
ferent
thetical
ions of
such
nt
eory

s of
priate
on the
n such
pectrum
ations

couple
hysical
field
assive

tary.
ne can
e from
-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 7 JULY 2001

Downloaded 1
Nonrelativistic closed string theory
Jaume Gomisa) and Hirosi Oogurib)

California Institute of Technology 452-48, Pasadena, California 91125
and Caltech—USC Center for Theoretical Physics, Los Angeles, California

~Received 2 January 2001; accepted for publication 13 February 2001!

We construct a Galilean invariant nongravitational closed string theory whose ex-
citations satisfy a nonrelativistic dispersion relation. This theory can be obtained by
taking a consistent low energy limit of any of the conventional string theories,
including the heterotic string. We give a finite first order worldsheet Hamiltonian
for this theory and show that this string theory has a sensible perturbative expan-
sion, interesting high energy behavior of scattering amplitudes and a Hagedorn
transition of the thermal ensemble. The strong coupling duals of the Galilean su-
perstring theories are considered and are shown to be described by an eleven-
dimensional Galilean invariant theory of light membrane fluctuations. A new class
of Galilean invariant nongravitational theories of light-brane excitations are ob-
tained. We exhibit dual formulations of the strong coupling limits of these Galilean
invariant theories and show that they exhibit many of the conventional dualities of
M theory in a nonrelativistic setting. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1372697#

I. INTRODUCTION

One of the legacies of the second superstring revolution is the realization that the dif
superstring theories describe very special corners of the space of vacua of a single hypo
structure dubbed M Theory. Another important lesson that has emerged is that there are reg
the space of vacua describable by a theory without gravity. Two beautiful examples of
theories are Matrix Theory1 and Maldacena’s conjecture.2 The realization that there are consiste
limits of M Theory without gravity has led to a geometrical understanding of some field th
dualities and to new, hitherto unknown, field theories in higher dimensions.

The nongravitational limits studied thus far involve considering certain low energy limit
M Theory in the presence of branes. Typically, these limits lead to a theory where the appro
effective description is given in terms of the massless degrees of freedom propagating
branes. Such low energy limits lead, for example, to gauge theories in various dimensions. I
examples, the massive open string states on the branes and the entire closed string s
decouple from the low energy physics and the truncation to the theory of the massless fluctu
is consistent. These low energy theories are described by field theories.

Recently, very interesting generalizations have been found in which closed strings de
but the massive open string excitations on the branes need to be taken into account for p
processes.3,4 These theories appear in low energy limits of branes in near critical electric
backgrounds and are not conventional field theories due to the presence of a tower of m
excitations. Since massive states cannot be neglected, the field theory truncation is not uni5–7

These nongravitational theories describe all the fluctuations on the branes. For example, o
obtain a consistent open string theory without any closed string states. Such theories aris
studying D-branes in a background electric field~NCOS!,3,4 M5-branes in a three-form back
ground ~OM!8 and Neveu–Schwarz five-branes in various constant Ramond–Ramondp-form
backgrounds~OD!.8–10

a!Electronic mail: gomis@theory.caltech.edu
b!Electronic mail: ooguri@theory.caltech.edu
31270022-2488/2001/42(7)/3127/25/$18.00 © 2001 American Institute of Physics
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In this paper we find that there are corners of the moduli space of vacua of M Theory w
branes that are described by nongravitational theories whose excitations live in space–time
massive excitations satisfy a nonrelativistic dispersion relation and the theory that describe
dynamics is unitary and has a sensible perturbative description~whenever one is available!. Since
background branes are not required to define these nonrelativistic theories, they can be obta
taking certain low energy limits of all five superstring theories, including the heterotic string
will call these theories nonrelativistic closed string theories~NRCS!.

The simplest limit leading to NRCS is obtained by considering string theory in the presen
a near critical NS–NS two-form field without any D-brane~when the NS–NS two-form exceed
the critical value, the space–time energy of a closed string becomes unbounded below a
become indefinitely negative as we increase the winding number!. In the context of
(111)-dimensional NCOS, Klebanov and Maldacena11 observed that when the spatial direction
compactified on a circle, that there are finite energy winding closed string states that d
decouple from the open strings. An example of NRCS can be obtained by considering pre
the NCOS limit without any D-brane. Naively, one might think that, in the absence of D-bra
that a constant NS–NS two-form can be gauged away and that one ends up getting a conve
relativistic closed string theory. This is obviously true in noncompact space. However, i
presence of a circle, the background NS–NS field modifies the spectrum, which remains r
istic. Once the NCOS limit is taken, there is a truncation of the low energy spectrum an
obtains a new theory with a Galilean invariant Hamiltonian. Perhaps surprisingly, the closed
theory in the NCOS limit without any D-brane has a well-behaved perturbative expansion
scribed by the Lagrangian in Sec. III. It is also interesting to study the worldsheet theor
propose when the worldsheet has a boundary. Then, our formalism reproduces the relativist
string spectrum of NCOS and its interactions.

In Sec. III, we give a worldsheet Lagrangian for NRCS, which has Galilean invariance
from which we derive the nonrelativistic spectrum of closed strings and their interactions
Lagrangian we propose can be derived from the conventional Polyakov path integral quant
of the relativistic string by rewriting it in variables that are conducive to taking the low en
limit that defines NRCS~see Sec. III for details of the limit!. We explicitly solve the Virasoro
constraints, thus yielding the spectrum, show that the theory is unitary and that it has a se
perturbative expansion. The string spectrum, being nonrelativistic, does not contain a m
graviton and it is thus nongravitational in nature. However, there is an instantaneous New
potential between the massive strings. This string theory exhibits interesting properties suc
unusual high energy behavior of scattering amplitudes and a Hagedorn transition of the th
ensemble.

NRCS depends on two parameters, the effective string scaleaeff8 and the effective string
coupling constantg. One may ask what is the strong coupling dual of these theories. Fo
superstrings, this can be reliably answered. We find that the strong coupling limits of supe
metric NRCS are given by a Galilean invariant eleven-dimensional theory of light memb
which we call GM ~Galilean membrane theory!. This eleven-dimensional theory has a uniq
dimensionful parameterl eff which is the effective Planck length. The relation between the NR
superstrings and GM is reminiscent to the relation between the conventional superstrings
theory. For example, Type IIA NRCS with couplingg and string scaleaeff8 is equivalent to GM on
a circle of radiusR such thatR5gAaeff8 and l eff5g1/3Aaeff8 . The conventional dualities and rela
tions with M theory still hold, such that, for example. Type IIB NRCS has anSL(2,Z) symmetry.
We discuss these relations in Sec. VII. It is interesting that duality symmetries in string theor
not rely on relativistic invariance nor the presence of gravity.

There are many interesting generalizations that can be made that lead to nonrelat
nongravitational theories. The construction of such theories is quite general. The basic ide
study the low energy limit of M Theory vacua in the presence of any of the many possible g
fields available. Then, one can take a low energy, near critical limit such that all states
Theory become infinitely massive, and thus decouple, except for those states that couple
constant near critical background gauge field. Tuning to the critical value, defined such th
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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energy coming from the background field precisely cancels the rest energy of the states in
tion, ensures that even though we are taking a low energy limit, that there are states that
and satisfy a nonrelativistic dispersion relation. For example, if we tune the background N
B field to its critical value, then one obtains finite energy nonrelativistic fluctuations of str
winding around the circle. Clearly, such NRCS can be defined in Type II, Type I and hete
theories. Moreover, if one considers, for example, a near critical R–R gauge fieldCp11 and takes
a low energy limit, then there are light Dp-branes~in order for the constant backgroundCp11 field
to affect the energy of a Dp-brane, the brane has to be wrapped on ap-cycle, otherwise the gaug
field can be gauged away without changing the energetics! which are nonrelativistic that decoupl
from all the rest of the modes and lead to decoupled Galilean invariant theories which we w
GDp ~Galilean Dp-brane theories!. The myriad of gauge fields that exist in M Theory vacua c
be used to define new nongravitational Galilean invariant theories. We study such theories
VII. The dualities of the underlying relativistic M Theory, lead to interesting webs of dualities
these nonrelativistic theories. These nonrelativistic theories may be a promising ground in
to address some of the important questions of M Theory without the complication of gravit

The rest of the paper is organized as follows.
In Sec. II a very general low energy limit is presented which yields a finite nonrelativ

dispersion relation from the spectrum of a charged relativistic brane. The limit, when appl
the fundamental closed string, yields the spectrum of NRCS. Generalizations to other rela
objects in M Theory are briefly described.

In Sec. III we find the worldsheet theory of NRCS. We quantize the Galilean invariant,
order Hamiltonian and find under what conditions there is a physical closed string spectrum
then reproduce the NRCS spectrum in Sec. II within our Hamiltonian formalism. We compu
BRST cohomology of the string and show that there are no ghosts in the spectrum. The pos
of adding a boundary to the worldsheet is considered. The formalism of Sec. III results
spectrum and worldsheet correlation functions of NCOS. Using this formalism, it is straigh
ward to prove the decoupling of the massless open string states on worldsheets with any n
of handles and holes when the longitudinal direction is noncompact. This extends the result
11 to all orders in the perturbative expansion.

Section IV is devoted to performing tree level computations in NRCS. We show that sc
ing amplitudes have the correct pole structure required by unitarity and have a peculiar be
of high energy fixed angle scattering amplitudes in NRCS. Despite the absence of gravity
theory, we exhibit a Newtonian potential among the nonrelativistic strings.

In Sec. V we compute loop amplitudes and show that NRCS is a sensible theory in per
tion theory. We evaluate the Helmholtz free energy at one loop and reproduce from it the spe
of NRCS found in Sec. II. We find that NRCS behaves similarly to the long string nea
boundary ofAdS3 .12 We exhibit the existence of a Hagedorn temperature in NRCS and sk
higher loop computations. We also study in some detailN-point loop amplitudes and show that th
amplitudes are finite.

In Sec. VI we elucidate the relation between NRCS and the discrete light-cone quanti
~DLCQ! of closed string theory. NRCS is related by T-duality to the discrete light-cone qu
zation~DLCQ! of closed string theory. Therefore, the formalism developed in this paper prov
a useful description of DLCQ string theories as well.

In Sec. VII we study Galilean invariant theories of light branes and some of their dualitie
eleven dimensions we study the Galilean invariant theory of membrane fluctuations~GM! and
five-brane fluctuations~GF!. In ten dimensions we discuss the theory of nonrelativistic li
Dp-branes~GDp! and light Neveu–Schwarz five-branes~GNS!. These theories lie in the sam
moduli space and exhibit the same dualities that the underlying relativistic M theory posses
particular we show that the strong coupling limits of some NRCS have an eleven-dimen
description in terms of light-brane excitations.
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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II. NONRELATIVISTIC LIMIT

In this section we show that by taking a low energy limit of the theory of a relativisticp-brane
and by tuning thep11 gauge field that couples to it, that one can obtain an exact nonrelativ
dispersion relation. The idea is to study the low energy spectrum in a scaling limit in whic
background gauge field cancels the rest energy of the brane and such that the nonrela
approximation becomes exact. In this limit, all the states of the theory decouple, except th
p-brane excitations. We present the truncation to a nonrelativistic theory in a very simpl
model which captures the essence of the limit which defines NRCS and the other generali
we describe in this paper.

For simplicity, consider a relativistic charged point particle of massm and chargee coupled to
a gauge fieldAm propagating in a geometry with metric componentsg00521 andgi j arbitrary
with i, j Þ0. The Lagrangian which describes its motion is given by

L52mA2 ẋ21eAmẋm. ~2.1!

Worldline reparametrization invariance implies Einstein’s dispersion relation,

p05Am21gi j ~pi2eAi !~pj2eAj !1eA0 . ~2.2!

Consider the following low energy limit:

gi j 5
meff

m
d i j , eA052m1eÂ0 , ~2.3!

asm→`. In this limit, Einstein’s relation~2.2! reduces to the following nonrelativistic dispersio
law:

p05
1

2meff
~pi2eAi !

21eÂ0 . ~2.4!

Although a constant gauge field can be locally gauged away and does not affect the equa
motion, it changes the energy spectrum in the sector of the theory carrying electric charge.
the shift in the energy due to the gauge field precisely cancels the rest mass of the partic
ensures that the energy remains finite in the limit~2.3!. Turning on a background field and tunin
it to the critical value is an efficient way of rearranging the spectrum of the theory such tha
states charged under the gauge field have finite energy, the neutral states acquire infinite
energy.

The charged point particle model can also be used to show that the there are finite e
nonrelativistic winding closed string states in the NCOS limit whenever the near cr
NS–NSB01-field is along a compact spatial direction. The mass of a closed string win
w-times around a circle of radiusR is

m25S wR

a8 D 2

1
2~N1Ñ!

a8
, ~2.5!

whereN andN̄ are the amounts of stringy excitations in the left and the right mover oscillato
the string. Moreover, the winding string states are charged under theU(1) gauge field obtained by
reducing the NS–NSB-field along the circle. The charge is given by

eA0522pRwB01. ~2.6!

We now take the NCOS limit3,4 in the point particle analogy~2.4!,
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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gi j 5
a8

aeff8
d i j , eA052

wR

a8 S 12
a8

2aeff8 D . ~2.7!

Taking a8→0 results in the following nonrelativistic spectrum:

p05
wR

2aeff8
1

aeff8 k2

2wR
1

N1Ñ

wR
. ~2.8!

Thus the NCOS limit can be thought of an example of the nonrelativistic limit~2.3!. Note that
demanding positive energy states selects strings winding only in a particular direction. Indee
closed string spectrum~2.8! coincides with the one found by Maldacena and Klebanov in Ref.
In the next section we give a Galilean invariant, finite first order Hamiltonian that describes
closed strings and verify that there is a consistent perturbative expansion.

The nonrelativistic limit we found in~2.3! can also be generalized to any state of M Theo
which is charged under a gauge field. If one considers winding fundamental closed strings
near critical NS–NSB0i background of any of the known string theories, one obtains NR
theories. But we could have considered any of the branes of M Theory. One could, for exa
consider a wrapped membrane of M Theory on any two-cycle~say on a two-torus or a two-cycl
of a Calabi–Yau! in a critical three-form background. Then, the membrane is charged und
gauge fieldA0 obtained by reducing the three-form on the two-cycle. In the limit~2.3! one obtains
a nonrelativistic theory without gravity. Likewise, for any other brane. Just like in NCOS, p
tivity of the energy selects only those states which are wrapped in a particular direction, sta
opposite orientation are unphysical. In Sec. VII we will find low energy limits leading to Gali
theories of branes and study their strong coupling duals.

III. LAGRANGIAN AND QUANTIZATION

In this section we construct the worldsheet theory of NRCS and analyze its spectrum
interactions. We consider a certain low energy limit of string theory in a near critical NS
B-field. The bosonic worldsheet action which describes this background is given by~here the
worldsheet and target space metric are taken to be of Lorentzian signature!

S052
1

4pa8
E d2s~gMN ]aXM ]aXN22pa8BMNeab ]aXM ]bXN!, ~3.1!

whereM, N50,...,9 anda, b50,1. NRCS is obtained by choosing theB-field with a time-like and
a space-like component. Without loss of generality we consider aB01[B background. NRCS is
obtained by taking the following zero slope, near critical field limit~this is precisely the NCOS
limit of Refs. 3, 4 but without any D-brane!,

2pa8B01512
a8

2aeff8
, gmn5hmn , gi j

a8

aeff8
d i j , gs5gAaeff8

a8
, ~3.2!

asa8→0 wherem, n50,1 andi , j 52,...9, andaeff8 is the finite effective string scale of NRCS an
g its effective coupling constant.

Using

g5X01X1, ḡ52X01X1, ~3.3!

for the target space coordinates,

z5ei ~s01s1!, z̄5ei ~s02s1!, ~3.4!
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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for the worldsheet coordinates, and the background given in~3.2!, the action~3.1! can be written
for finite a8 as

S052
1

4pa8
E d2z~]g ]̄ḡ1]ḡ ]̄g22pa8B~]g ]̄ḡ2]ḡ ]̄g!12gi j ]Xi ]̄Xj !. ~3.5!

We now perform a Euclidean rotation in both the worldsheet and target space such th
Euclidean action is

S05
1

4pa8
E d2z~]l ]̄ḡ1]ḡ ]̄g22pa8B~]g ]̄ḡ2]ḡ ]̄g!12gi j ]Xi ]̄Xj !. ~3.6!

Note that, unlike the case of aB-field with only space-like components, there is no factor ofi in
the term in the Euclidean action depending onB.

In order to obtain a finite worldsheet description in the NRCS limit, it is convenien
introduce Lagrange multipliersb andb̄. In these variables the worldsheet theory~3.6! is given by

S15E d2z

2p S b ]̄g1b̄ ]ḡ2
2a8

112pa8B
bb̄1

112pa8B

2a8
]g ]̄ḡ1

1

a8
gi j ]Xi ]̄Xj D , ~3.7!

where ~3.6! is reproduced by integrating outb and b̄. Therefore, in the strict decoupling limi
~3.2!, one has the following Lagrangian description of NRCS:

S15E d2z

2p S b]̄g1b̄ ]ḡ1
1

4aeff8
]g ]̄ḡ1

1

aeff8
]Xi ]̄Xi D . ~3.8!

We note that the worldsheet theory of NRCS is defined in terms of more variables than a
ventional critical string theory since we have extrab andb̄ variables. However, the CFT define
by ~3.8! has the correct Virasoro central charge to define a consistent string action~see the next
subsection for more details!. It is interesting to note that the Lagrangian~3.8! is invariant under the
Galilean group in the transverse coordinates. This is consistent with the nonrelativistic spe
that we will find for NRCS. It is crucial, for this symmetry to be realized, that the description
the extra variablesb and b̄.

We will concentrate on the conformal field theory ofb, b̄ and g, ḡ since the transverse
coordinates lead to familiar contributions. The equations of motion forceb andg to be holomor-
phic andb̄ andḡ to be antiholomorphic. The Lagrange multiplierb forcesg to be a holomorphic
map from the worldsheet to the (111)-dimensional part of the target space parameterized
coordinatesX0 and X1. Therefore, it describes a worldsheet instanton and the third term in
Lagrangian~3.8! (1/8paeff8 )]g ]ḡ is the instanton action. We will show in the rest of this sect
that this Lagrangian reproduces the spectrum in~2.8!. Moreover, we will see that if the string
worldsheet has a boundary that~3.8! reproduces the open string spectrum of NCOS and st
interactions. In our formalism, one can show that the decoupling of the massless open
modes exhibited by Ref. 11 at the disk level can be extended to all orders in perturbation t
Thus,~3.8! can be used to perform manifestly finite worldsheet computations for NCOS the
In the later sections, we will use this Lagrangian to describe amplitudes involving closed s
and higher loops.

A. Closed string spectrum

Here we consider a worldsheet without boundaries. The equations of motion of~3.8! imply
thatb(z) andg(z) are holomorphic and thatb̄( z̄) andḡ( z̄) are antiholomorphic. Their OPE’s ar
given by
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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b~z!g~w!;
21

z2w
, b̄~ z̄!ḡ~w̄!;

21

z̄2w̄
,

g~z!b~w!;
1

z2w
, ḡ~ z̄!b̄~w̄!;

1

z̄2w̄
, ~3.9!

g~z!ḡ~w̄!;regular, b~z!b̄~w!;
2p

2aeff8
d~2!~z2w!.

The variablesb andg behave analogously to the bosonic ghost system, except for the contac
in b(z)b̄(w̄). The conformal dimension ofg is ~0, 0! while the conformal dimension ofb is ~1,
0!. Moreover, their contribution to the Virasoro central charge takes the required valuec52. Note
that although it seems that we have added more degrees of freedom to the descripti
worldsheet degrees of freedom are identical to those of two worldsheet scalars. A similar
holds for theb̄ and ḡ system.

We will first consider the case when thex1 coordinate is noncompact. Then we can expand
operators as

g~z!5 (
n52`

`

gnz2n, b~z!5 (
n52`

`

bnz2n21. ~3.10!

Sinceg is holomorphic andx1 is noncompact the standard space–time momentum term ing is not
allowed. Otherwise,g would be multi-valued function ofs, which is only possible if the string is
winding. The oscillator modes satisfy the following commutation relation:

@gn ,bm#5dn1m,0 . ~3.11!

We now study the Virasoro constraints for NRCS. The energy momentum tensor is giv

T~z!52b ]g, ~3.12!

and the Virasoro generators are

Ln5(
m

mbn2mgm . ~3.13!

In particular,L0 is the excitation level of the~b, g! system, whose spectrum is positive defini
Therefore the Virasoro constraintL01L̃051 has no solutions~except for the tachyon, which is
projected out in supersymmetric theories!, whereL̃0 is the Virasoro generator for the rest of th
system, which we assume to be positive definite. Thus, the closed string has no physical
This can be easily understood. If all coordinates are noncompact the background NS–NSB-field
can be gauged away without changing the Hamiltonian of the theory and the closed string
trum is the usual one. Therefore, in the NRCS limit~3.2!, all the closed strings acquire infinit
proper energy and thus are unphysical.

When thex1 direction is compactified on a circle of radiusR, there is a nonzero winding
sector ing(z). The mode expansion now reads as

g~z!5 iwR logz1 (
n52`

`

gnz2n, ~3.14!

and the Virasoro generator is then given by
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Ln52 ibnwR1(
m

mbn2mgm . ~3.15!

Now the Virasoro constraintL01L̃051 has a solution. As we will show later, all physical stat
are in the vacuum of the~b, g!-system. Thus the solution to the Virasoro constraint is of the fo

ib05
N

wR
1

aeff8 k2

4wR
, ~3.16!

whereN is the conformal weight of the rest of the system~N includes21 for the bosonic string
and 21/2 for the NS sector of superstring! and k is the transverse momentum of the strin
According to the Lagrangian~3.8!, the canonical momentumP conjugate tog is not equal tob,
but in the winding sector it is shifted by an amount proportional to]̄ ḡ as in

1

2
~P01P1!5

b

2p
2

1

8paeff8
]̄ ḡ,

1

2
~P02P1!5

b̄

2p
2

1

8paeff8
]g. ~3.17!

Taking the zero mode parts of these equations, one finds that the total energyp0 and momentum
p1 of the closed string are given by

1

2
~p01p1!5 ib01

1

4aeff8
wR,

1

2
~p02p1!5 i b̄01

1

4aeff8
wR. ~3.18!

Sincex1 is periodic, its conjugate momentum is quantized as

p15
n

R
. ~3.19!

Thus we find

p05
wR

2aeff8
1

aeff8 k2

2wR
1

N1N̄

wR
, ~3.20!

with the level matching conditionN2N̄5wn. In this way, we have recovered the nonrelativis
spectrum in~2.8!.

It is straightforward to prove the no-ghost theorem in this case. We introduce the~b, c! ghost
and write the BRST operatorQBRST as

QBRST5Q211Q0 , ~3.21!

where

Q215wR(
n

b2ncn , ~3.22!

andQ0 is defined as the remainder. They obey

Q21
2 5Q0

25$Q21 ,Q0%50. ~3.23!

Following the use of the BRST operator in Ref. 13~see also Sec. 4.4 of Ref. 14!, one can show
that the cohomology ofQBRST is isomorphic to that ofQ21 . The cohomology of the quadrati
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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operatorQ21 is easy to evaluate15 and it is spanned by the vacuum stateu0&bg ^ u0&bc of ~b, g!
and ~b, c!, times any states in the rest of the system. Assuming that the rest of the syst
unitary, this proves the no-ghost theorem of NRCS.

B. Open string spectrum

It is possible to consider D-branes in NRCS, and what one gets is of course NCOS. He
show that the open string spectrum of NCOS is reproduced in this way. Suppose the worlds
the upper half plane with the boundary located ats150. In the bulk,g andb are still holomor-
phic. The equation of motion at the boundary gives

dgS b1
1

4aeff8
]̄ ḡ D 50, dḡS b̄1

1

4aeff8
]g D 50. ~3.24!

For a Dp-brane withp>1, the boundary values of (g,ḡ) are not fixed. Therefore

b52
1

4aeff8
]̄ ḡ, b̄52

1

4aeff8
]g, ~3.25!

at the boundary. This suggests that we analytically continue~g,b! to s1,0 and use~3.25! to
identify ~g, b! on s1>0 to (ḡ,b̄) in s1<0. Since

b~z!g~w!;2
1

z2w
, b̄~ z̄!ḡ~w̄!;2

1

z̄2w̄
, ~3.26!

we find

g~z!ḡ~w̄!;4aeff8 log~z2w̄!. ~3.27!

For points on the real axis this reproduces the correct propagator for open strings in NCO
To compute the open string spectrum, we consider a worldsheet that is a strip2p<s1

<p, we identify~g, b! on 0<s1<p to (ḡ,b̄) on 2p<s1<0 according to~3.25!. Thus we have
the expansion of these fields as

b5
1

2Aaeff8
(

n
ānz̄2n21, g5x14ipaeff8 logz12Aaeff8 (

nÞ0

an

n
z2n,

~3.28!

b̄5
1

2Aaeff8
(

n
anz2n21, ḡ5 x̄14i p̄aeff8 log z̄12Aaeff8 (

nÞ0

ān

n
z̄2n,

and nonzero commutators are

@an ,ām#5ndn1m,0 , @x,p̄#5@ x̄,p#5 i . ~3.29!

Note that, unlike the case of closed string, the space–time momentum term 4ip aeff8 logz is
allowed ing even whenx1 is noncompact. This is because we can choose the branch cut ofz
to be away from the worldsheet. The Virasoro generators are then

Ln5(
m

ān2mam . ~3.30!

Thus we reproduce the standard open string spectrum.
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C. Free the U„1… to all order

In Ref. 11, it was shown that any tree level amplitude containing a massless open strin
in NCOS2 vanishes when the longitudinal direction is noncompact. This is what is expected
the point of view of the S-dual theory, where the massless open strings correspond to th
U(1) gauge fields and their superpartners in the (111)-dimensionalU(N) gauge theory. Using
the formalism developed here, it is straightforward to generalize this result to all orders in p
bation theory. The open string amplitude on a worldsheet withh holes andg handles is computed
by considering a closed Riemann surface of genus 2g with a complex conjugate involution suc
that the fixed point set of the involution gives the boundaries of the open string worldsheet.
there is no vertex operator inserted away from the boundary~when the longitudinal direction is
noncompact there is no closed string physical state!, g(z) is holomorphic everywhere except at th
boundaries. Moreover, the vertex operator for a massless open string state is also holom
~vertex operators for massive states are not holomorphic; they also depend onḡ!. Since the sum of
the boundaries of theh holes obtained as the fixed point set of the involution is homologic
trivial on the genus 2g surface, the contour integral of the vertex operator can be deformed
through the middle of the Riemann surface. This proves the decoupling of the massless ope
states to all order in the perturbation theory.

IV. TREE AMPLITUDES

In this section we will compute the scattering amplitude of four physical closed string s
and show that it factorizes properly into nonrelativistic closed string poles. Moreover, we wi
that the truncated closed string scattering amplitudes have a different high energy behavior
conventional string theory.

For simplicity, we will compute the 4-tachyon amplitude. Since all the physical states a
the vacuum of the~b, g!-system as we saw in the last section, the essential novelty of NRC
captured by the tachyon amplitude. The vertex operator for a closed string tachyon is given~we
will not include the cocycles which only change relative signs between amplitudes; the factoAw
is included for later convenience!

V~v,v̄,k;z,z̄!5gAw:ei v̄g~z!1 iwR*zb1 ivḡ~ z̄!1 iwR* z̄b1 ik•X~z,z̄!:. ~4.1!

Since

g~z!V~z8!; iwR log~z2z8!V~z8!,
~4.2!

b~z!V~z8!;
2 i v̄
z2z8

V~z8!,

the vertex operator carries (b0 ,b̄0) eigenvalues of (2 i v̄,2 iv) and winding numberw. Thus,
according to~3.18!, the energye and the longitudinal momentumn/R of the tachyon state are
given by

e5v1 v̄1
1

2aeff8
wR,

n

R
5 v̄2v. ~4.3!

Let us evaluate the 4-point amplitude on the sphere,^V1(z1)V2(z2)V3(z3)V4(z4)&, by performing
the functional integral with the Lagrangian~3.8!. The extremum of the functional integral is give
by

g~z!5 i (
a51

4

waR log~z2za!, b~z!52 i (
a51

4
v̄a

z2za
. ~4.4!
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For closed string amplitudes, the winding number has to be conserved~the winding number is not
conserved when one considers worldsheet with boundaries!, such that(awa50. Since the action
is free, we can evaluate the amplitude by substituting~4.4! back into the integrand@as is always
the case with the Gaussian integral; the same result is obtained by substituting the extrema
~4.4! into the product of the vertex operatorsV1V2V3V4 alone and by taking its square root#. The
amplitude is given by

^V1~z1!V2~z2!V3~z3!V4~z4!&

5Aw1¯w4 )
aÞb

~za2zb!2 v̄awbR~ z̄a2 z̄b!2vawbRuza2zbu~aeff8 /2!kakb

5Aw1¯w4)
a,b

uza2zbu2~ea1eb!~wa1wb!R1~R2/2aeff8 !~wa1wb!21~aeff8 /2!~ka1kb!224. ~4.5!

Here we used the on-shell condition for the tachyon,

ea5
waR

2aeff8
1

aeff8 ka
2

2waR
2

2

waR
,

~4.6!
va5 v̄a ~a51,...,4!.

It is a good test of our formalism to compute the same correlation function using the sta
closed string theory and then take the NCOS limit~3.2!. One can verify that~4.5! is reproduced in
the limit. The tachyon scattering amplitude is then given by

A5 ig4CsphereE d2z^V1~0!V2~z!V3~1!V4~`!&. ~4.7!

Here g is the closed string coupling constant andCsphereis the normalization constant that no
malizes the path integral of the string when the topology of the worldsheet is the sphere
normalization constant can be found by unitarity. Namely, the amplitude in~4.7! has poles asso
ciated with intermediate closed string states and a straightforward application of the optica
rem determines it. Therefore, by repeating the analysis in, for example, Sec. 6.6 of Ref. 1
find

Csphere5
2p

g2R
. ~4.8!

This means that even though the theory is defined in thegs→` limit, that the closed string theory
has a sensible perturbation expansion in powers ofg. This is consistent with the observation ma
in Ref. 4 regarding closed string loop diagrams in NCOS.

The amplitude given by~4.5! and ~4.7! is very similar to the familiar Virasoro–Shapir
amplitude. It has poles in the energies in the intermediate channels, and they are located

ea1eb5
~wa1wb!R

2aeff8
1

aeff8 ~ka1kb!2

2~wa1wb!R
1

2n22

~wa1wb!R
~n50,1,2,...!. ~4.9!

This is precisely the closed string spectrum of NRCS, as required by unitarity. From~4.7! we can
also see that NRCS exhibits a different behavior of high energy, fixed-angle scattering ampl
Since the mass-shell condition of the strings is nonrelativistic, the dependence of the amplit
energyE is A;e2E, as opposed to the conventional dependenceA;e2E2

.
Although there are no physical states in the sector with 0-winding number and in particu

graviton in the spectrum, there is an instantaneous Newtonian potential between winding s
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To see this, let us consider the process in which the winding number is not exchanged
strings, i.e.,w11w350 andw21w450. In this case, the correlation function~4.5! becomes

^V1~z1!V2~z2!V3~z3!V4~z4!&

5w1w2~ uz12z3uuz22z4u!aeff8 ~k11k3!224

3~ uz12z2uuz32z4u!2~e11e2!~w11w2!R1~R2/2aeff8 !~w11w2!21~aeff8 /2!~k11k2!224

3~ uz12z4uuz22z3u!2~e11e4!~w12w2!R1~R2/2aeff8 !~w12w2!21~aeff8 /2!~k11k4!224. ~4.10!

Since the winding number along the (k11k3)-channel is 0, no physical states are propagating
this channel. Nevertheless, after doing thez-integral in~4.7!, one finds that there are contribution
from the exchange of off-shell states in the 0-winding number sector. In particular, the le
long-range contribution to the 4-point amplitude contains;(k11k3)22, corresponding to the
Newtonian potential. Thus, even though the theory contains no gravitons, there is an instant
gravitational force between winding strings.

V. LOOP AMPLITUDES

In this section, we will compute the one-loop free energy at finite temperature and one
corrections toN-point functions of winding states. We will also examine the general structur
higher loop amplitudes and demonstrate that there is a sensible perturbative expansion of

On a genus-g surface, theb-field @the ~1, 0!-form we introduced in Sec. III as a Lagrangia
multiplier# hasg zero modes. If we were quantizing the bosonic ghost system, we would intro
delta-functions in the path integral to absorb these zero modes. However, one can show t
rules of the NRCS perturbation theory deduced from the factorization conditions do not ca
these delta-functions. Thus one may naively think that zero mode integrals are divergent in N
This would be similar to the problem in DLCQ of field theory,16,17 where integrals over state
carrying zero longitudinal momentum pose difficulties in evaluating loop amplitudes.18

It turns out that, whenever we evaluate physical observables such as the temperature
dent part of the free energy and scattering amplitudes of closed strings with nonzero w
numbers, the amplitudes contain terms ofstringy naturewhich depend on all theg zero modes of
b, so that the zero-mode integrals are convergent. It is easy to understand where these term
from; they appear becauseb is a Lagrange multiplier which constrainsg to be a holomorphic map
from the worldsheet to the (111)-dimensional part of the target space. If vertex operators
winding states are inserted on the worldsheet, a holomorphic mapg, if it exists, has to be a
nontrivial one since the image of the worldsheet has to wind around each of the vertex ope
As we will show below, a nontrivial holomorphic map from the worldsheet to
(111)-dimensional part of the target space, which is a cylinder, exists only in a subspa
codimensiong of the moduli space of a genus-g Rieman surface. The integral over theg zero
modes ofb gives a delta-function which exactly picks up the subspace where the holomo
maps exist.

On the other hand, if we consider amplitudes which do not contain winding strings, su
the vacuum amplitude at zero temperature, then the zero-mode integral gives a divergence
case,g can be atrivial map which maps the worldsheet to a point in the target space. Such a
exists everywhere on the moduli space of the worldsheet, and therefore the worldsheet am
is independent of theg zero modes ofb. The integral over these zero modes is then fla
divergent. If one traces through the NCOS limit in Sec. III, one finds that it is exactly the typ
divergence that was pointed out in Ref. 18. Fortunately all the physical states in NRCS h
nonzero winding number, and these divergent amplitudes have no physical meaning and
safely ignored.

We will demonstrate these points by computing one-loop amplitudes and show how the
generalized to higher loops.
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A. Free energy

The one-loop free energy at temperatureT is evaluated by performing a Euclidean rotation
the target space–time coordinate and periodically identifyingX0;X01T21. The path integral
then involves a sum over maps (g,ḡ) from the worldsheet torus of modulust to the target space
torus of periods (T21,2pR).

The zero-mode dependence of the free energy can be computed by performing th
integral over the maps from the worldsheet to space–time. Thus we write

g5S 2pnR1 i
m

T D s0

2p
1S 2pwR1 i

s

TD s1

2p
1~periodic!, ~5.1!

where 0<s0, s1,2p and~n, m, w, s! are integers labeling the different winding sectors. For t
g,

]̄g5
i

4p Im t F2pnR1 i
m

T
2tS 2pwR1 i

s

TD G1 ]̄~periodic!. ~5.2!

On the other hand,b can be written asb5b01](periodic), whereb0 is the zero mode. The
worldsheet action depends onb0 as

S5 ib0F2pnR1 i
m

T
2tS 2pwR1 i

s

TD G1¯ . ~5.3!

Thus the integral overb0 gives a delta-function which fixes the worldsheet modulust at

t5

2pnR1 im
1

T

2pwR1 is
1

T

. ~5.4!

Thus thet-integral becomes a sum over these special points on the worldsheet moduli
These are the points at which there are holomorphic maps from the worldsheet to the targe

The one-loop free energy is obtained by a sum over the integers~n, m, w, s! such thatt is in
the fundamental domain of the moduli space. To do the summation, it is convenient to u
trick invented in Ref. 19 to trade the sum overs for the sum over copies of the fundament
domain. If (m,s)Þ(0,0), there is anSL(2,Z) transformation which sends~m, s! to ~m, 0! with
m.0, and it also maps the fundamental domain oft into the strip, uRetu<1/2, in the upper
half-plane Imt>0. The sum overs covers the strip exactly once by copies of the fundame
domain. On the other hand, the (m,s)5(0,0) term is independent of the temperatureT and
corresponds to the zero temperature vacuum energy. We will ignore this contribution since
no physical meanings in NRCS and it vanishes in supersymmetric theories anyway. Thus w

t5

2pnR1 im
1

T

2pwR
, ~5.5!

and we sum over integers~n, m, w!. Sincem.0 andt must be in the strip in the upper half-plan
we requirew.0 andunu<w/2 ~n at the boundaryn56w/2 is counted with a factor 1/2!.

We can now evaluate the path integral overg and ḡ. The zero mode piece is obtained b
evaluating the instanton action. Therefore, substituting~5.1! ~with s50! into the action~3.8! and
evaluating it at the points~5.5! of the moduli space, we find that the zero mode part of the ac
is
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S5E d2zS 1

8paeff8
]g ]̄ḡ1¯ D 5

mwR

2aeff8 T
1¯ . ~5.6!

As usual, the contribution from the nonzero modes of~b, g! is canceled by the determinant of th
~b, c! ghost system. Therefore, the one-loop contribution to the free energy takes the form

F~T!52 (
n,m,w

T

wm(
h,h̄

D~h,h̄!expF2
m

T S wR

2aeff8
1

h1h̄

wR D 12p i
n

w
~h2h̄!G . ~5.7!

This is obtained by evaluating the partition function of the worldsheet theory at the special p
~5.5! on the moduli space. Here (h,h̄) are the conformal weights coming from the transve
excitations of the string andD(h,h̄) is their multiplicity. To simplify the expression in~5.7!, we
have included inh the contribution from the transverse momentak. Thus, in comparison with the
notion in Sec. III,h and h̄ are defined as

h5
aeff8

4
k21N, h̄5

aeff8

4
k21N̄. ~5.8!

The factor2T/wm in ~5.7! is determined as follows. Theb0 integral with the action~5.3!
gives a factor (2pwR)22 times the delta-function fort @we sets50 in ~5.3!#. The measure for the
t-integral contains the factor

1

Im t
5

2pwRT

m
. ~5.9!

The zero-mode integral ofg gives the volume 2pR/T of the target space. Finally, the definition o
the one-loop free energy isF52TZ(T), where Z(T) is the one-loop vacuum amplitude a
temperatureT. Combining these factors together, we obtain

1

~2pwR!2

2pwRT

m

2pR

T
~2T!52

T

wm
, ~5.10!

as in ~5.7!.
The sum overn in unu<w/2 gives the constrainth2h̄[0 ~modw!, which we recognize as the

level matching condition. After summing overm, the free energy given by~5.7! becomes

F~T!5T (
w51

`

(
h,h̄

D~h,h̄!log~12eE~w,h,h̄!/T!. ~5.11!

This is the conventional expression for the one-loop free energy of quantum field theory. H

E~w,h,h̄!5
wR

2aeff8
1

h1h̄

wR
5

wR

2aeff8
1

aeff8 k2

2wR
1

N1N̄

wR
. ~5.12!

With the level matching condition for (h,h̄), the expression forE(w,h,h̄) precisely agrees the
energy spectrum of closed strings in NRCS computed in Sec. III, with the correct multip
factor.

The computation of the free energy described here is similar to the one for string inAdS3

discussed in Ref. 12. In that case, the one-loop amplitude has poles exactly at the special p
~5.4!, and they are due to the presence of long strings winding near the boundary ofAdS3 . Here
we have delta-functions at these points and they correspond to the closed strings winding inx1

direction.
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We now study the high temperature behavior of the free energy. It is clear that, for a
winding numberw, that the free energy is convergent for any temperatureT. However, there might
be a divergence when one performs the sum over winding modes. To see whether the sumw
gives a divergence, we use the Cardy’s formula,

(
h,h̄

D~h,h̄!exp~2p i th22p i t̄h̄!;expF2p ic

24 S 1

t

1

t̄ D G , ~5.13!

for Im t→0. Herec is the central charge of the rest of the system, andc512 for a Type II
superstring. Therefore, the high temperature behavior of NRCS is given by

(
unu<w/2

(
hh̄

D~h,h̄!expF2
m

T S wR

2aeff8
1

h1h̄

wR D 12p i
n

w
~h2h̄!G;expF2pwRS pcT

6m
2

m

4paeff8 TD G ,
~5.14!

for largew. Therefore, the sum over winding states will be divergent wheneverT>TH , where

TH5
1

2p
A 6

aeff8 c
. ~5.15!

This gives the Hagedorn temperature of NRCS. For Type II NRCS we find thatTH

51/2pA2aeff8 . It coincides with the location of the Hagedorn transition of NCOS studied in R
11, 20. Just like in conventional string theory, the Hagedorn temperatureTH is the temperature a
which the tachyonic mode which appears in the spectrum~5.12! due to the finite temperature GS
projection becomes massless. It would be interesting to study the behavior of the closed str
NRCS above the Hagedorn temperature. In NRCS, the breakdown of the thermal ensemb
not occur unlike for relativistic closed string theories since there is no graviton and the H
tonian is positive definite. However, there can be a Jeans instability.

We have demonstrated explicitly that theb zero-mode integral is convergent when one co
putes the one-loop free energy. As a result of theb zero-mode integral, the integral overt is
localized to a sum over the special points in the moduli space of the worldsheet torus wher
is a holomorphic map from the worldsheet to the target space torus. It is straightforwa
generalize this observation to higher loops. A simple computation shows that a map from a
g worldsheet to the target space torus exists only on a (2g23)-dimensional subspace. Such
holomorphic map exists whenever the following condition on the worldsheet period m
V i j ( i , j 51,... ,g) is satisfied:

Gi~V!5(
j 51

g

V i j S 2pwjR1 i
sj

T D12pniR1 i
mi

T
50, ~5.16!

for some integers (ni ,mi ,wi ,si). This generalizes~5.4! for g51. On a genus-g surface,b hasg
linearly independent zero modes, and their integrals give delta-functions imposing the cons
Gi50 (i 51,... ,g).

B. N-point amplitudes

Here we analyze the effects of theb zero-mode integrals on the scattering amplitudes. We
discuss theN-point tachyon amplitudes for simplicity, but a generalization to amplitudes involv
arbitrary external states is straightforward. As in the case of the tree amplitudes discussed
last section, the computation of^p i 51

n ei v̄ag(ua)1vaḡ( x̄a)& requires finding~b, g! which are holomor-
phic away fromua’s and behave nearz5ua as
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g~z!; iwaR log~z2ua!,
~5.17!

b~z!;
2 i v̄a

z2ua
~z→ua!,

wherewa is the winding number for thei -th external state. The functional integral is nonzero o
when suchb andg exist. As forb(z), there is always a meromophic one-form given by

b~z!52 i (
a51

N

v̄a]z logq1~z2ua!1const, ~5.18!

whereq1(z) is the elliptic theta function. Thisb is single-valued on the worldsheet torus as far
momentum is conserved,(ava50. On the other hand,g(z) obeying~5.17! does not always exist
To see this, let us try

g~z!5 i (
a51

N

waR logq1~z2ua!1cz, ~5.19!

for some constantc. Due to the quasi-periodicity of the elliptic function, we find

g~z12p!5g~z!12pc,
~5.20!

g~z12pr !5g~z!12pS 2R(
a51

N

waua1ct D ,

where we assumed that the winding number is conserved,(awa50. By requiring thatg(z) is
periodic modulo the target space periodicityg;g12pR, we find thatc must be of the formc
5mR for some integerm and

(
a51

N

waua5n1mt, ~5.21!

for some integern. This gives a condition on the locations of theN points. Thus we find that
rather than being divergent, the integral over the zero mode ofb imposes the condition~5.21! on
the locations of the vertex operators on the worldsheet.
High loops

It is straightforward to generalize this result to higher loops. On a genus-g worldsheet, the
holomorphic mapg(z) winding wa-times atz5ua should be of the form

g~z!5 i (
a51

N

waR logE~z,ua!1(
i 51

g

ciEz

v i , ~5.22!

for some constantsci , wherev i are holomorphic one-forms, andE(z,w) is the prime form, a
~21/2!-differential with respect toz andw that vanishes linearly on the diagonalz5w only ~see,
for example, Sec. IIIb.1 of Ref. 21!. The periodicity ofg in thea-cycles of the worldsheet require
that ci must be of the formci52pmiR for some integersmi , and the periodicity around the
b-cycles requires

Gi5 (
a51

N

waEua
v i2S ni1(

j 51

g

V i j m
j D 50, ~5.23!

for some integersni . This imposesg conditions on the (3g231N)-dimensional moduli space o
the genus-g worldsheet withN points. To verify that theg conditionsGi50 are independent o
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each other and pick up a codimensiong subspace, we need to compute their partial derivati
with respect to the worldsheet moduliyI ~I 51,... ,3g23) and the vertex operator locationsua .
They are given by

]Gi

]ua
5v i~ua!wa ,

~5.24!
]Gi

]yI
5E d2z v i~z!h I~z,z̄!S (

a51

N

wa]z logE~z,ua!22p i (
j 51

g

mjv j~z!D ,

whereh I are the Beltrami differentials associated to the moduliyI . Note that the partial deriva
tives of Gi are all of the form,*d2zv i(z)n(z,z̄) for some differentialn. Since

deti , j 51,̄ g„v i~zj !…Þ0, ~5.25!

for genericg points zi , it is clear that the rank of the (3g231N)3g matrix (]ua
Gi ,]yI

Gi) is
genericallyg. Thus the integral over theg zero modes ofb exactly pick up the subspace of th
moduli space where the holomorphic mapg(z) exists.

VI. RELATION TO DLCQ

In this section we show that the NRCS limit we have studied is related by T-duality to
DLCQ limit of string theory. This follows by performing T-duality along the circle of radiusR
where theB-field lies. After T-duality, we get string theory without any backgroundB-field, with
a metric

gmn5S 211~2pa8B!2 2pa8B

2pa8B 1 D , ~6.1!

and where the radius of the circle isa8/R. In the NRCS limit the metric is given by

ds252
a8

aeff8
~dx0!212 dx0 dx11~dx1!2. ~6.2!

We now rescale coordinates such thatx1→(a8/aeff8 )x1. In the NRCS (a8→0) limit the metric in
these coordinates is

1

a8
ds25

1

aeff8
@2~dx0!212 dx0 dx1#, ~6.3!

and the periodicity of the compact direction is given by

x1;x112p
aeff8

R
. ~6.4!

Since in this limit thex1 coordinate is light-like, we see that DLCQ of closed string theory w
string scaleaeff8 and null radiusaeff8 /R is T-dual to NRCS.

Because of the relation between NRCS and DLCQ, the formalism developed in this
gives a useful description of DLCQ closed string theory also. In Refs. 22, 23, loop amplitud
DLCQ closed string theory were studied to address the issue of divergence due to the longi
zero modes.16–18 In particular, it was found in Ref. 22 that one-loop scattering amplitudes, w
external strings carry nonzero longitudinal momenta, have finite DLCQ limits and that the
tions of the vertex operators are constrained in the limit. These constraints can be viewed
T-dual of ~5.21! in NRCS. The description of NRCS developed here does not involve the pro
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of taking the NCOS limit, and thus loop amplitudes are manifestly finite. In fact, the one-
observation in Ref. 22 has a straightforward generalization to higher loops, as we saw in~5.23!.
Evidently, unlike in ordinary field theories, the longitudinal zero modes do not cause a probl
DLCQ closed string theory. In the case of Type IIA string theory, this is related, via the h
thetical 11-dimensional Lorentz invariance of M theory, to the existence of the smooth D
limit of M Theory described by the finiteN Matrix Theory.24–26

For closed strings, the relation between NRCS and DLCQ provides another way to unde
the origin of the nonrelativistic dispersion relation. The nonrelativistic limit described in Se
however, is much broader and includes cases that are not related to DLCQ, as we will see
next section.

VII. GALILEAN THEORIES

In this section we find new theories whose excitations satisfy a nonrelativistic dispe
relation. The light degrees of freedom that survive the low energy limit are light-branes~these
theories do not have background branes, unlike the theories discussed in Ref. 8!. Depending on
which background gauge field one tunes to its critical value, different brane states are light
the rest of the states in M Theory decouple.

We will first consider M Theory limits where the light degrees of freedom are membrane
five-branes. We will call these theories GM~Galilean membrane! and GF~Galilean five-brane!,
respectively. The first one is obtained by tuning to the critical value the background three
and the second one by turning on the background six-form of M Theory. The low energy lim
taken such that the terms in the world volume action depending on the transverse coordin
the background remain finite in the limit. Just as for NRCS, the spectrum is modified if the
directions are compactified, otherwise there are no finite energy physical excitations survivi
limit.

Therefore, the low energy limit leading to GM is given by~throughout the rest of the paper w
will have in mind compactification on tori; it is straightforward to generalize the decoupling li
when branes wrap curved geometries!

gmn5hmn m,n50,1,2,

gi j 5
l p
3

l eff
3 d i j i , j 53,... ,10, ~7.1!

C0125TM22Teff ,

with the eleven-dimensional Planck scalel p→0 while the effective length scalel eff is kept finite.
HereTM251/4p2l p

3 is the membrane tension andTeff51/4p2l eff
3 is the finite effective tension o

the light membranes that survive the limit. Note that GM has no coupling constant and it co
a unique dimensionful parameterl eff . This is reminiscent of some of the properties of eleve
dimensional M Theory.

The decoupling limit giving rise to GF is given by

gmn5hmn , m,n50,1,... ,5,

gi j 5
l p
6

l eff
6 d i j , i , j 56,... ,10, ~7.2!

C0123455TM52Teff ,

with l p→0 while the effective length scalel eff is kept finite. HereTeff denotes the effective tensio
of the light five-brane excitations. Just as GM, GF has no coupling constant andl eff is the unique
dimensionless parameter of the theory.
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Similar theories can be obtained from light Dp-branes, which we will call GDp~Galilean
D-p-branes!. As we will now see, these theories are connected by dualities which are remin
of the dualities of the fully relativistic theories from which we obtain these Galilean theories
first discuss the relation between supersymmetric Type IIA NRCS and the eleven-dimen
theory GM.

Here we will show that in fact the strong coupling dual to Type IIA NRCS is described
eleven-dimensional GM such that the parameters of the two theories are related to each ot
similar fashion to the usual relation in the relativistic setting.

Consider GM theory~7.1! compactified on a circle of proper radiusR. The background critical
three-form potential reduces to a NS–NS two-form potential,

B0152pRC012. ~7.3!

Using the usual relation of parameters between M theory and Type IIA superstring theory,

R5gsAa8, l p5gs
1/3Aa8, ~7.4!

we can writeR and l p in the limit ~3.2! which defines NRCS, so that

R5gAaeff8 , l p5g1/3aeff81/6a81/3, ~7.5!

asa8→0.
Substituting the eleven-dimensional limit~7.1! in ~7.3! we see that the background NS–N

two-form potential is given by

2pa8B01512
l p
3

l eff
3 . ~7.6!

Using~7.5! and comparing with the limit defining NRCS in~3.2!, we see that NRCS with coupling
constantg and effective string scaleaeff8 is equivalent to GM theory on a circle of radiusR and
effective Planck scalel eff . The parameters are related by

R5gAaeff8 , l eff5g1/3Aaeff8 . ~7.7!

A. GDp and GNSF theories

In this subsection we present some generalizations to the construction we made for pe
tive closed strings in a near critical NS–NSB-field to Dp-branes in a near critical Ramond
Ramondp11-form background. In order for the background to affect the Hamiltonian, the sp
directions of the brane have to be compactified on an orientablep-cycle of space–time. In this
case, the winding number plays the role of electric charge in the discussion in~2.4! and again
positivity of the energy allows only wrapping in one orientation.

The nonrelativistic limit that needs to be taken requires keeping finite the terms in the
volume action depending on the transverse coordinates to the brane and tuning the back
field to the tension of the D-brane~this is the analog of the NRCS limit. There, we scaleda8 and
the metric in the transverse directions to theB-field such that terms of the string worldsheet acti
depending on the transverse coordinates are kept finite!. The limit is given by

gmn5hmn , m,n50,1,... ,p,

gi j 5S a8

aeff8 D 2

d i j , i , j 5p11,... ,9,

~7.8!

gs5S a8

aeff8 D ~32p!/2

gp ,
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C01̄ p5Tp2Tp
eff ,

asa8→0. HereTp is the tension of the D-brane~which is infinite in the limit!,

Tp5
1

~2p!pgsa8~p11!/2 . ~7.9!

Tp
eff is the finite scale of the nonrelativistic theory andgp the coupling of the theory. The effectiv

tension is given by

Tp
eff5

1

~2p!pgpaeff
~8p11!/2 . ~7.10!

In the limit ~7.8! all states of string theory decouple except the light Dp-branes that have
proper energy excitations. In particular, open and closed strings decouple from the low e
spectrum.

There is a very simple explanation for the limit we take in~7.8!. Except for the presence of th
background gauge fieldC01̄ p , ~7.8! is the conventional low energy limit that results in a gau
theory on a Dp-brane.27 This can be easily recognized by noting that the Yang–Mills coup
constant is given bygYM

2 ;gpaeff8(p23)/2 and that the limit~7.8! keeps the coupling finite. Moreove
the metric for the transverse coordinatesXi to the brane is given as in~7.8! whenever we expres
them in terms of the Higgs fieldF i of the gauge theory asXi5a8F i and require that the metric
for F i remains finite. The low energy limit is supplemented by turning a near critical backgr
gauge field which results in light Dp-brane fluctuations.

There is one more theory we can define by tuning a massless gauge field of string t
namely the one where the light excitations are NS five-branes. We will call these theories
~Galilean Neveu–Schwarz five-brane!. Just like NRCS, these theories can be obtained as a
energy limit of the different superstring theories. This low energy limit can also be motivate
considering the low energy limit on NS five-branes which yields the little string theories.28 The
nonrelativistic limit is given by

gmn5hmn , m,n50,1,...,5,

gi j 5S gs

G D 2

d i j , i , j 56,...,9, ~7.11!

B0123455T52T5
eff ,

asgs→0 while keeping the string scalea8 finite in the limit. Now the effective tension of the ligh
NS five-branes is given by

T5
eff5

1

~2p!5G2aeff83 . ~7.12!

Thus,~7.11! defines a nonrelativistic theory GNSF of light fluctuations of NS five-branes.
We will now briefly describe the theory one obtains for different values ofp.

1. Zero-branes

For GD0, one may lift the description to M Theory~for a lift to eleven dimensions of a simila
limit see Ref. 8!. After a suitable rescaling of energy scales in M Theory, the M Theory circle g
from a space-like circle to a light-like circle of finite radiusR5g0Aaeff8 . Then, if we consider the
limit ~7.8! for N D0-branes one obtains a DLCQ description of M Theory with eleven-dimensi
Planck lengthl p5g0

1/3Aaeff8 in a sector withN units of longitudinal momentum.
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2. One-branes

For p51, the light states are D1-branes. The strong coupling dual of the theory of
D1-branes can be found by using Type IIB S-duality. S-duality maps the critical R–R backg
C01 to a critical NS–NS backgroundB01. The parametersg̃s andã8 of the S-dual theory are given
by

g̃s5
1

gs
, ã85a8gs . ~7.13!

Writing the limit ~7.8! for p51 in terms of the S-dual variables and comparing with~3.2! shows
that the S-dual of GD1 is given precisely by NRCS if the parameters of the two theories are r
by

g5
1

g̃
, aeff8 5g̃ãeff8 . ~7.14!

Thus Type IIB NRCS is related to GD1 by a strong–weak coupling duality which takes the
form as the conventional Type IIB S-duality. At the end of this section we will realize S-du
of Type IIB NRCS by studying GM theory compactified on a two-torus.29,30

3. Two-branes

GD2 can also be lifted to an eleven-dimensional picture. The D2-branes lift to M2-brane
the parameters~the eleventh-dimensional proper radiusR and the Planck lengthl p! of M Theory
are related to those of GD2 by

R5
a8

Aaeff8
g2 , l p5g2

1/3a82/3

aeff81/6 . ~7.15!

Moreover, the near critical R–R background lifts to a near critical background for the three
of eleven-dimensional supergravity. Therefore, GD2 can be identified with GM on a trans
circle. Using the parameters in~7.1! we see that GM with an effective Planck scalel eff on a
transverse circle of coordinate size L is GD2 with couplingg2 and effective string scaleaeff8 . The
parameters are related by

L5g2Aaeff8 , l eff5g2
1/3Aaeff8 . ~7.16!

Thus, the relation between GD2 and GM is reminiscent of the conventional duality between
IIA and M Theory.

4. Three-branes

In order to get light D3-branes one must turn on a critical RR four-form. We can analyz
strong coupling dual of GD3. In fact, GD3 is self-dual, since S-duality of the underlying s
theory maps the limit~7.8! to an analogous limit but with a different coupling constant a
effective string scale. Therefore, GD3 with parametersg3 andaeff8 is dual to GD3 with parameter
g̃3 and ãeff8 . The parameters are related by

g̃35
1

g3
, ãeff8 5g3aeff8 . ~7.17!

At the end of this section we realize the S-duality of CD3 from an eleven-dimensional perspe
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5. Four-branes

The GD4 limit can also be lifted to M Theory. The main difference here is thatgs→` in the
limit. Therefore, it is required to analyze the configuration in eleven dimensions. The D4-b
lift to M5-branes wrapped on the M Theory circle. The proper size of the circle and the c
sponding eleven-dimensional Planck length are given by

R5g4Aaeff8 , l p5g4
1/3a81/3aeff81/6. ~7.18!

Since the background RR five-form lifts to a near critical six-form of eleven-dimensional su
gravity, one sees that the strong coupling dual to GD4 is given by GF. Comparing the para
in ~7.18! with those that define GF~7.2! one finds that the parameters of the two theories
related by

R5g4Aaeff8 , l eff5g4
1/3Aaeff8 . ~7.19!

6. Five-branes

We now consider the OD5 theory. Forp55, one also has to perform S-duality since in t
decoupling limitgs→`. S-duality maps the D5-branes to NS five-branes. Moreover, the cri
RR field gets mapped to a critical NS–NS electric field for the NS five-branes. Thus we are
studying NS five-branes in a critical field. Type IIB S-duality maps the limit~7.8! for p55 to a
theory with string scale and string coupling given by

ã85gsa85g5aeff8 , g̃s5
1

gs
5

a8

aeff8

1

g5
. ~7.20!

Note that the string scale of the S-dual theory is finite while the string coupling vanishes. T
precisely the limit that defines Type IIB GNSF~7.11!. The parameters of GD5 (g5 ,aeff8 ) are
related to those of GNSF (G,ã8) by

aeff8 5Gã8, G5
1

g5
. ~7.21!

In the limit that defines GD5, apart from having low energy D5-brane excitations, there are
finite energy D1-string excitations. These are identified in the Type IIB GNSF theory with st
of tensionã821 fluctuating inside the five-branes.

7. Type IIA Neveu –Schwarz five-branes

Type IIA GNSF has an interesting strong coupling dual. The limit in~7.11! can be realized by
considering the decoupled theory of light fluctuating five-branes of M Theory on a trans
circle of proper sizeR. The near critical six-form background of eleven-dimensional supergra
becomes a near critical RR six-form of Type IIA string theory and the M5-brane becomes
five-brane on a transverse circle of proper radiusR. The parameters of the two theories are rela
by

R5gsAa8, l p5gs
1/3Aa8. ~7.22!

By comparing the scaling limit~7.2! with ~7.11! and using~7.22! one finds the following relation
between the effective length scales of the two theories,

l eff5G1/3Aaeff8 . ~7.23!

Moreover, the NS five-branes now sit at a point in the transverse circle, whose coordinate
is given by
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L5GAa8. ~7.24!

We see that the Galilean theories we have found sit on the same moduli space and
many of the properties of the parent theories from which we define them by taking a low e
limit. The reduced number of degrees of freedom that these theories have can be an inte
avenue in which to study in a simplified setting M Theory dualities.

8. S-duality of Type IIB NRCS from GM

We first notice that Type IIB NRCS can be obtained by considering eleven-dimensiona
theory compactified on a two-torus, where one circle is along the membrane and the o
transverse to it, and then shrinking the torus.

Let us consider GM theory compactified on a rectangular torus of coordinate size radiiR1 and
R2 . We will take the circle of radiusR1 to be along the background three-form of supergrav
and the circle of radiusR2 to be transverse to it. If we reduce GM onR1 one gets Type IIA NRCS.
The string coupling is given by

gs5
R1

Aa8
. ~7.25!

We now perform T-duality along the circle of radiusR2 . This maps the limit to a Type IIB set-up
T-duality inverts the proper size of the circle one T-duals along and changes the dilaton
conventional fashion. The new string coupling is given by

gs85
R1

R2
Aaeff8

a8
. ~7.26!

Therefore, comparing with~3.2! we see that this compactification of GM leads to Type IIB NRC
with coupling constant

g5
R1

R2
, ~7.27!

compactified on a transverse circle of coordinate sizeaeff8 /R2. Therefore, one gets Type IIB NRC
from GM in the limit that the coordinate area of the torus vanishes at fixed ratioR1 /R2 .

However, one could have chosen to reduce GM on the circle of coordinate radiusR2 . As we
showed, this leads to CD2 theory on a parallel circle of coordinate sizeR1 . The Type IIA coupling
is given by

g̃s5
Aã8

ãeff8
R2 . ~7.28!

One can perform a T-duality transformation along the circle of radiusR1 such that we get a low
energy limit in the Type IIB superstring where the string coupling is given by

g̃s85
ã8

ãeff8

R2

R1
~7.29!

and the circle is of coordinate sizeãeff8 /R1. Thus, by looking at~7.8! for p51 we see that one get
CD1 theory with coupling,

g̃15
R2

R1
. ~7.30!
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Therefore, S-duality of Type IIB NRCS can be understood from an eleven-dimensiona
spective as the symmetry that exchanges the two circles when one considers GM theory c
tified on a two-torus.29,30

9. S-duality of GDS from GF

Consider a single M5 brane compactified on a rectangular two-torus of radiiR1 andR2 along
the background directions in the decoupling limit~7.2!. If we treat the circle of radiusR1 to be the
one that results in GD4, then the parameters of GD4 are given by

R15g4Aaeff8 , l eff5g4
1/3Aaeff8 . ~7.31!

One may perform T-duality along the circle of radiusR2 . Then, we obtain the Galilean theor
of light D3-branes. The string coupling after T-duality is given by

gs85gs

Aa8

R2
5g4Aaeff8

R2
. ~7.32!

Comparing~7.32! with ~7.8! for p53 and using~7.31! one finds that the effective coupling of th
theory of light D3-branes is

g35
R1

R2
, ~7.33!

which is reminiscent of the relation between M Theory on a two-torus and Type IIB string th
If one reduces first on the circle of radius ofR2 and then performs T-duality along the circ

of radiusR1 one again obtains GD3 but with the inverse coupling. Therefore, S-duality of G
follows from the interchange of the two circles of the two-torus in the GF realization of GD
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