one. Therefore, in the NRCS lilg@t2), all the closed strings acquire infinite
proper energy and thus are unphysical.

When thex?! direction is compactified on a circle of radii there is a nonzero winding
sector iny(z). The mode expansion now reads as

y(z)=iwRlogz+ > v,z ", (3.19

n=—oo

and the Virasoro generator is then given by
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Ln:_iIBnWR'I'E MBn—mYm- (3.19

Now the Virasoro constrairit,+L,=1 has a solution. As we will show later, all physical states
are in the vacuum of thés, y)-system. Thus the solution to the Virasoro constraint is of the form

: S
Bo=WRT ZwR’

(3.19

whereN is the conformal weight of the rest of the systéfincludes—1 for the bosonic string
and —1/2 for the NS sector of superstringnd k is the transverse momentum of the string.
According to the LagrangiafB.8), the canonical momentui conj_ugate toy is not equal tog,

but in the winding sector it is shifted by an amount proportiona¥4oas in

1 B 1 — 1 B
5(PotP)= 5 — oy, 5(PoPy=5 -

ay. (3.1
87Taeff

!
27 8may

Taking the zero mode parts of these equations, one finds that the total gresigg momentum
p, of the closed string are given by

1 1 1 — 1
E(po+p1):il30+ 4_/WR, E(po_p1)=i30+ — WR. (3.18
Aoff

At

Sincex! is periodic, its conjugate momentum is quantized as

(3.19

2| 5

p1=
Thus we find

Po=2al, " 2wR " WR’

(3.20

with the level matching conditioNl—N=wn. In this way, we have recovered the nonrelativistic
spectrum in(2.8).

It is straightforward to prove the no-ghost theorem in this case. We introducé,theghost
and write the BRST operat@grst @s

QersT=Q-11Qo, (3.21)
where
Q 1=WR2 B Cn, (3.22

and Qg is defined as the remainder. They obey

Q%,=Q5={Q-1,Qo}=0. (3.23

Following the use of the BRST operator in Ref. (ge also Sec. 4.4 of Ref. 14ne can show
that the cohomology oQgrst is isomorphic to that oQ_;. The cohomology of the quadratic
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operatorQ_, is easy to evaluaté and it is spanned by the vacuum st1111<>ﬁy<zz>|0)bC of (B, y)
and (b, ©), times any states in the rest of the system. Assuming that the rest of the system is
unitary, this proves the no-ghost theorem of NRCS.

B. Open string spectrum

It is possible to consider D-branes in NRCS, and what one gets is of course NCOS. Here we
show that the open string spectrum of NCOS is reproduced in this way. Suppose the worldsheet is
the upper half plane with the boundary locatedrat=0. In the bulk,y and 3 are still holomor-
phic. The equation of motion at the boundary gives

Sy

1 — — 1
B+ 737)20, oy| B+ —,37):0. (324)

eff At
For a Dp-brane wittp=1, the boundary values ofy(y) are not fixed. Therefore

1 — — 1
B:_ —adY, ﬁ:_ Y, (325)
Aaeg Aeff

at the boundary. This suggests that we analytically continyg) to <0 and use(3.25 to
identify (y, 8) on a*=0 to (¥,8) in o*<0. Since

1 — 1
B(2)y(W)~———, BD)y(W)~—==, (3.26

Z—wW’ Z-W
we find

Y2V HW) ~ dalylog(z—W). (327

For points on the real axis this reproduces the correct propagator for open strings in NCOS.

To compute the open string spectrum, we consider a worldsheet that is a—stripo?
<, we identify(y, B) on 0<o'< to (y,8) on — w<o'<0 according tq3.25. Thus we have
the expansion of these fields as

1 a
= az "L =x+4ipal«logz+2+a. —Lzn
B gy O yxvdipaglogz2ai 2
(3.28
— 1 «,
= z " y=Xtdipailogzt2\aly > —z ",
B 2\/a—éﬁ; an Y P e 109 Aoff go n

and nonzero commutators are

[an,am]=ndnimo, [X,P]=[X,p]=i. (3.29

Note that, unlike the case of closed string, the space—time momentum fi@raa,Alogz is
allowed iny even wherx! is noncompact. This is because we can choose the branch cutof log
to be away from the worldsheet. The Virasoro generators are then

Ln:% . (3.30

Thus we reproduce the standard open string spectrum.
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C. Free the U(1) to all order

In Ref. 11, it was shown that any tree level amplitude containing a massless open string state
in NCOS vanishes when the longitudinal direction is noncompact. This is what is expected from
the point of view of the S-dual theory, where the massless open strings correspond to the free
U(1) gauge fields and their superpartners in the ()-dimensionalJ (N) gauge theory. Using
the formalism developed here, it is straightforward to generalize this result to all orders in pertur-
bation theory. The open string amplitude on a worldsheet Wwitloles andy handles is computed
by considering a closed Riemann surface of gengisvith a complex conjugate involution such
that the fixed point set of the involution gives the boundaries of the open string worldsheet. Since
there is no vertex operator inserted away from the boundahen the longitudinal direction is
noncompact there is no closed string physical $tatez) is holomorphic everywhere except at the
boundaries. Moreover, the vertex operator for a massless open string state is also holomorphic
(vertex operators for massive states are not holomorphic; they also dependSince the sum of
the boundaries of thé holes obtained as the fixed point set of the involution is homologically
trivial on the genus 8 surface, the contour integral of the vertex operator can be deformed away
through the middle of the Riemann surface. This proves the decoupling of the massless open string
states to all order in the perturbation theory.

IV. TREE AMPLITUDES

In this section we will compute the scattering amplitude of four physical closed string states
and show that it factorizes properly into nonrelativistic closed string poles. Moreover, we will see
that the truncated closed string scattering amplitudes have a different high energy behavior than in
conventional string theory.

For simplicity, we will compute the 4-tachyon amplitude. Since all the physical states are in
the vacuum of thég, y)-system as we saw in the last section, the essential novelty of NRCS is
captured by the tachyon amplitude. The vertex operator for a closed string tachyon is givem by
will not include the cocycles which only change relative signs between amplitudes; the factor
is included for later convenienge

V(v,0.K:22) =g yw: eiv_y(z)+injZﬁ+iu?(?)Jrinf?,mik-X(zE): _ @.1)
Since

v(z)V(z")~iwRlog(z—2")V(z'),
(4.2

BOV(Z)~ —oV(Z),

the vertex operator carries,Bé,EO) eigenvalues of fiv,—iv) and winding numbemw. Thus,
according to(3.18), the energye and the longitudinal momentum/R of the tachyon state are
given by

_ 1
=v+v+— —=v—0. )
e=v+v ZaéﬁWR' RV 4.3
Let us evaluate the 4-point amplitude on the sph@ve(z,)V,(z,)V3(z3)Va(z4)), by performing

the functional integral with the Lagrangi#B.8). The extremum of the functional integral is given

by
4

4 _
YW2)=i % wRlog(z-z), A@)=i3 Ja (4.4

a-12-2Z4
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For closed string amplitudes, the winding number has to be conséhedinding number is not
conserved when one considers worldsheet with boundasash thatt ,w,=0. Since the action

is free, we can evaluate the amplitude by substitutihg) back into the integranfas is always

the case with the Gaussian integral; the same result is obtained by substituting the extremal value
(4.4) into the product of the vertex operatdrsV,V;V, alone and by taking its square rgothe
amplitude is given by

(V1(21)V2(22)V3(Z3)V4(24))

=Wy [T (24— 2) 0o (2= 2) 0|z, (e ?Hako
a

:‘/Wl"'W4H |Za_zb|_(fa+fb)(Wa+Wb)R+(R2/2aéﬂ)(wa+wb)2+(aéﬂIZ)(ka+kb)2—4. (4.5
a<b

Here we used the on-shell condition for the tachyon,

CW,R ks 2
C2aly 2WwsR WGR’

€a

(4.6
va=vgq (a=1,..9.

It is a good test of our formalism to compute the same correlation function using the standard
closed string theory and then take the NCOS lifBi2). One can verify that4.5) is reproduced in
the limit. The tachyon scattering amplitude is then given by

A= i(‘:Jélcspheref d22<V1(O)V2(Z)V3(1)V4(°°)>- 4.7

Hereg is the closed string coupling constant a@geris the normalization constant that nor-
malizes the path integral of the string when the topology of the worldsheet is the sphere. The
normalization constant can be found by unitarity. Namely, the amplitudé.¥ has poles asso-
ciated with intermediate closed string states and a straightforward application of the optical theo-
rem determines it. Therefore, by repeating the analysis in, for example, Sec. 6.6 of Ref. 14, we
find

2
Cspher& =25 (4.9

g°R’
This means that even though the theory is defined irgthece limit, that the closed string theory
has a sensible perturbation expansion in poweis dhis is consistent with the observation made
in Ref. 4 regarding closed string loop diagrams in NCOS.
The amplitude given by4.5 and (4.7) is very similar to the familiar Virasoro—Shapiro
amplitude. It has poles in the energies in the intermediate channels, and they are located at

(WatWp)R  alg(Kat Kp)? 2n—2
2ay 2(wat+wp)R - (wa+wp)R

€t €= (n=0,1,2,..). (4.9

This is precisely the closed string spectrum of NRCS, as required by unitarity. r@hwe can
also see that NRCS exhibits a different behavior of high energy, fixed-angle scattering amplitudes.
Since the mass-shell condition of the strings is nonrelativistic, the dependence of the amplitude on
energyE is A~e"E, as opposed to the conventional dependedeee™ E?)

Although there are no physical states in the sector with 0-winding number and in particular no
graviton in the spectrum, there is an instantaneous Newtonian potential between winding strings.
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To see this, let us consider the process in which the winding number is not exchanged among
strings, i.e.w;+w3=0 andw,+w,=0. In this case, the correlation functi¢#.5 becomes

(V1(21)V2(25)V3(23)V4(Z4))

=WWy(|z,—2z5/|2,— Z4|)“éﬁ(k1+k3)2*4

X (|2y— 25| 25— 24]) (e €2)(W1 +Wp) R+ (R2/2ar ) (W +Wp) 2+ (af2) (ky +kp) 2 — 4

X (|21 24||12o— 23]) ~(eg+ eg) (W~ Wp) R+ (R?2afy) (W~ W)+ (aggf2) (kg + kg) 2~ 4 (4.10

Since the winding number along thk;(ks)-channel is 0, no physical states are propagating in
this channel. Nevertheless, after doing #iategral in(4.7), one finds that there are contributions

from the exchange of off-shell states in the 0-winding number sector. In particular, the leading
long-range contribution to the 4-point amplitude containgk,+ksz) 2, corresponding to the
Newtonian potential. Thus, even though the theory contains no gravitons, there is an instantaneous
gravitational force between winding strings.

V. LOOP AMPLITUDES

In this section, we will compute the one-loop free energy at finite temperature and one-loop
corrections ta\-point functions of winding states. We will also examine the general structure of
higher loop amplitudes and demonstrate that there is a sensible perturbative expansion of NRCS.

On a genug surface, thes-field [the (1, 0)-form we introduced in Sec. Ill as a Lagrangian
multiplier] hasg zero modes. If we were quantizing the bosonic ghost system, we would introduce
delta-functions in the path integral to absorb these zero modes. However, one can show that the
rules of the NRCS perturbation theory deduced from the factorization conditions do not call for
these delta-functions. Thus one may naively think that zero mode integrals are divergent in NRCS.
This would be similar to the problem in DLCQ of field thedf*” where integrals over states
carrying zero longitudinal momentum pose difficulties in evaluating loop amplittides.

It turns out that, whenever we evaluate physical observables such as the temperature depen-
dent part of the free energy and scattering amplitudes of closed strings with nonzero winding
numbers, the amplitudes contain termsstifngy naturewhich depend on all thg zero modes of
B, so that the zero-mode integrals are convergent. It is easy to understand where these terms come
from; they appear becaugkis a Lagrange multiplier which constraingo be a holomorphic map
from the worldsheet to the (1)-dimensional part of the target space. If vertex operators for
winding states are inserted on the worldsheet, a holomorphic apit exists, has to be a
nontrivial one since the image of the worldsheet has to wind around each of the vertex operators.
As we will show below, a nontrivial holomorphic map from the worldsheet to the
(1+1)-dimensional part of the target space, which is a cylinder, exists only in a subspace of
codimensiong of the moduli space of a gengsRieman surface. The integral over tgezero
modes ofB gives a delta-function which exactly picks up the subspace where the holomorphic
maps exist.

On the other hand, if we consider amplitudes which do not contain winding strings, such as
the vacuum amplitude at zero temperature, then the zero-mode integral gives a divergence. In this
case,y can be drivial map which maps the worldsheet to a point in the target space. Such a map
exists everywhere on the moduli space of the worldsheet, and therefore the worldsheet amplitude
is independent of thg zero modes of3. The integral over these zero modes is then flatly
divergent. If one traces through the NCOS limit in Sec. lll, one finds that it is exactly the type of
divergence that was pointed out in Ref. 18. Fortunately all the physical states in NRCS have a
nonzero winding number, and these divergent amplitudes have no physical meaning and can be
safely ignored.

We will demonstrate these points by computing one-loop amplitudes and show how they are
generalized to higher loops.
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A. Free energy

The one-loop free energy at temperatlires evaluated by performing a Euclidean rotation of
the target space—time coordinate and periodically identifpiig-X°+ T~ 1. The path integral
then involves a sum over mapy,ly) from the worldsheet torus of modulugo the target space
torus of periods T %,27R).
The zero-mode dependence of the free energy can be computed by performing the path
integral over the maps from the worldsheet to space—time. Thus we write

1

o 7 iodi 5.1
E+(perlo i0, (5.1

.S
T E-l— 2’7TWR+I?

.m
y=(2wnR+l—

where 0<¢?, o'<27 and(n, m, w, $ are integers labeling the different winding sectors. For this
’}’,

dy= ey + d(periodig. (5.2

2 R+'s
TWREI =

m
27nNR+i ?—T

On the other handB can be written ag83= By+ Jd(periodic), whereg, is the zero mode. The
worldsheet action depends ¢ as

.m .S
2mNR+1 =— T( 27WR+I =

S=iB, - = (5.3

Thus the integral oveB, gives a delta-function which fixes the worldsheet modutag

1
277nR+im?
T=— (5.9

1
27-rwR+|s?

Thus therintegral becomes a sum over these special points on the worldsheet moduli space.
These are the points at which there are holomorphic maps from the worldsheet to the target space.
The one-loop free energy is obtained by a sum over the intégers, w, $ such thatris in
the fundamental domain of the moduli space. To do the summation, it is convenient to use the
trick invented in Ref. 19 to trade the sum owefor the sum over copies of the fundamental
domain. If (m,s)#(0,0), there is ar8L(2,Z) transformation which sendsn, 9 to (m, 0) with
m>0, and it also maps the fundamental domainrahto the strip,|Re7r<1/2, in the upper
half-plane Imm=0. The sum oves covers the strip exactly once by copies of the fundamental
domain. On the other hand, then(s)=(0,0) term is independent of the temperatdreand
corresponds to the zero temperature vacuum energy. We will ignore this contribution since it has
no physical meanings in NRCS and it vanishes in supersymmetric theories anyway. Thus we have

1
27TnR+imf

T 27wR (5.5

and we sum over integefs, m, w. Sincem>0 andr must be in the strip in the upper half-plane,
we requirew>0 and|n|<w/2 (n at the boundaryn=+w/2 is counted with a factor 1)2

We can now evaluate the path integral oweand y. The zero mode piece is obtained by
evaluating the instanton action. Therefore, substituttd) (with s=0) into the action(3.8) and
evaluating it at the point&5.5) of the moduli space, we find that the zero mode part of the action
is
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me+

(5.6)

_ 2 1 Frva
S d<z Bral Ay dy+

T o

As usual, the contribution from the nonzero mode$®&fy) is canceled by the determinant of the
(b, o ghost system. Therefore, the one-loop contribution to the free energy takes the form

. (5.7

F(T > TZDhF mWR+h+h+2'nhF
This is obtained by evaluating the p_artition function of the worldsheet theory at the special points
(5.5 on the moduli space. Heren(h) are the conformal weights coming from the transverse

excitations of the string anB (h,h) is their multiplicity. To simplify the expression it6.7), we
have included irh the contribution from the transverse momektdhus, in comparison with the

notion in Sec. lll,h andh are defined as
_ aéf‘f 2 . aéf‘f 2
h——4 k“+N, h——4 k“+N. (5.8

The factor—T/wm in (5.7) is determined as follows. Thg, integral with the action(5.3)
gives a factor (ZwR) ~ 2 times the delta-function for [we sets=0 in (5.3)]. The measure for the
rintegral contains the factor

1 _27TWRT
Im7  m

(5.9

The zero-mode integral of gives the volume ZR/T of the target space. Finally, the definition of
the one-loop free energy I6=—TZ(T), where Z(T) is the one-loop vacuum amplitude at
temperaturel. Combining these factors together, we obtain

1 2#wRT2#R . T )
(2mwR)Z  m T D=4 (510

as in(5.7).
The sum oven in |n|<w/2 gives the constrait—h=0 (modw), which we recognize as the
level matching condition. After summing ovar, the free energy given b§b.7) becomes

oo

F(T)=T§)1 > D(h,h)log(1—eEwhhiT) (5.1
W=L hh

This is the conventional expression for the one-loop free energy of quantum field theory. Here

£ = wR JrthF_ wR aéﬁk2+N+W
W)= S T WR " 2al, T 2wR T WR

(5.12

With the level matching condition forh(h), the expression foE(w,h,h) precisely agrees the
energy spectrum of closed strings in NRCS computed in Sec. lll, with the correct multiplicity
factor.

The computation of the free energy described here is similar to the one for strilhd 3
discussed in Ref. 12. In that case, the one-loop amplitude has poles exactly at the special points in
(5.4), and they are due to the presence of long strings winding near the boundadSpf Here
we have delta-functions at these points and they correspond to the closed strings winding'in the
direction.
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We now study the high temperature behavior of the free energy. It is clear that, for a fixed
winding numben, that the free energy is convergent for any temperafukéowever, there might
be a divergence when one performs the sum over winding modes. To see whether the swm over
gives a divergence, we use the Cardy’s formula,

S D(hhexp 2 Th—2wi7ﬁ)~eX[{2ﬂ-ic (1 1) , (5.13

hh 24 \ 71

for Im 7—0. Herec is the central charge of the rest of the system, andl2 for a Type Il
superstring. Therefore, the high temperature behavior of NRCS is given by

2 — m[ wR h+h on —
>, D(h,h)ex T —+ﬁ +27le(h—h)

[nfswi2 Zaéff

7CcT m

~exp{ 27TWR( Bm —4waéﬁ.|_> } )
(5.14

for largew. Therefore, the sum over winding states will be divergent when&wer, where

T—1\/6 5.1
27 Vaic (5.15

This gives the Hagedorn temperature of NRCS. For Type Il NRCS we find That
=1/2m2ay - It coincides with the location of the Hagedorn transition of NCOS studied in Refs.
11, 20. Just like in conventional string theory, the Hagedorn temperatui®the temperature at
which the tachyonic mode which appears in the spect®d®? due to the finite temperature GSO
projection becomes massless. It would be interesting to study the behavior of the closed strings of
NRCS above the Hagedorn temperature. In NRCS, the breakdown of the thermal ensemble may
not occur unlike for relativistic closed string theories since there is no graviton and the Hamil-
tonian is positive definite. However, there can be a Jeans instability.

We have demonstrated explicitly that tBezero-mode integral is convergent when one com-
putes the one-loop free energy. As a result of gheero-mode integral, the integral overis
localized to a sum over the special points in the moduli space of the worldsheet torus where there
is a holomorphic map from the worldsheet to the target space torus. It is straightforward to
generalize this observation to higher loops. A simple computation shows that a map from a genus
g worldsheet to the target space torus exists only on @<(2)-dimensional subspace. Such a
holomorphic map exists whenever the following condition on the worldsheet period matrix
Qj; (i,j=1,... g) is satisfied:

. m;
+27nR+i —==0, (5.16

g . sl
. = . J i —
Gi(Q) J_Zlﬂ”<21-rw R+i= <

for some integersr(;,m; ,w',s'). This generalize$5.4) for g=1. On a genusgr surface,3 hasg
linearly independent zero modes, and their integrals give delta-functions imposing the constraints
G;=0 (i=1,.. 9).

B. N-point amplitudes

Here we analyze the effects of tffezero-mode integrals on the scattering amplitudes. We will
discuss thé\-point tachyon amplitudes for simplicity, but a generalization to amplitudes involving
arbitrary external states is straightforward. As in the case of the tree amplitudes discussed in the
last section, the computation ¢f_,eva?(Ua) tva¥a)y requires finding3, 7) which are holomor-
phic away fromu,’s and behave neaa==u, as
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v(2)~iwzRlog(z—uy),
(5.17

—iv,
Z—U,

B(2)~

(Z"ua),

wherew, is the winding number for thieth external state. The functional integral is nonzero only
when suchB and y exist. As for3(z), there is always a meromophic one-form given by

N
B(z)=—i2, vad,log 3 (z—uy,)+const, (5.18
a=1

whered,(2) is the elliptic theta function. Thig is single-valued on the worldsheet torus as far as
momentum is conserved, v ,=0. On the other handy(z) obeying(5.17) does not always exist.
To see this, let us try

N
v(z)=i E w,Rlog¥4(z—u,)+cz (5.19
a=1

for some constant. Due to the quasi-periodicity of the elliptic function, we find

y(z+2m)=y(z) +27C,
(5.20

N
—R>, Wyu,+cr
a=1

v(z+2mr)=y(z)+2m

where we assumed that the winding number is conser¥gd,=0. By requiring thaty(z) is
periodic modulo the target space periodicity- y+27R, we find thatc must be of the fornt
=mR for some integem and

N
> Wau=n+mr, (5.21)
a=1

for some integen. This gives a condition on the locations of thepoints. Thus we find that,
rather than being divergent, the integral over the zero mogginfposes the conditiofb.21) on
the locations of the vertex operators on the worldsheet.
High loops

It is straightforward to generalize this result to higher loops. On a ggnuerldsheet, the
holomorphic mapy(z) winding w,-times atz=u, should be of the form

N g ,
y(z)=i 21 w,R log E(z,ua)+Zl ¢ | o, (5.22

for some constants;, where w; are holomorphic one-forms, artz,w) is the prime form, a
(—1/2)-differential with respect ta andw that vanishes linearly on the diagorm+w only (see,
for example, Sec. IlIb.1 of Ref. 21The periodicity ofy in the a-cycles of the worldsheet requires
that ¢’ must be of the formc'=27m'R for some integersn’, and the periodicity around the
B-cycles requires

=0, (5.23

N g

Ua )

Gi:21 Wy wj— ni+zl glijllJ
a= i=

for some integers; . This imposeg conditions on the (§— 3+ N)-dimensional moduli space of
the genusgg worldsheet withN points. To verify that they conditionsG;=0 are independent of
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each other and pick up a codimensigrsubspace, we need to compute their partial derivatives
with respect to the worldsheet modyli (I=1,...,33—3) and the vertex operator locationsg.
They are given by

a—%:w'(ua)wa'
(5.24
IG; N g
—'=J dzzwi(z)n'(zz(E W,d,10gE(z,u,) —2mi X, mw(2) |,
(9y| a=1 j=1

where 7' are the Beltrami differentials associated to the mogtuli Note that the partial deriva-
tives of G; are all of the formfd?zw;(z) v(z,Z) for some differential. Since

det j—1,.¢(wi(z)))#0, (5.25

for genericg pointsz, it is clear that the rank of the ¢3-3+N)Xg matrix (<9uaGi ,&yIGi) is
genericallyg. Thus the integral over thg zero modes of3 exactly pick up the subspace of the
moduli space where the holomorphic mafr) exists.

VI. RELATION TO DLCQ

In this section we show that the NRCS limit we have studied is related by T-duality to the
DLCQ limit of string theory. This follows by performing T-duality along the circle of radRis
where theB-field lies. After T-duality, we get string theory without any backgroitield, with
a metric

—1+(2ma'B)? 27a'B

971 2na'B 1) D
and where the radius of the circleds/R. In the NRCS limit the metric is given by
al
ds?=— — (dx%)%+2 dx® dxt+ (dx})2. (6.2

A eft

We now rescale coordinates such tRat-(a'/alg)x*. In the NRCS @’ —0) limit the metric in
these coordinates is

1 1
—d?=—[—(dx%)2+2dx°dx'], (6.3
o a(eff

and the periodicity of the compact direction is given by

sl xLp 2. S8 (6.9

R
Since in this limit thex! coordinate is light-like, we see that DLCQ of closed string theory with
string scalea; and null radiusa /R is T-dual to NRCS.

Because of the relation between NRCS and DLCQ, the formalism developed in this paper
gives a useful description of DLCQ closed string theory also. In Refs. 22, 23, loop amplitudes of
DLCQ closed string theory were studied to address the issue of divergence due to the longitudinal
zero modes$®8|n particular, it was found in Ref. 22 that one-loop scattering amplitudes, when
external strings carry nonzero longitudinal momenta, have finite DLCQ limits and that the posi-
tions of the vertex operators are constrained in the limit. These constraints can be viewed as the

T-dual of (5.21) in NRCS. The description of NRCS developed here does not involve the process
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of taking the NCOS limit, and thus loop amplitudes are manifestly finite. In fact, the one-loop
observation in Ref. 22 has a straightforward generalization to higher loops, as we a&3n
Evidently, unlike in ordinary field theories, the longitudinal zero modes do not cause a problem in
DLCQ closed string theory. In the case of Type IlA string theory, this is related, via the hypo-
thetical 11-dimensional Lorentz invariance of M theory, to the existence of the smooth DLCQ
limit of M Theory described by the finit&l Matrix Theory?4-26

For closed strings, the relation between NRCS and DLCQ provides another way to understand
the origin of the nonrelativistic dispersion relation. The nonrelativistic limit described in Sec. I,
however, is much broader and includes cases that are not related to DLCQ, as we will see in the
next section.

VIl. GALILEAN THEORIES

In this section we find new theories whose excitations satisfy a nonrelativistic dispersion
relation. The light degrees of freedom that survive the low energy limit are light-bi@nese
theories do not have background branes, unlike the theories discussed in.R¥p8nding on
which background gauge field one tunes to its critical value, different brane states are light while
the rest of the states in M Theory decouple.

We will first consider M Theory limits where the light degrees of freedom are membranes and
five-branes. We will call these theories Gi@alilean membraneand GF(Galilean five-brang
respectively. The first one is obtained by tuning to the critical value the background three-form
and the second one by turning on the background six-form of M Theory. The low energy limit is
taken such that the terms in the world volume action depending on the transverse coordinates to
the background remain finite in the limit. Just as for NRCS, the spectrum is modified if the brane
directions are compactified, otherwise there are no finite energy physical excitations surviving the
limit.

Therefore, the low energy limit leading to GM is given tilgroughout the rest of the paper we
will have in mind compactification on tori; it is straightforward to generalize the decoupling limits
when branes wrap curved geometyies

Our= M M, v=0,12,
gijlepaij i,j=3,...,10, (7.1)

Co12= Tm2— Terr

with the eleven-dimensional Planck scgle-0 while the effective length scalgy is kept finite.
Here Ty,= 1/4172I§ is the membrane tension afrqff=1/47-r2I2ff is the finite effective tension of
the light membranes that survive the limit. Note that GM has no coupling constant and it contains
a unique dimensionful parametey;. This is reminiscent of some of the properties of eleven-
dimensional M Theory.

The decoupling limit giving rise to GF is given by

gMV: 7]#1}1 M,V:O,l,...,5,

|6
gij=|{—5ij, i,j=86,...,10, (7.2)
eff

Co12345= Tms = Terrs

with | ,— 0 while the effective length scalgy is kept finite. HereT o denotes the effective tension
of the light five-brane excitations. Just as GM, GF has no coupling constamgaisdthe unique
dimensionless parameter of the theory.
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Similar theories can be obtained from light Dp-branes, which we will call GBgplilean
D-p-branes As we will now see, these theories are connected by dualities which are reminiscent
of the dualities of the fully relativistic theories from which we obtain these Galilean theories. We
first discuss the relation between supersymmetric Type IIA NRCS and the eleven-dimensional
theory GM.

Here we will show that in fact the strong coupling dual to Type IIA NRCS is described by
eleven-dimensional GM such that the parameters of the two theories are related to each other in a
similar fashion to the usual relation in the relativistic setting.

Consider GM theory7.1) compactified on a circle of proper radiRsThe background critical
three-form potential reduces to a NS—NS two-form potential,

Bo;= 2R Coyo. (7.3

Using the usual relation of parameters between M theory and Type IlA superstring theory,

R=gse', l,=gt%/a’, (7.4
we can writeR andl ; in the limit (3.2) which defines NRCS, so that
R=g\/alq, |p=gl/3aéf1f/6ar1/3, (7.5

asa’'—0.
Substituting the eleven-dimensional liniiz.1) in (7.3) we see that the background NS—NS
two-form potential is given by

3

2ma’By=1— . (7.6)
Ieff

Using (7.5 and comparing with the limit defining NRCS {B.2), we see that NRCS with coupling
constantg and effective string scale/; is equivalent to GM theory on a circle of radii&sand
effective Planck scalk;. The parameters are related by

R=gVasy ler=9"%al;:. (7.7)

A. GDp and GNSF theories

In this subsection we present some generalizations to the construction we made for perturba-
tive closed strings in a near critical NS—N&Bfield to Dp-branes in a near critical Ramond—
Ramondp + 1-form background. In order for the background to affect the Hamiltonian, the spatial
directions of the brane have to be compactified on an oriengablecle of space—time. In this
case, the winding number plays the role of electric charge in the discussi@4jnand again
positivity of the energy allows only wrapping in one orientation.

The nonrelativistic limit that needs to be taken requires keeping finite the terms in the world
volume action depending on the transverse coordinates to the brane and tuning the background
field to the tension of the D-brar(éhis is the analog of the NRCS limit. There, we scatédand
the metric in the transverse directions to Bwield such that terms of the string worldsheet action
depending on the transverse coordinates are kept)fifite limit is given by

9= v, M,v=0,1,..p,

a'\?
g”:(a_’ﬁ) Bjy 1i=p+1...9,
e
(7.8
PANCELL:
Os=| —— Jp»
X eff
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Co]_..‘p:Tp_Tgﬁ,
asa’—0. HereT, is the tension of the D-bran@vhich is infinite in the limij,

1

TpZW. (79)

Tgﬁ is the finite scale of the nonrelativistic theory agylthe coupling of the theory. The effective
tension is given by

eff _ 1 .
ne-
p (ZW)pgpaé}prr )

(7.10

In the limit (7.8) all states of string theory decouple except the light Dp-branes that have finite
proper energy excitations. In particular, open and closed strings decouple from the low energy
spectrum.

There is a very simple explanation for the limit we takérB). Except for the presence of the
background gauge fiel@,,...,, (7.8) is the conventional low energy limit that results in a gauge
theory on a Dp-bran€. This can be easily recognized by noting that the Yang—Mills coupling
constant is given bg$M~gpaé§fp’3)’2 and that the limit7.8) keeps the coupling finite. Moreover,
the metric for the transverse coordina¥sto the brane is given as if7.8) whenever we express
them in terms of the Higgs fiel®' of the gauge theory a%¥' = a’®' and require that the metric
for ®' remains finite. The low energy limit is supplemented by turning a near critical background
gauge field which results in light Dp-brane fluctuations.

There is one more theory we can define by tuning a massless gauge field of string theory,
namely the one where the light excitations are NS five-branes. We will call these theories GNSF
(Galilean Neveu—Schwarz five-brandust like NRCS, these theories can be obtained as a low
energy limit of the different superstring theories. This low energy limit can also be motivated by
considering the low energy limit on NS five-branes which yields the little string theStitise
nonrelativistic limit is given by

9= Myuw, M,v=0,1,..5,

gs|?
gij:(€> Gij, 1,j=6,..,9, (7.11

— _ reff
B01234FT5 T5 g

asgs— 0 while keeping the string scal€ finite in the limit. Now the effective tension of the light
NS five-branes is given by

1
eff _
T5 mﬁ. (7.13

Thus,(7.11) defines a nonrelativistic theory GNSF of light fluctuations of NS five-branes.
We will now briefly describe the theory one obtains for different valuep. of

1. Zero-branes

For GDO, one may lift the description to M Thed(fpr a lift to eleven dimensions of a similar
limit see Ref. 8. After a suitable rescaling of energy scales in M Theory, the M Theory circle goes
from a space-like circle to a light-like circle of finite radiis= go\/a_éﬁ. Then, if we consider the
limit (7.8) for N DO-branes one obtains a DLCQ description of M Theory with eleven-dimensional

Planck Iengthzgé’s\/agff in a sector withN units of longitudinal momentum.
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2. One-branes

For p=1, the light states are D1-branes. The strong coupling dual of the theory of light
D1-branes can be found by using Type IIB S-duality. S-duality maps the critical R—R background
Cyy to a critical NS—NS backgrourB;. The parametef§s anda’ of the S-dual theory are given

by

1

=—, a'=a'g.. 7.1
9s a =a gg (7.13

s
Writing the limit (7.8) for p=1 in terms of the S-dual variables and comparing wW&t2) shows
that the S-dual of GD1 is given precisely by NRCS if the parameters of the two theories are related

by

==z, Q=00 (7.14

Q|

Thus Type 1IB NRCS is related to GD1 by a strong—weak coupling duality which takes the same
form as the conventional Type IIB S-duality. At the end of this section we will realize S-duality
of Type 1IB NRCS by studying GM theory compactified on a two-tottg’

3. Two-branes

GD2 can also be lifted to an eleven-dimensional picture. The D2-branes lift to M2-branes and
the parameteréhe eleventh-dimensional proper radiRsind the Planck length,) of M Theory
are related to those of GD2 by

’ (1'2/3

R= ly=05"—15 7.1
I e Jd2, p_92 11/6 - ( 5
aeﬁ aef‘f

Moreover, the near critical R—R background lifts to a near critical background for the three-form
of eleven-dimensional supergravity. Therefore, GD2 can be identified with GM on a transverse
circle. Using the parameters (7.1 we see that GM with an effective Planck scélg on a
transverse circle of coordinate size L is GD2 with couplingand effective string scaley;. The
parameters are related by

L=govals ler=03"Vays (7.16

Thus, the relation between GD2 and GM is reminiscent of the conventional duality between Type
IIA and M Theory.

4. Three-branes

In order to get light D3-branes one must turn on a critical RR four-form. We can analyze the
strong coupling dual of GD3. In fact, GD3 is self-dual, since S-duality of the underlying string
theory maps the limit(7.8) to an analogous limit but with a different coupling constant and
effective string scale. Therefore, GD3 with parameteyand a is dual to GD3 with parameters
U3 and@gy. The parameters are related by

1
Us=—, Qo= (7.17
O3

At the end of this section we realize the S-duality of CD3 from an eleven-dimensional perspective.
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5. Four-branes

The GD4 limit can also be lifted to M Theory. The main difference here isghat> in the
limit. Therefore, it is required to analyze the configuration in eleven dimensions. The D4-branes
lift to M5-branes wrapped on the M Theory circle. The proper size of the circle and the corre-
sponding eleven-dimensional Planck length are given by

R=ga\als |p:g£11/3a/l/3aé%/6. (7.18

Since the background RR five-form lifts to a near critical six-form of eleven-dimensional super-
gravity, one sees that the strong coupling dual to GD4 is given by GF. Comparing the parameters
in (7.18 with those that define GF7.2) one finds that the parameters of the two theories are
related by

R=gsVals ler=05N e (7.19

6. Five-branes

We now consider the OD5 theory. Fpe=5, one also has to perform S-duality since in the
decoupling limitgs—occ. S-duality maps the D5-branes to NS five-branes. Moreover, the critical
RR field gets mapped to a critical NS—NS electric field for the NS five-branes. Thus we are led to
studying NS five-branes in a critical field. Type IIB S-duality maps the limi8) for p=5 to a
theory with string scale and string coupling given by

-, ) ) 1 a1 (7.20
a =0 =05y, =—=—F . .
Os Os5 et Js Os aly Os
Note that the string scale of the S-dual theory is finite while the string coupling vanishes. This is
precisely the limit that defines Type [IB GNSF.11). The parameters of GD5g§, ) are
related to those of GNSFJ,a') by

1
am=Ga’', G=—. (7.20
95
In the limit that defines GD5, apart from having low energy D5-brane excitations, there are also
finite energy D1-string excitations. These are identified in the Type [IB GNSF theory with strings
of tensiona’ ~* fluctuating inside the five-branes.

7. Type IIA Neveu —Schwarz five-branes

Type IIA GNSF has an interesting strong coupling dual. The limi{f7iri1) can be realized by
considering the decoupled theory of light fluctuating five-branes of M Theory on a transverse
circle of proper sizdR. The near critical six-form background of eleven-dimensional supergravity
becomes a near critical RR six-form of Type IlA string theory and the M5-brane becomes a NS
five-brane on a transverse circle of proper radtu3he parameters of the two theories are related

by
R=gsVa’, 1,=g¥%/a’. (7.22

By comparing the scaling limit7.2) with (7.11) and using(7.22 one finds the following relation
between the effective length scales of the two theories,

o= G\ arlg. (7.23
Moreover, the NS five-branes now sit at a point in the transverse circle, whose coordinate length

is given by
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L=G\a'. (7.29

We see that the Galilean theories we have found sit on the same moduli space and satisfy
many of the properties of the parent theories from which we define them by taking a low energy
limit. The reduced number of degrees of freedom that these theories have can be an interesting
avenue in which to study in a simplified setting M Theory dualities.

8. S-duality of Type IIB NRCS from GM

We first notice that Type IIB NRCS can be obtained by considering eleven-dimensional GM
theory compactified on a two-torus, where one circle is along the membrane and the other is
transverse to it, and then shrinking the torus.

Let us consider GM theory compactified on a rectangular torus of coordinate siz®yaudid
R,. We will take the circle of radiu®k; to be along the background three-form of supergravity
and the circle of radiuR, to be transverse to it. If we reduce GM Bq one gets Type IIA NRCS.

The string coupling is given by

gs:ﬁ- (7.25
Ja'

We now perform T-duality along the circle of radiRs. This maps the limit to a Type IIB set-up.
T-duality inverts the proper size of the circle one T-duals along and changes the dilaton in the
conventional fashion. The new string coupling is given by

, Ry [ag
9=R), Vo (7.26
Therefore, comparing witfB8.2) we see that this compactification of GM leads to Type IIB NRCS
with coupling constant

Ry
0= R (7.27)

compactified on a transverse circle of coordinate &ig¢R,. Therefore, one gets Type 1IB NRCS
from GM in the limit that the coordinate area of the torus vanishes at fixed Rati&, .

However, one could have chosen to reduce GM on the circle of coordinate Rdiuss we
showed, this leads to CD2 theory on a parallel circle of coordinateRsiz& he Type Il1A coupling
is given by

. Na'
Os==7 R2' (72&
Wt

One can perform a T-duality transformation along the circle of raBiusuch that we get a low
energy limit in the Type IIB superstring where the string coupling is given by

~, a Ry
0= (7.29

sT =7 p.
X off Rl

and the circle is of coordinate siZ€«/R;. Thus, by looking at7.8) for p=1 we see that one gets
CD1 theory with coupling,
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Therefore, S-duality of Type IIB NRCS can be understood from an eleven-dimensional per-
spective as the symmetry that exchanges the two circles when one considers GM theory compac-
tified on a two-torug>*°

9. S-duality of GDS from GF

Consider a single M5 brane compactified on a rectangular two-torus ofRadindR, along
the background directions in the decoupling liif7it2). If we treat the circle of radiuR; to be the
one that results in GD4, then the parameters of GD4 are given by

Ri=0aVads ler=01"V el (7.31)

One may perform T-duality along the circle of radRs. Then, we obtain the Galilean theory
of light D3-branes. The string coupling after T-duality is given by

\/?_ gt

gszgsR—2—94 R, (7.32

Comparing(7.32 with (7.8) for p=3 and using7.31) one finds that the effective coupling of the
theory of light D3-branes is

Ry
g3_R_21 (733)

which is reminiscent of the relation between M Theory on a two-torus and Type IIB string theory.
If one reduces first on the circle of radiusi®§ and then performs T-duality along the circle

of radiusR; one again obtains GD3 but with the inverse coupling. Therefore, S-duality of GD3

follows from the interchange of the two circles of the two-torus in the GF realization of GD3.
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