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Nonrelativistic quantum Hamiltonian for Lorentz violation
V. Alan Kostelecký and Charles D. Lane
Physics Department, Indiana University, Bloomington, Indiana 47405

~Received 18 May 1999; accepted for publication 30 August 1999!

A method is presented for deriving the nonrelativistic quantum Hamiltonian of a
free massive fermion from the relativistic Lagrangian of the Lorentz-violating
standard-model extension. It permits the extraction of terms at arbitrary order in a
Foldy–Wouthuysen expansion in inverse powers of the mass. The quantum particle
Hamiltonian is obtained and its nonrelativistic limit is given explicitly to third
order. © 1999 American Institute of Physics.@S0022-2488~99!01712-0#

I. INTRODUCTION

Establishing the physical relevance of a Lagrangian in relativistic quantum field theory often
requires a determination of its nonrelativistic content. The Foldy–Wouthuysen~FW!
transformation1 provides a systematic approach to understanding the low-energy effects of certain
theories. Given the relativistic quantum Hamiltonian for a theory of massive four-component
fermions, the nonrelativistic quantum Hamiltonian for the corresponding two-component particle
can be derived in an expansion in inverse powers of the fermion mass.

In this work, we use generalized FW methods to investigate the quantum particle Hamiltonian
that describes the physics of a free massive two-component fermion emerging from the relativistic
Lagrangian of the Lorentz-violating standard-model extension.2 This standard-model extension is
based on the idea of spontaneous Lorentz breaking in an underlying theory3 and has been used for
various investigations placing constraints on possible violations of Lorentz symmetry,2,4–15several
of which depend crucially on the nonrelativistic physics of free massive fermions. In these inves-
tigations, specific terms in the nonrelativistic Hamiltonian have been derived as needed, but a full
treatment has been lacking. Here, we provide a systematic approach that permits extraction of the
relevant terms in the nonrelativistic Hamiltonian at arbitrary order in the FW approximation. We
obtain the quantum particle Hamiltonian and provide explicitly the form of the nonrelativistic
Hamiltonian to third order. Our results are directly relevant to recent analyses of muon and
clock-comparison experiments14,15 and are expected to have substantial impact on further studies
of the physical implications of the standard-model extension.

The general form of the relativistic Lagrangian for a free spin-1
2 Dirac fermionc of massm in

the standard-model extension is2

L5 1
2i c̄~gn1cmngm1dmng5gm1en1 i f ng51 1

2glmnslm! ]Jnc

2c̄~m1amgm1bmg5gm1 1
2Hmnsmn!c. ~1!

This is a generalization of the usual relativistic Lagrangian for a free massive Dirac fermion. The
Dirac matrices$1,g5 ,gm,g5gm,smn% have conventional properties, and the Minkowski metrichmn

has signature22. The parametersam , bm , cmn , dmn , em , f m , glmn , andHmn control the extent
of Lorentz violation in the theory. In a given observer inertial frame, they can be regarded as fixed
real Lorentz vectors or tensors. Note thatHmn can be taken as antisymmetric,cmn and dmn as
traceless, andglmn as antisymmetric in the first two indices. Since Lorentz symmetry is known to
be valid to high precision, any nonzero parameters in nature would need to be minuscule. We
therefore restrict our attention in this work to terms linear in these parameters.

In Sec. II, the relativistic particle–antiparticle HamiltonianH corresponding to the Lagrangian
~1! is obtained. Some basic information about our procedure for extracting its FW form is dis-
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cussed in Sec. III, together with our definition of the relevant FW sequence. Features of this
sequence are derived in Sec. IV, and the quantum particle Hamiltonian and its nonrelativistic limit
to third order are explicitly presented in Sec. V.

II. RELATIVISTIC QUANTUM HAMILTONIAN

The first step in deriving low-energy effects of the Lorentz-violating terms is to obtain the
relativistic HamiltonianH associated with the Lagrangian~1!. However, methods for direct con-
struction ofH are inadequate because Eq.~1! contains couplings involving time derivatives. For
example, applying the Euler–Lagrange equations toL and solving forH from the equation
i ]0c5Hc results in a non-Hermitian Hamiltonian and a corresponding nonunitary time evolution.

One method of bypassing this technical difficulty is to perform a field redefinitionc5Ax in
the Langrangian,5 with A chosen such that the dependence of the Lagrangian on]0x is just that of
the usual Dirac Lagrangian. Then, the wave function associated withx evolves conventionally in
time. The field redefinition leaves unchanged the physics, while it causes the time-derivative
couplings to be replaced by extra terms in the Lagrangian.

To implement this idea, we write the Lagrangian~1! in the forms

L[ 1
2i c̄Gn ]Jnc2c̄Mc5 1

2i x̄g0]J0x1 1
2i x̄~ĀG jA! ]J jx2x̄~ĀMA!x, ~2!

where Gn and M are defined according to the correspondence with Eq.~1!, and c̄5x̄Ā with
Āªg0A†g0. In the second expression the Lorentz indices are separated into timelike and space-
like Cartesian components,m[0 and j 51, 2, 3, with summation on repeated indices understood.

The choice

A512 1
2g

0~G02g0!, Ā512 1
2~G02g0!g0 ~3!

implements the equality~2! to linear order in the parameters for Lorentz violation. Derivation of
the relativistic HamiltonianH can then proceed through the Euler–Lagrange equations, which take
the form of a modified Dirac equation:

~ iĀGmA]m2ĀMA!x50. ~4!

We find

H52g0ĀG jApj1g0ĀMA, ~5!

where the three-momentum of the particle is denotedpj , andH obeys the equationi ]0x5Hx.
Explicitly, the relativistic Hamiltonian can be written

H5m~g01P01O01E0!, ~6!

where

mP0ª2pjg
0g j ,

mO0ª@2b01~d0 j1dj 0!pj #g51@aj2~cjk2c00h jk!pk#g0g j1 i f j p
jg5g0

1 i @H0 j1~gj 0k1gjk0!pk#g j ,
~7!

mE0ª@a02~c0 j1cj 0!pj2me0#1@2bj1~djk2d00h jk!pk2 1
2meklmh jmgkl0#g5g0g j

2@mc001ej p
j #g02@ 1

2e
klmh jmHkl1mdj 02e lmnh jn~ 1

2glmk2hkmgl00!p
k#g5g j .
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In these expressions, the totally antisymmetric rotation tensore jkl satisfiese123511 and e jkl

52e jkl . The particular decomposition ofH into the four terms in~6! is chosen for later conve-
nience.

As an aside, we remark that the relativistic Hamiltonian is also readily found if the theory~1!
is extended to include a minimal coupling to a U(1) gauge fieldAm . It suffices to replace the
partial derivativei ]m in Eq. ~1! with the covariant derivativeiD mª i ]m2qAm , whereq is the
particle charge. The relativistic Hamiltonian then has the same form as in Eqs.~6! and~7!, except
that all occurrences ofpj must be replaced withp jªpj2qAj and the termqA0 must be added to
Eq. ~6!. The resulting Hamiltonian is relevant, for example, for studies of Lorentz-violating effects
in quantum electrodynamics.

III. DEFINITION OF THE FW SEQUENCE

In the strict nonrelativistic limit, the lower two components of the relativistic wave functionx
are negligible, so the upper two components ofx suffice to determine the nonrelativistic particle
behavior. However, more generally the Dirac equation couples the upper and lower components of
x. The object of the Foldy–Wouthuysen procedure is to find a~momentum-dependent! unitary
transformation

H°H̃ªeiSHe2 iS5exp@ad~ iS!#H, ~8!

where ad(X)Yª@X,Y#, such thatH̃ is 232 block diagonal. This therefore decouples the upper
and lower components of the FW-transformed wave functionfªeiSx. Requiring hermiticity ofS
ensures thateiS is unitary. It follows thatH̃ is Hermitian and that both HamiltoniansH and H̃
describe the same physics. The FW transformation amounts to a unitary rotation in the Hilbert
space of the free-particle states that preserves the dominance of the upper two components of the
wave function. The quantum particle Hamiltonianhrel and the nonrelativistic limith we seek are
given by the leading 232 block of H̃.

Solving directly forH̃ would be of interest but is challenging in the general case. Instead, we
present a method that allows approximation ofH̃ to arbitrary accuracy in an expansion in powers
of upW u/m. The basic idea is to apply a succession of transformations of the type~8!, chosen so that
each iteration of the transformed Hamiltonian has a smaller block off-diagonal part than the
previous one. The exact FW transformation is the limit of this sequence. Although more direct
approaches can yield a low-order approximation toh without the use of our method, the results
derived here permit straightforward calculation ofhrel and ofh to any desired order.

For definiteness in what follows, we work within the Dirac-Pauli representation of the Dirac
matrices, for which

g05S 1 0

0 21D , g j5S 0 s j

2s j 0 D ,

wheres j are the usual Pauli matrices. We define a matrix to beevenif it is block diagonal andodd
if it is block off-diagonal. Any 434 matrixX can be uniquely written as the sum of an even part
and an odd part,X5even(X)1odd(X), where odd(X)5 1

2g
0@g0,X# and even(X)5 1

2g
0$g0,X%.

We seek a sequence of FW transformations such that the odd part of the Hamiltonian pro-
gressively decreases in some suitable matrix norm, such asiAiªmaxa,b$uAabu% for a,b51,2,3,4. In
the remainder of this section, an appropriate sequence$Hn% of Hamiltonians is introduced. For
eachn, we also introduce a parametertn that turns out to provide a measure of the size of
odd(Hn). We show in Sec. IV that with our definition for the FW sequence roughlyN iterations
are needed to arrive at a nonrelativistic Hamiltonian that is even to order (upW u/m)(3N21).

To start the FW sequence, choose

H05m0~g01P01O01E0!, ~9!
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wherem0ªm and the termsP0 , O0 , andE0 are defined in Eq.~7!. This decomposition ofH0 into
four parts has the following useful properties:~i! P0 andO0 are odd;~ii ! E0 is even;~iii ! O0 and
E0 are first order in parameters for Lorentz violation, so products of these quantities can be
neglected; and~iv! P0

2 is proportional to the 434 Dirac identity matrix, with proportionality
coefficient t0

25upW u2/m2. We choose for the initial FW transformation the Hermitian matrixS0

defined by

iS0ª
1

2m0
g0@odd~H0!#5 1

2g
0~P01O0!. ~10!

This choice ensures that the odd part of exp@ad(iS0)#H0 is smaller than the odd part ofH0 .
Our FW sequence is then defined iteratively by

~11!

and

iSn11ª
1

2mn11
g0@odd~Hn11!#. ~12!

Note that

Hn115H )
k50

n

exp@ad~ iSk!#J H0 , ~13!

where the product represents map composition.
In Sec. IV, we find that eachHn11 can be written in the form

Hn115mn11~g01Pn111On111En11!, ~14!

where the decomposition has the following useful properties:~i! Pn11 andOn11 are odd;~ii ! En11

is even;~iii ! On11 andEn11 are first order in parameters for Lorentz violation; and~iv! Pn11
2 is

proportional to the identity matrix, with proportionality coefficienttn11
2 determined bytn

2. The
existence of a decomposition of the form~14! for arbitraryn, as well as the case~9! above, is a key
feature making it feasible to calculate the quantum particle Hamiltonian.

IV. CALCULATION OF THE FW SEQUENCE

To calculate the FW sequence defined in Sec. III, the explicit form is needed of the operator
exp@ad(iSn)# connectingHn to Hn11 according to Eq.~11!. Although ad(iSn)Hn can be obtained
directly using the properties of the Dirac matrices, calculation of exp@ad(iSj )#Hn is more chal-
lenging because it is defined by an infinite series. To address this issue, we adopt the following
approach: regard ad(iSn) as a linear map on a suitable vector spaceVn containing bothHn and
Hn11 , and find a matrix expression of this map that can be exponentiated.

The first step in implementing this approach is to defineVn for eachn. It is convenient to
introduce Vn as the span of a set of basis vectorsBn , defined in terms of the operators
g0,Pn ,On ,En determiningHn together with the particular combinations of these four operators
that determine ad(iSn)Hn and thus alsoHn11 . For eachn, we define the ordered set

Bnª$g0,Pn ,On ,Pn$Pn ,On%,g
0@Pn ,En#,En ,g0$Pn ,On%,Pn@Pn ,En#%. ~15!
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The eight-dimensional vector spaceVn is formally defined as the real span of this set, so the
elements ofBn by definition form a~linearly independent! basis. One advantage of this vector
space is its relatively small dimensionality, which makes it susceptible to practical calculation. We
can thus specify a vectorVPVn by eight componentsV1 ,...,V8 :

VªV1g01V2Pn1V3On1V4Pn$Pn ,On%1V5g0@Pn ,En#

1V6En1V7g0$Pn ,On%1V8Pn@Pn ,En#

↔~V1 ,...,V8!. ~16!

For example,Hn↔mn(1,1,1,0,0,1,0,0).
The reader is warned to avoid confusing the properties of the elements~15! as a basis for the

vector spaceVn with their possible relationships when viewed as operators on the Hilbert space of
wave functions. For example, the calculations below hold even if certain basis elements vanish as
operators. Note also that for differentn the corresponding vector spacesVn differ a priori. How-
ever, since bothHnPVn and Hn11PVn , the vector spaceVn is invariant under the action of
exp@ad(iSn)#, which meansVn$Vn11 for all n.

With the above notation, we can present the results of a direct calculation of ad(iSn)V for
VPVn performed using the properties of the Dirac matrices:

ad~ iSn!V↔~ tn
2V2 ,2V1 ,2V1 ,2V7 , 1

2V61tn
2V8,0,12V21 1

2V31tn
2V4 ,2V5!. ~17!

In this expression,tn
2 is determined iteratively fromtn21

2 through the relation

tn11
2 5S costn2

sintn

tn

costn1tn sintn

D 2

tn
2. ~18!

Here and in what follows, we define functions oftn through their power-series expressions. All
relevant functions oftn implicitly involve only powers of tn

2 ~and hence powers oft0
2

5upW u2/m2), so it suffices to definetn
2. Note thattn11;tn

3 to leading order intn , sotn;t0
(3n) . This

means thattn rapidly approaches zero ift0!1, which ultimately is the reason for the rapid
convergence of our FW sequence.

With respect to the basisBn , the matrix map of ad(iSn) can be extracted from Eq.~17! and
is given by

ad~ iSn!↔1
0 tn

2 0 0 0 0 0 0

21 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0

0 0 0 0 0 0 21 0

0 0 0 0 0 1
2 0 tn

2

0 0 0 0 0 0 0 0

0 1
2

1
2 tn

2 0 0 0 0

0 0 0 0 21 0 0 0

2 . ~19!

The exponential of this matrix can be found in closed form, but its detailed expression is unim-
portant. It can be used to calculate exp@ad(iSn)#Hn , which allows us to expressHn11 in terms of
Hn according to Eq.~14! with
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mn115~costn1tn sintn!mn , mn11Pn115S costn2
sintn

tn
DmnPn ,

mn11On115S costn2
sintn

tn
DmnOn1

1

2tn
2 S sintn

tn
2tn sintn2costnDmnPn$Pn ,On%

1
sintn

2tn
mng0@Pn ,En#, ~20!

mn11En115mnEn1~ 1
2costn!mng0$Pn ,On%1S costn21

2tn
2 DmnPn@Pn ,En#.

A measure of the convergence of the FW sequence can be introduced usingtn;t0
(3n) . In terms

of a suitable matrix norm,iodd(Hn11)i;tn
2iodd(Hn)i1tniE0i;t0

2(3n)iodd(Hn)i1t0
(3n)iE0i .

Thus, asn grows iodd(Hn)i rapidly approaches zero as (upW u/m)3n
. Even a relatively small value

of n can therefore produce a good approximation to the quantum particle Hamiltonian.

V. NONRELATIVISTIC QUANTUM HAMILTONIAN

The quantum particle Hamiltonianhrel and its nonrelativistic quantum limith are generated in
the limit of the FW sequence studied in the last section. Next, we demonstrate how to obtain these
using simple matrix multiplication, and we explicitly presenthrel andh to ordert0

3.
The calculation at thekth-iteration level in the FW sequence requires obtaining the composite

map )n50
k exp@ad(iSn)#. For eachn in the FW sequence, the matrix ad(iSn) and the action of

exp@ad(iSn)# are given with respect to the basisBn . Since in general the vector spaceVn varies
with n, immediate calculation of)n50

k exp@ad(iSn)# by matrix multiplication is inappropriate.
Instead, we first obtain the components of each matrix with respect to the special basisB0 .
Ordinary matrix multiplication can then be used to derive)n50

k exp@ad(iSn)#.
The matrix for each map exp@ad(iSn)# can be expressed in terms oftn . Explicitly, the

nonzero entries for exp@ad(iSn)# with respect to the basisB0 are:

exp@ad~ iSn!#↔1
cn1tn

2sn 0 0 0 0 0 0 0

0 cn2sn 0 0 0 0 0 0

0 0 cn2sn 0 0 0 0 0

0 0 ~sn2tn
2sn2cn!/2t0

2 2tn
2sn 0 0 2tnsn /t0 0

0 0 0 0 2tn
2sn tnsn/2t0 0 t0tnsn

0 0 0 0 0 1 0 0

0 0 tncn/2t0 t0tncn 0 0 cn 0

0 0 0 0 2tncn /t0 ~cn21!/2t0
2 0 cn

2 ,

~21!

where we have definedcnªcostn'121
2tn

2, andsnªsintn /tn'121
6tn

2.
Sincetn→0 asn→`, it follows that exp@ad(iSn)# becomes a diagonal matrix with entries~1,

0, 0, 0, 0, 1, 1, 1! in this limit. The product)n50
k exp@ad(iSn)# therefore converges ask→`, so

the limiting FW sequence giving the quantum particle Hamiltonian indeed exists. It can be shown
that
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.79.32.146 On: Tue, 24 Feb 2015 13:51:08



)
j 50

`

exp@ad~ iSj !#↔1
g 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0
1

2g
@ t0

2# 0 0 @12 1
2t0

2# 0

0 0 0 0 F211
1

2
t0
2G 2

1

2g~g11!
0 F12

1

2
t0
2G
2 ,

~22!

wheregªA11t0
2 is the usual relativistic gamma factor. Since the limiting FW Hamiltonian is

obtained by applying this matrix toH0↔(1,1,1,0,0,1,0,0), the entries in brackets are irrelevant
and so we have evaluated them only to ordert0

2. Thus, we find the limiting FW Hamiltonian to be

H̃5gm0g01m0E01
m0

2g
g0$P0 ,O0%2

m0

2g~g11!
P0@P0 ,E0#, ~23!

an expression that is accurate to all orders int0 . Substitution from Eq.~7! yields the explicit form

H̃5gmg01H a02me02m~c0 j1cj 0!
pj

mJ 1H 2
mc00

g
1~aj2mej !

pj

gm
2m~cjk2h jkc00!

pj pk

gm2J g0

1H 2~mdj 01 1
2e

kl
j Hkl!1F2

b0h jk

g
1me lm

j~
1
2glmk2hkmgl00!G pk

m

1Fm~d0l1dl0!2
~g21!m2

p2 ~mdl01 1
2e

mn
lHmn!Gh jk

plpk

gm2

1F ~g21!m2

2p2 menq
l gnqkGh jm

pkplpm

gm3 J g5g j

1H F2bj2
1

2
mekl

j gkl0G 1

g
1@e l

k jH0l1m~djk2h jkd00!#
pk

gm

1Fmem
l j ~gm0k1gmk0!1

~g21!m2

p2 h j l S bk1
1

2
memn

k gmn0D G pkpl

gm2

1F2
~g21!m2

p2 m~dkl2hkld00!Gh jm

pkplpm

gm3 J g5g0g j . ~24!

This equation gives the FW form of the relativistic quantum Hamiltonian for a four-component
fermion.

Certain limiting forms of Eq.~24! are directly relevant to experiment. For applications involv-
ing relativistic two-component particles, such as the analysis of muon storage-ring experiments,14

it suffices to retain only the upper left blockhrel of H̃:
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hrel5gm1S a02
mc00

g
2me0D1@aj2gm~c0 j1cj 0!2mej #

pj

gm

2m~cjk2h jkc00!
pj pk

gm2 1H F2
1

g
bj1mdj 01

1

2
ekl

jHkl2
1

2g
mekl

jgkl0G
1Fh jkb01m~djk2h jkd00!1e l

k jH0l2gme lm
j S 1

2
glmk2hkmgl00D G pk

gm

1F ~g21!m2

p2 S bk1mdk01
1

2
emn

kHmn1
1

2
memn

kgmn0Dh j l

2m~d0k1dk0!h j l 1mem
l j ~gm0k1gmk0!G pkpl

gm2

1
~g21!m2

p2 F2m~dkl2hkld00!2
1

2
menq

lgnqkGh jm

pkplpm

gm3 Js j . ~25!

This is the quantum particle Hamiltonian associated with the original Lorentz-violating theory.
For many low-energy applications, including analyses of high-precision atomic

experiments,5–8,15 only nonrelativistic and subleading relativistic terms in the quantum particle
Hamiltonian are needed. To third order inupW u/m, the nonrelativistic quantum Hamiltonianh for
the two-component fermion is

h5m1
p2

2m
1~a02mc002me0!1S 2bj1mdj 02

1

2
me jklgkl01

1

2
e jklHklDs j

1@2aj1m~c0 j1cj 0!1mej #
pj

m

1Fb0d jk2m~dk j1d00d jk!2meklmS 1

2
gml j1gm00d j l D2e jklHl0G pj

m
sk

1FmS 2cjk2
1

2
c00d jkD G pj pk

m2

1H Fm~d0 j1dj 0!2
1

2 S bj1mdj 01
1

2
me jmngmn01

1

2
e jmnHmnD Gdkl

1
1

2 S bl1
1

2
me lmngmn0D d jk2me j lm~gm0k1gmk0!J pj pk

m2 s l1
1

2
~ajdkl2mejdkl!

pj pkpl

m3

1
1

2 F ~2b0d jm1mdm j1e jmnHn0!dkl1S 2mdjk2
1

2
meknpgnp jD d lmG pj pkpls

m

m3 . ~26!

Note that the form of Eq.~23! includes all even elements of the basis setB0 . This means that all
possible combinations of the parameters for Lorentz violation are already contained in Eq.~26!.
Higher-order corrections to the nonrelativistic Hamiltonian involve only products of these com-
binations with powers ofupW u2/m2. One interesting implication of this result is that nonrelativistic
experiments with single free fermions~or fermions in weak external fields! can at most be sensi-
tive to the particular linear combinations of parameters for Lorentz violation appearing in Eq.~26!.
Disentangling individual parameters requires a different class of experiment.

As a final remark, note that our methods can also be used to obtain the nonrelativistic quantum
Hamiltonianh̄ for the antifermion. The result forh̄ can be expressed in the same form as Eq.~26!,
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with the substitutionsam→ām52am , bm→b̄m51bm , cmn→ c̄mn51cmn , dmn→d̄mn52dmn ,
em→ēm52em , f m→ f̄ m52 f m , glmn→ḡlmn51glmn , Hmn→H̄mn52Hmn . This result is useful
for experiments testing Lorentz symmetry with antimatter.
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