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Nonrelativistic quantum Hamiltonian for Lorentz violation

V. Alan Kostelecky and Charles D. Lane
Physics Department, Indiana University, Bloomington, Indiana 47405

(Received 18 May 1999; accepted for publication 30 August 1999

A method is presented for deriving the nonrelativistic quantum Hamiltonian of a
free massive fermion from the relativistic Lagrangian of the Lorentz-violating
standard-model extension. It permits the extraction of terms at arbitrary order in a
Foldy—Wouthuysen expansion in inverse powers of the mass. The quantum particle
Hamiltonian is obtained and its nonrelativistic limit is given explicitly to third
order. © 1999 American Institute of Physid$§0022-24889)01712-(

[. INTRODUCTION

Establishing the physical relevance of a Lagrangian in relativistic quantum field theory often
requires a determination of its nonrelativistic content. The Foldy—Wouthuy§eWw)
transformatioh provides a systematic approach to understanding the low-energy effects of certain
theories. Given the relativistic quantum Hamiltonian for a theory of massive four-component
fermions, the nonrelativistic quantum Hamiltonian for the corresponding two-component particle
can be derived in an expansion in inverse powers of the fermion mass.

In this work, we use generalized FW methods to investigate the quantum particle Hamiltonian
that describes the physics of a free massive two-component fermion emerging from the relativistic
Lagrangian of the Lorentz-violating standard-model exten$ibhis standard-model extension is
based on the idea of spontaneous Lorentz breaking in an underlying tfaearhas been used for
various investigations placing constraints on possible violations of Lorentz symfdetRseveral
of which depend crucially on the nonrelativistic physics of free massive fermions. In these inves-
tigations, specific terms in the nonrelativistic Hamiltonian have been derived as needed, but a full
treatment has been lacking. Here, we provide a systematic approach that permits extraction of the
relevant terms in the nonrelativistic Hamiltonian at arbitrary order in the FW approximation. We
obtain the quantum particle Hamiltonian and provide explicitly the form of the nonrelativistic
Hamiltonian to third order. Our results are directly relevant to recent analyses of muon and
clock-comparison experimenfs® and are expected to have substantial impact on further studies
of the physical implications of the standard-model extension.

The general form of the relativistic Lagrangian for a free spibirac fermiony of massmin
the standard-model extensior is

L= %I lzb( ’)/VJ’_ CMV7M+ dﬂv75yﬂ+ ev+ if V75+ %gh/.waj\#) 5V¢

_l//(m+ap’y#+bp75yﬁ+%H,u,vo-’uy)l// (1)

This is a generalization of the usual relativistic Lagrangian for a free massive Dirac fermion. The
Dirac matriceg1,ys,y*,ysy",0*"} have conventional properties, and the Minkowski meirjc
has signature-2. The parametera,, b,, c,,, d,,, €,, f,, 9),,, andH,, control the extent
of Lorentz violation in the theory. In a given observer inertial frame, they can be regarded as fixed
real Lorentz vectors or tensors. Note titdf, can be taken as antisymmetric,, andd,, as
traceless, and, ,, as antisymmetric in the first two indices. Since Lorentz symmetry is known to
be valid to high precision, any nonzero parameters in nature would need to be minuscule. We
therefore restrict our attention in this work to terms linear in these parameters.

In Sec. Il, the relativistic particle—antiparticle Hamiltonidircorresponding to the Lagrangian
(1) is obtained. Some basic information about our procedure for extracting its FW form is dis-
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cussed in Sec. lll, together with our definition of the relevant FW sequence. Features of this
sequence are derived in Sec. IV, and the quantum particle Hamiltonian and its nonrelativistic limit
to third order are explicitly presented in Sec. V.

II. RELATIVISTIC QUANTUM HAMILTONIAN

The first step in deriving low-energy effects of the Lorentz-violating terms is to obtain the
relativistic HamiltonianH associated with the Lagrangid@h). However, methods for direct con-
struction ofH are inadequate because Efj. contains couplings involving time derivatives. For
example, applying the Euler—Lagrange equationsCt@nd solving forH from the equation
i dotp=H ¢ results in a non-Hermitian Hamiltonian and a corresponding nonunitary time evolution.

One method of bypassing this technical difficulty is to perform a field redefinitiey in
the Langrangian with A chosen such that the dependence of the Lagrangiaig pis just that of
the usual Dirac Lagrangian. Then, the wave function associatedywétiolves conventionally in
time. The field redefinition leaves unchanged the physics, while it causes the time-derivative
couplings to be replaced by extra terms in the Lagrangian.

To implement this idea, we write the Lagrangidn in the forms

L=35yT 0" p— yM =5 Xy "x+ 5 X(AT;A) 3 x— x(AMA) x, ©)

whereI", and M are defined according to the correspondence with (Eg.and E=YK with

A:= y°ATy0. In the second expression the Lorentz indices are separated into timelike and space-
like Cartesian componentg,=0 andj=1, 2, 3, with summation on repeated indices understood.
The choice

A=1-3°To— ), A=1—-3To—70)?° &)

implements the equalit{?) to linear order in the parameters for Lorentz violation. Derivation of
the relativistic Hamiltoniafd can then proceed through the Euler—Lagrange equations, which take
the form of a modified Dirac equation:

(iAT ,Ad*—AMA) x=0. (4)
We find
H=—y%AT';Ap + y°AMA, (5)

where the three-momentum of the particle is dengtgdandH obeys the equatioivox=H y.
Explicitly, the relativistic Hamiltonian can be written

H=m(y%+Py+Og+ &), (6
where
MPy:=—p; Yoy,
MOg:=[ — b+ (do; +djo) P’ 15+ [a; = (Cj— Coom) PK17°¥ +ifp v57°
+i[Hoj+ (gjok+ Gjko) PK1Y,
ME&o:=[a9— (Coj+ Cjo) P! —Mey] +[ — bj + (dji— doomji) P*— 2Me“ ™ 9jmGii0] 57 ?

—[mcyot g p'1y°— [%lemﬂijkﬁ mdjo— flmnﬂjn(%glmk_ Mkm3100 P¥]v5 Y.
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In these expressions, the totally antisymmetric rotation tem&brsatisfiese;,=+1 and e/¥!
= —€ji - The particular decomposition ¢f into the four terms irn(6) is chosen for later conve-
nience.

As an aside, we remark that the relativistic Hamiltonian is also readily found if the tli&ory
is extended to include a minimal coupling to a U(1) gauge fig|d It suffices to replace the
partial derivativeid, in Eq. (1) with the covariant derivativéD ,:=id,—qA,, whereq is the
particle charge. The relativistic Hamiltonian then has the same form as if@a@sd(7), except
that all occurrences gf; must be replaced withr:=p; —gA; and the terngA, must be added to
Eq. (6). The resulting Hamiltonian is relevant, for example, for studies of Lorentz-violating effects
in quantum electrodynamics.

Ill. DEFINITION OF THE FW SEQUENCE

In the strict nonrelativistic limit, the lower two components of the relativistic wave fungtion
are negligible, so the upper two componentgycfuffice to determine the nonrelativistic particle
behavior. However, more generally the Dirac equation couples the upper and lower components of
x- The object of the Foldy—Wouthuysen procedure is to findnamentum-dependéentinitary
transformation

H—H:=e'SHe S=exd adiS)]H, (8)

where adK)Y:=[X,Y], such thatH is 2x 2 block diagonal. This therefore decouples the upper

and lower components of the FW-transformed wave funcfiese'Sy. Requiring hermiticity ofS

ensures thae'S is unitary. It follows thatH is Hermitian and that both Hamiltoniart$ and H

describe the same physics. The FW transformation amounts to a unitary rotation in the Hilbert
space of the free-particle states that preserves the dominance of the upper two components of the
wave function. The quantum particle Hamiltonig, and the nonrelativistic limih we seek are

given by the leading 2 2 block of H.
Solving directly forH would be of interest but is challenging in the general case. Instead, we

present a method that allows approximatiortbfo arbitrary accuracy in an expansion in powers
of |B|/m. The basic idea is to apply a succession of transformations of the&ypehosen so that
each iteration of the transformed Hamiltonian has a smaller block off-diagonal part than the
previous one. The exact FW transformation is the limit of this sequence. Although more direct
approaches can yield a low-order approximatiorhtaithout the use of our method, the results
derived here permit straightforward calculationipf; and ofh to any desired order.

For definiteness in what follows, we work within the Dirac-Pauli representation of the Dirac

matrices, for which
0 1 0 j
Y = 0 -1 ’ Y=

whereo! are the usual Pauli matrices. We define a matrix texamif it is block diagonal anadd
if it is block off-diagonal. Any 4<4 matrix X can be uniquely written as the sum of an even part
and an odd partX=even(X) + odd(X), where oddK) =3y’ y°,X] and evenk) = 3y°{1°X}.

We seek a sequence of FW transformations such that the odd part of the Hamiltonian pro-
gressively decreases in some suitable matrix norm, sulthllas max, ,{|/Aql} for a,b=1,2,3,4. In
the remainder of this section, an appropriate sequé¢hig¢ of Hamiltonians is introduced. For
eachn, we also introduce a parametgy that turns out to provide a measure of the size of
odd(H,). We show in Sec. IV that with our definition for the FW sequence roughlterations

are needed to arrive at a nonrelativistic Hamiltonian that is even to okﬂbno(ngl).
To start the FW sequence, choose

0 a'j)

—-al 0

Ho=mg(y°+Po+ O+ &), 9
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wheremg:=m and the term&,, Oy, and&, are defined in Eq.7). This decomposition dfly into

four parts has the following useful propertiés: P, and O are odd(ii) &, is even;(iii) Oy and

&y are first order in parameters for Lorentz violation, so products of these quantities can be
neglected; andiv) 7?(2) is proportional to the X4 Dirac identity matrix, with proportionality
coefficientt3=|p|?/m?. We choose for the initial FW transformation the Hermitian masix
defined by

1
iSO::ZTnO ylodd Ho)]1=27°(Po+ Oo). (10

This choice ensures that the odd part of[@d§iSy) |Hg is smaller than the odd part &f;.
Our FW sequence is then defined iteratively by

@

. . 1
Hyoyi=e'SiH,e = 30 1S, [iSy . [iS, ol - 1=explad(iS,)JH, (1D

k commutations with i§,

and
iSn+l’=2m 1 'yO[OddHn+1)]. (12)
n
Note that
n
Hn+1=|kﬂ0 exp[aotiskn]Ho, (13

where the product represents map composition.
In Sec. IV, we find that eacH . ; can be written in the form

Hn+1:mn+1(70+7)n+1+On+1+5n+1)v (14

where the decomposition has the following useful properti¢$,,. 1 andO,, 1 are odd{ii) £,41
is even;(iii) 0,1 and&,,, are first order in parameters for Lorentz violation; dhd Pﬁﬂ is
proportional to the identity matrix, with proportionality coefficietr;’;gl determined bytﬁ. The
existence of a decomposition of the fofd) for arbitraryn, as well as the cag®) above, is a key
feature making it feasible to calculate the quantum particle Hamiltonian.

IV. CALCULATION OF THE FW SEQUENCE

To calculate the FW sequence defined in Sec. lll, the explicit form is needed of the operator
exfgad(S,)] connectingH, to H,, ; according to Eq(11). Although ad{S,)H,, can be obtained
directly using the properties of the Dirac matrices, calculation of &@S;) |H,, is more chal-
lenging because it is defined by an infinite series. To address this issue, we adopt the following
approach: regard atf,) as a linear map on a suitable vector spdgecontaining bothH, and
H,+1, and find a matrix expression of this map that can be exponentiated.

The first step in implementing this approach is to defifyefor eachn. It is convenient to
introduce V,, as the span of a set of basis vectds, defined in terms of the operators
Y0, P.,On,E, determiningH,, together with the particular combinations of these four operators
that determine ad,)H, and thus alsdd,, ;. For eachn, we define the ordered set

Bn:{'yorlpn ,On vpn{Pn aon}: VO[Pn Enlién, 70{7;” :On}:Pn[Pn rgn]}- (15
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The eight-dimensional vector spatg is formally defined as the real span of this set, so the
elements off3, by definition form a(linearly independentbasis. One advantage of this vector
space is its relatively small dimensionality, which makes it susceptible to practical calculation. We
can thus specify a vectdf e V,, by eight component¥,,...,Vg:

V:=V, 'yO + Vo Pa+V30,+ V4Pn{Pn aOn} +Vs 'yo[Pn &l
+Ve&nt VY')’O{Pn ’On} + VPl Pn &l

—(Vq,...Vg). (16)

For exampleH,<~m,(1,1,1,0,0,1,0,0).

The reader is warned to avoid confusing the properties of the elerfiS)tas a basis for the
vector spacé/, with their possible relationships when viewed as operators on the Hilbert space of
wave functions. For example, the calculations below hold even if certain basis elements vanish as
operators. Note also that for differemtthe corresponding vector spacgsdiffer a priori. How-
ever, since bottH,eV, andH,,,€V,, the vector spac&/, is invariant under the action of
exgad(sS,)], which means/,2V, , for all n.

With the above notation, we can present the results of a direct calculation i&,,gd(for
V eV, performed using the properties of the Dirac matrices:

ad(iSy) Ve (t3V,, = Vi, = Vy, = V7,3V +thV8 0,3V, + 3Va+ iV, — Ve). (17)
In this expressiont? is determined iteratively from?_, through the relation

sint,, \ 2

cost,— n

2 _ n 2
th+a cost, +t, sint, th- (18
Here and in what follows, we define functions tgfthrough their power-series expressions. All
relevant functions oft,, implicitly involve only powers oftﬁ (and hence powers ofS
=|p|%m?), so it suffices to define’. Note thatt,, ;~t3 to leading order irt,,, sot,~t&" . This
means that, rapidly approaches zero ify<1, which ultimately is the reason for the rapid
convergence of our FW sequence.

With respect to the basi§,,, the matrix map of ad§,) can be extracted from E¢17) and
is given by

0O t2 00 0 0 0 O
-1 0 00 0 0 0 O
-1 0 00 0 0 0 O
0 000 O 0-10
adiS<l g g g g 0 L 0 ¢ (19
0 000 O 0 0 O
0o L 1 ¢¥ 0 0 0 O
0 000 -10 0 O

The exponential of this matrix can be found in closed form, but its detailed expression is unim-
portant. It can be used to calculate gqi(iS,,) |H,, which allows us to expreds,,,; in terms of
H, according to Eq(14) with
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sint,

L

My, =(cost,+t,sint)m,, My 1Pni1= ( cost,— i
n

sint, 1 (sint, )
Mp+10n:1= costn—t— mn(’)n+? t——tnsmtn—costn MpPn{Pn,On}
n n n
sint, 0
+ Tmny [Pn.&nl, (20)
n
1 0 Sta—
Mp 4+ 1En+1=Mp&n+ (5C0St) My { Py, Onf + T MpPnl Pn . Enl-

n

A measure of the convergence of the FW sequence can be introducedwshéﬁn) . Interms
of a suitable matrix norm)jodd(H,. 1)||~tZloddMH )] + talEoll~ 2 oddH ) [+ tE7]&|l.

Thus, asn grows||odd(H )| rapidly approaches zero as{/m)3". Even a relatively small value
of n can therefore produce a good approximation to the quantum particle Hamiltonian.

V. NONRELATIVISTIC QUANTUM HAMILTONIAN

The quantum particle Hamiltonigm, and its nonrelativistic quantum limit are generated in
the limit of the FW sequence studied in the last section. Next, we demonstrate how to obtain these
using simple matrix multiplication, and we explicitly presénf, andh to ordertg.

The calculation at th&th-iteration level in the FW sequence requires obtaining the composite
map Hﬁ=0exr[ad68n)]. For eachn in the FW sequence, the matrix a8f) and the action of
exgad(S,)] are given with respect to the badfg. Since in general the vector spalg varies
with n, immediate calculation oﬂﬁzoexp[adosn)] by matrix multiplication is inappropriate.
Instead, we first obtain the components of each matrix with respect to the specialBpasis
Ordinary matrix multiplication can then be used to derﬂigoexp[adasn)].

The matrix for each map ekad(iS,)] can be expressed in terms §f. Explicitly, the
nonzero entries for expd(iS,)] with respect to the basi§, are:

I 0 0 0 0 0 0 0
0 Cn—Sn 0 0 0 0 0 0
0 0 Cn—Sn 0 0 0 0 0
_ 0 0 (sh—t2sp—cp)f2td  —t2s, 0 0 —tSa/ty O
exdadiSyl=| 0 0 0 -2, ts/2t 0 totns,
0 0 0 0 0 1 0 0
0 0 thCn/2tg totnCn 0 0 (o 0
0 0 0 0  —ticnlty (cp—1)/2t3 0 Cn

(21)

where we have defined,:=cost,~1— 32, ands,:=sint,/t,~1— .

Sincet,— 0 asn— oo, it follows that expad(iS,) ] becomes a diagonal matrix with entrigs
0,0,0,0,1,1, Lin this limit. The produclﬂﬁzoeXQadGSn)] therefore converges &s—», so
the limiting FW sequence giving the quantum particle Hamiltonian indeed exists. It can be shown
that
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y 0 0 0 0 0 0 0
00 0 O 0 0 0 0
00 0 O 0 0 0 0
00 0 O 0 0 0 0
ﬁ exifadis)) o 00 0 O 0 0 0 0 |
E 00 0 O 0 1 0 0
0 0 2—1y [t3] 0 0 [1-3t3] 0
00 0 © {—14—%'[2} ot 0 [1—3#}
20 2y(y+1) 20

(22

where y:= \/1+to2 is the usual relativistic gamma factor. Since the limiting FW Hamiltonian is
obtained by applying this matrix tblg«(1,1,1,0,0,1,0,0), the entries in brackets are irrelevant
and so we have evaluated them only to ork@er'l'hus, we find the limiting FW Hamiltonian to be

FI = ymoy2+ Moot o2 40Py, Op} — =2
YMoY 0c0 2y7 0.Yo 2y

297+ 1) Pol Po»&ols (23

an expression that is accurate to all ordertyinSubstitution from Eq(7) yields the explicit form

- p! MCoo p! p'pX
_ 0 0
H=ymy"+ aO_mQ)_m(COj+CjO)E + = " +(aj—me) ym—m(Cjk—ﬂjkCoo) ym2| Y

bo 7k
+ o7

—(mdig+ 3¢ Hig) +

K
p
+ melmj(%glmk_ nkmgloo)}ﬁ

(y-1m? p'pX

+| m(dg +djg) — ?(md,(ﬁ %fmanmn)} (Ul

[

ppm} J-
3 V5V

_ 2
+[(v 1)m
ym

2p2 me"9 gnqk} Nim

k

1 p
+1| —bj— 5me"; guo ;+[€|k1H0|+m(djk— 7jkdoo) ] »m

2

(y—1m? pp!
Me™; (Imok+ Imio) + Tz 7l

J’_ P
ym?

1
b+ > me™" gmno) }

Knl Am

(y—1m?
+ [ - Tm(dkl_ 719oo)

i ] v57°y. (24)

This equation gives the FW form of the relativistic quantum Hamiltonian for a four-component
fermion.

Certain limiting forms of Eq(24) are directly relevant to experiment. For applications involv-
ing relativistic two-component particles, such as the analysis of muon storage-ring expeffments,
it suffices to retain only the upper left blotk,, of H:
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mco p!
0 +[aj—ym(coj+cjo)—met]]y—m

hre=ym+| ag— T_ mey

p'pX
—M(Cji— 7jkCo0) gy +

1 kl 1 kl
_;bj‘f'mdjo‘f'zé ij|_2—’ym€ jgklo

1 pk
+ ﬂjkbo+m(djk_ﬂjkdoo)JFflijm—7m€|m1<§g|mk_ ﬂkmgloo)}y—m
(y—1)m? (. T
+ N bk+mdko+§€ kHmnt 5 MekGmno | 7j1
pp!
—m(dok+ dio) 7)1 + Me™j (Imok+ Imio) SmZ
(y—1)m? 1 . kp'p™ .
+? _m(dk|—7)k|doo)_§m€ % Gnqk ”jmw o (25

This is the quantum particle Hamiltonian associated with the original Lorentz-violating theory.
For many low-energy applications, including analyses of high-precision atomic

experiments;®1° only nonrelativistic and subleading relativistic terms in the quantum particle

Hamiltonian are needed. To third order|if|/m, the nonrelativistic quantum Hamiltonidnfor

the two-component fermion is

2

p
h=m+ %+(ao—mcoo—mq))+

1 1 .
—Dbj+mdio— 5 mejGuio+ Efjlem)‘TJ

p.
+[—aj+m(coj+cj0)+me]]a'

1 of
+ bo5jk_m(dkj+doo5jk)_m€k|m(§gm|j+gmoo5j|>_Ejk|H|o EJO'k
1 PjPk
+ m(_Cjk_ECoo(Sjk)}#
1 1 1
+ m(doj+d]0)_§ bj+mdjo+Emejmngmno+§€jmnHmn 6k|

1 PiPk 1 P;iPkPI
ts5 b+ 5 MéimnImno Ojk— MEjim(Ymok + gmko)}_'%z_o'l + E(aj Ok —Me ) J—mr
1 1 pjpkplo'm
+ 5| (= Dodjm+ M+ €jmaHno) S+ | — M= 5 MeékngGnp; | dim |~ 3 (26)

Note that the form of Eq(23) includes all even elements of the basis Bgt This means that all
possible combinations of the parameters for Lorentz violation are already contained (B6EQ.
Higher-order corrections to the nonrelativistic Hamiltonian involve only products of these com-
binations with powers ofg|2/m?. One interesting implication of this result is that nonrelativistic
experiments with single free fermioisr fermions in weak external fielfigan at most be sensi-
tive to the particular linear combinations of parameters for Lorentz violation appearing (2@tq.
Disentangling individual parameters requires a different class of experiment.

As a final remark, note that our methods can also be used to obtain the nonrelativistic quantum
Hamiltonianh for the antifermion. The result fdr can be expressed in the same form as(g6),
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with the substitutionsa,—a,=-a,, b,—b,=+b,, ¢,,—c,,=+c,,, d,,—d,,=—d,,,

eM—>€M=.— €., fM—EL: —f o = = n.Lng,' HW—>ﬁW= —H,,. This resultis useful
for experiments testing Lorentz symmetry with antimatter.

ACKNOWLEDGMENTS

We thank R. Bluhm for discussions. This work was supported in part by the United States
Department of Energy under Grant No. DE-FG02-91ER40661.

L. L. Foldy and S. A. Wouthuysen, Phys. R&8, 29 (1950.
2D. Colladay and V. A. KosteleckyPhys. Rev. D65, 6760(1997; 58, 116002(1998.
3V. A. Kosteleckyand S. Samuel, Phys. Rev. LeB, 224 (1989; 66, 1811(1991); Phys. Rev. D39, 683 (1989; 40,
1886(1989; V. A. Kosteleckyand R. Potting, Nucl. Phys. B59, 545 (1991); Phys. Lett. B381, 89 (1996.

4Some recent developments can be foun@RIT and Lorentz Symmetrgdited by V. A. KosteleckyWorld Scientific,
Singapore, 1999

5R. Bluhm, V. A. Kosteleckyand N. Russell, Phys. Rev. Lef9, 1432(1997); Phys. Rev. 057, 3932(1998; Phys. Rev.
Lett. 82, 2254(1999.

6G. Gabrielseet al, Phys. Rev. Lett82, 3198(1999.

"H. Dehmeltet al, to appear in Phys. Rev. Lett.

8R. Mittleman, I. loannou, and H. Dehmelt, in Ref. 4; R. Mittlemeatnal,, Phys. Rev. Lett83, 2116(1999.

V. A. Kosteleckyand R. Potting, irGamma Ray-Neutrino Cosmology and Planck Scale Physitited by D. B. Cline
(World Scientific, Singapore, 1998hep-th/9211118 Phys. Rev. 051, 3923(1995; D. Colladay and V. A. Kostelecky
Phys. Lett. B344, 259 (1995; Phys. Rev. D52, 6224(1999; V. A. Kosteleckyand R. Van Kootenibid. 54, 5585
(1996; V. A. KostelecKy Phys. Rev. Lett80, 1818(1999; R. Jackiw and V. A. Kosteleckyibid. 82, 3572(1999;
V. A. KostelecKy to appear in Phys. Rev. D.

10KTeV Collaboration, presented by Y. B. Hsiung at the KAON 99 Conference, Chicago, 1999.

OPAL Collaboration, R. Ackerstafét al, Z. Phys. C76, 401(1997; DELPHI Collaboration, M. Feindet al. (unpub-
lished.

120, Bertolamiet al, Phys. Lett. B395 178(1997.

133, Coleman and S. Glashow, Phys. Rev5® 116008(1999.

1R, Bluhm, V. A. Kosteleckyand C. D. Langunpublishegl

15y, A. Kosteleckyand C. D. Lane, to appear in Phys. Rev. D.



