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NONRESIDUALLY FINITE ONE-RELATOR GROUPS

BY

STEPHEN MESKIN

Abstract. The study of one-relator groups includes the connections between group

properties and the form of the relator. In this paper we discuss conditions on the form

w1v'uvm which force the corresponding one-relator groups to be nonresidually finite,

i.e. the intersection of the normal subgroups of finite index to be nontrivial. Moreover

we show that these forms can be detected amongst the words of a free group.

1. Introduction.

1.1. In order to discuss the one-relator groups which correspond to words of the

form u~xvxuvm (where throughout this paper / and m are nonzero integers), indeed

for words of any form, it is useful to have a list of the possible word forms which

can arise from the given word form when it is cyclically reduced and written

without cancellation between factors. Once we have such a list we also have

Theorem A (B. B. Newman, unpublished; Schupp [7]). There is an algorithm

for deciding whether or not an element in a free group has the form í/_1i>W.

For the case 1= —m, see [9, p. 437]. The list presented here (§3) is simpler and

far shorter than B. B. Newman's original list. The proof in [7] is not directly

applicable in our situation. The cyclically reduced forms of u~1v'uvm are then used

to prove

Theorem B. If u and v are any noncommuting elements in a free group, freely

generated by a set X, and I and m are unequal in absolute value to each other or 1

then G = <[X; u'^-v'uv"1} is not residually finite.

We will give examples (§2.3) to show that for some values of / and m the converse

of Theorem B is false even when v is not a proper power. It is not known however

whether G may be nonresidually finite if /= — mor/=m/±l.

On the other hand we can show

Theorem C. G(l, m) = (a, b; a~1b'abm} is residually finite if and only if \l\ = 1 or

|/m| = 1 or |/| = |m|.

This contrasts with the claim made in [2] that G(l, m) is residually finite if one of

I or m divides the other.
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1.2. I am very grateful to Professor G. Baumslag for suggesting this problem to

me and for his help and guidance. Also, I wish to thank B. B. Newman for letting

me see his unpublished work and discussing it with me.

2. General discussion and Theorem C.

2.1. To show that a group G is not residually finite one must find a nontrivial

element of G which is contained in every normal subgroup of finite index.

If G is given by generators A'and defining relations R this is equivalent to finding

a consequence of R in every finite group which is not a consequence of R in G,

i.e. which is nontrivial in G. There are thus two aspects to the problem: finding an

appropriate word and showing that it is nontrivial.

In this section Theorem C is proven and used to deal with the first aspect of the

proof of Theorem B ; the second is dealt with in §4. Theorem C is useful since the

map ay^u,bv->v extends to a homomorphism of G(l, m) into G. Hence the image

in G of a consequence of a'1b'abm in a finite group will be a consequence of

u~1vluvm in a finite group. If the homomorphism were actually an embedding,

then Theorem B would be a corollary of Theorem C. The embedding question

however is still open.

2.2. Theorem C is a consequence of the following sequence of lemmas.

Lemma 2.1. If I and m are not powers of the same prime andaré unequal in absolute

value to each other or 1 then G(l, m) is not residually finite.

Proof. Assume first that / and m do not have the same prime divisors, then we

may further assume without loss of generality that there is a prime p dividing m

but not /. It was shown in [2] that for some such pairs of integers (/, m) the group

G(l, m) is non-Hopfian. Indeed it is clear, just as in [2], that [a~1ba, bmlp] is in the

kernel of the ependomorphism induced by the map a i->- a, b\-^-b". It follows from

Magnus' theory of one-relator groups [6, §4.4] (and we will show later in §4) that

[a~1ba, ¿>m'p]# 1. (Here we use the notational convention [x, y] = x~1y~1xy.)

Now the kernel of any ependomorphism of a finitely generated group is con-

tained in every subgroup of finite index. Thus [a~^ba, bmlp] is a consequence of

a~1b1abm in every finite group.

In the general case, it is clear that / and m have a common divisor k unequal in

absolute value to / and m such that l/k and m/k do not have the same prime

divisors.

Substituting bk, l/k and m/k for b, I and m in the previous paragraph shows that

[a~1bka, bmlp] is a consequence of a~1blabm in every finite group and as before it is

not 1.

Alternatively G(l/k, m/k) can be embedded in G(l, m) since it is isomorphic to

the subgroup of G(l, m) generated by a and bk.

If / and m are powers of the same prime then we may use
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Lemma 2.2. If one of I or m divides the other and they are unequal in absolute value

to each other or 1 then G(l, m) is not residually finite.

Proof. It is shown in [4] that for h = 2 the group

(x, y, z; x_1zx = y~xzy = z">

is non-Hopfian. Indeed it is clear, just as in [4], that for \h\ > 1, [x~1y, z] is in the

kernel of the ependomorphism induced by the map x m* x, y i-> y, z h-> z\ It follows

as before that [x'1y,z] is nontrivial and a consequence of x~1zx=y~1zy = zh in

every finite group.

Without loss of generality we may assume that m= -hi where \h\ > 1. Then in

G(l, m) we have

a-'b'a = b^a-^b'b^ab = (blf.

Substituting a, b~1ab and b' for x, y and z respectively in the previous paragraph

shows as before that [a, b, bl] is nontrivial and a consequence of a ' 1b'abm in every

finite group.

Alternatively the group in the first paragraph can be embedded in G(l, m). This

follows from the fact that the normal subgroup generated by a and bl has the

presentation

<a0, ax, ...,am.1,bí),;ar1bít¡ai = b%,i = 0, l,...,m-l>

where a( = b'ab "( and b* — b'.

From the proofs of Lemmas 2.1 and 2.2 we can extract information which will

be useful in the proof of Theorem B.

Corollary 2.3. If I and m are unequal in absolute value to each other or 1 then

there exist integers A and p. not divisible by I and m respectively such that [a, bx, bu]

is a consequence ofa~1blabm in every finite group.

Proof. If / and m are not powers of the same prime then by Lemma 2.1 there

exist integers k and p such that — k and m/p can be chosen for A and p.. If / and m

are powers of the same prime then, by Lemma 2.2, we can then choose 1 and /.

Lemma 2.4. If \l\ = 1 or \m\ = l then Gil, m) is residually finite.

Proof. This follows from [3, Theorem 1] since if |/| = 1 or |w| = l then G(l, m)

is finitely generated and metabelian.

Lemma 2.5. If \l\ = \m\ then Gil, m) is residually finite.

Proof. Let A be the normal subgroup generated by a and bm and let B be the

subgroup generated by bm. Then B is normal and A/B is free. Thus A is residually

finite; for Mal'cev has shown that the semidirect extension of a finitely generated

residually finite group by a residually finite group is again residually finite [5, p. 506].

Now G(l, m)/A is finite and so G(l, m) is residually finite.
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Alternatively G(l, m) may be viewed as the generalized free product of gp (a, bm)

and go(b), in which case the result follows from [1, Theorem 8 or 9], or [8,

Corollary 3.4].

2.3. One would naturally suspect the converse of Theorem B to be false, i.e.

even though / and m are equal in absolute value to each other or 1 there may exist

u and v such that {X; u~1v'uvm} is not residually finite. However when / and m

are equal in absolute value to each other, the author knows of no example except

for ¡=m= ± 1. Indeed let u = v\ and v = v* nu* 1v*uif, so that u~1vuv = v¿2nu%1v%u*

whence <[X; u~1vuv} = <[X; u%1v*2u*v*2ny. Thus Theorem B itself yields many

examples. Theorem B also yields many examples of nonresidually finite groups with

/= 1 and \m\ > 1. However, in all these examples v is a proper power.

For examples without this defect, consider the groups

<ß,b;b-xa- mbab ~ ̂ amba " m>.

Here we let u = b~1amb (or [am, b]) and v = a. They are not residually finite since

[a, b, a, a] is a consequence of the relator in every finite group. Indeed, if a has

finite order n, then

a = b-1a-mnbab-1amnb = am";

thus

[a,b,a] = b^a-'ba^b^aba = b-1a-mnba-1b-1am"ba = a1-"1"""1

and so [a, b, a] commutes with a. It is easy to see that [a, b, a,afal in the group

itself.

3. Theorem A. Theorem A is an obvious consequence of the following lemma.

Lemma 3.1. Let w be an element in a free group F. Then there exist noncommuting

elements u and v in F such that w = u~1v'uvm iff there exist elements r, s, t, x,y, z such

that some cyclically reduced conjugate of w is equal to one of the products below

(which are assumed to be cyclically reduced as written) :

(i) z-1(xy)mz(yxymi;xyzx-1y-1z-1^l; lm>0.

(ii) (xz~1yz),n~1xz~1y2zx(z~1yzx),m,~1; xz~1yzx~1z'1y~1z^l; lm>0.

(iii) z-1(xy)wz(x-1y-1)M;xyzx-1y-1z-1¥=l; lm<0.

(iv) (x>')|!|"1Ji"1(^"1>'"1)|m|"1; xy = sr; yx=tr; xyx~1y~1^l; lm<-l.

Proof. If some conjugate of w is equal to one of the products (i)-(iv) and the

associated conditions are satisfied then clearly there exist noncommuting elements

u and v such that w = u~1vluvm. For example suppose g~1wg=z~1(xy)'z(yx)m,

xyzx~1y'1z~1^l, l>0 and m>0. Then with u=gyzg~1 and v=gyxg~1, we have

w=u~1vluvm and vuv~1u~1=gy(xyzx~1y~1z~1)y~1g~1^l.

Conversely suppose w = u~1vluvm for noncommuting u and v, then with x = vil,

y = l and z = u, w satisfies (i) or (iii) depending on the values of / and m. The

product however may not be cyclically reduced as written. We will show that any
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product of the form of one of (i)-(iv) which is not cyclically reduced is conjugate to

a shorter product satisfying one of (i)-(iv). Since the lemma holds vacuously for

products of length 0, the result will follow by induction.

For technical reasons a product will be assigned two lengths, L± and L2, which

differ only for products of type (iv). We say that the product p is shorter than the

product p if Lx(p) <Lx(p) or Lx(p)=Lx(p) and L2(p)<L2(p). NowZ,2(/>) is just the

length of p as written, i.e. before cancellation between its factors is taken into

account. For example if p is a product of type (iv) then

L2(p) = (\l\ + \m\-2)(\x\ + \y\)+\s\ + \t\.

In this expression, | • | denotes the usual length of a word in a free group. If p is a

product of type (iv) then we define £i(/>) = (|/| + |w|)(|.x| + |,y|) otherwise Lx(p)

—L2(p). We assume throughout the argument that r, s, t, x, y and z are freely

reduced.

Cyclic cancellation between the factors of one of the products we are considering

may occur either between factors which are obviously adjacent, including the

terminal and initial factors, or between factors whose adjacency arises because the

intervening factors are one. We will begin with cancellations of the first type. In

all but one of these cases the product resulting after cancellation is of the same type

as the original. Cancellations of the second kind can for the most part be dealt

with by referring to those previously discussed. The symbols representing the new

product and the factors therein are the old symbols with bars above them.

Suppose first of all that there is cancellation at either z_1x, yx or yz in a product

of type (i) or (iii). Then at least two of the words x, y'1 and z have a common

initial segment ; call it c. Thus there exist x, y and z such that there is no cancellation

in at least two of the factorizations :

x = ex,   y1 = cy'1   and   z = cz.

It is clear that by substitution we get a new product p of the same type, that p=p

and that xyzx~1y~1z~1 = cixyzx~1y~1z~1)c~1. Moreover at least two of the

equations |x| = \c\ + \x\, \y\ = \c\ + \y\ and \z\ = \c\ + \z\ hold, in any case

||| g |c| + |f|    for £ = x, y and z.

Thus if |z| = |c| + |z|, then |x| + \y\ ^ \x\ + \y\ and hence

Lx(p) + 2\c\ Ú (|/| + H)(|x| + |j|) + 2(|z-| + |c|)

= (\l\ + \m\)(\x\ + \y\) + 2\z\ = Lx(p).

On the other hand, if |z| ^ |c| + |z|, then

Li(7J)+2(|/|4>|-l)|c| = (|/| + HXI^I + kl + |j| + k|) + 2(|z-|-|c|)

è (\l\ + \m\)(\x\ + \y\) + 2\z\ = Lx(p).

Since |/| + \m\ > 1 we have Lx(p)<L(p) in either case.
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Suppose now that there is cancellation at either xz'1, xy or zy in a product of

type (i) or (iii). Then at least two of the words x, y1 and z have a common terminal

segment ; call it c. The argument proceeds now exactly as in the previous paragraph

except that in this case p=cpc~1.

Suppose now that there is cancellation at either z~1y, yy or yz in a product of

type (ii). Then at least two of the words y,y~x and z have a common initial segment;

call it c. Thus there exist y and z such that there is no cancellation in at least two of

the factorizations: y = cyc~1, z=cz. Let x=x. It is clear that by substitution we get

a new product p of the same type, that p=p and that

xz~1yzx~1z~1y~1z = xz~1yzx~1z~1y~1z.

Moreover either

\y\ =2|c|4-|j| and \z\ Ú \c\ + \z\   or   \y\ £ \y\ and \z\ = |*| + |e|.

In the first instance

Lx(p) + 2\c\ = (|/| + |w|)(|x| + |j|+2|c|)+2(|/| + |m|-l)(|z|-|c|)

è (\l\ + \m\)(\x\ + \y\) + 2(\l\ + \m\-\)\z\ = L\{p\

and hence we have Lx(p)<Lx(p) in either case.

Suppose now that there is cancellation at either xz'1, xx or zx in a product of

type (ii). Then at least two of the words, x, x'1 and z have a common terminal

segment; call it c. The argument proceeds now exactly as in the previous paragraph

except that in this case, p=cpc~1.

If z— 1 in a product of type (i) or type (ii) the resulting products are alike. The

new possible cancellations for a product of type (i) are at yy and xx which have

already been discussed as a possible cancellation in a product of type (ii). Similarly

for type (ii) the new ones are at xy and yx which have been covered already for

type (i). If x=l or y=l in a product of type (i) or type (iii) the new possible

cancellations are handled by relabeling y as x or x as y and referring again to the

previous discussion.

If x=l or y=l in a product of type (ii), then xz~1yzx~1z~1y~1z=l and so this

case does not arise. If z = 1 in a product of type (iii) and Im = — 1 then the new

possible cancellations are handled as before by relabeling x as z_1. However if

lm< — l then the product is one of type (iv) with r=\. This completes our dis-

cussion of products of type (i), (ii) and (iii).

In considering products of type (iv) we may assume

(1) that there is no cancellation at xy and yx. For if there were we could write

the product as a product of type (iii) for which we have already handled these

cancellations. Although in this process the actual (F2) length may be increased, we

will have definitely decreased Fx, which is all that is required.

Suppose now that there is cancellation at st"\ Thus s=sc and t = ic. Let r=cr,

x=x, y=y and p=p. Then

Li(P) = Lx(p)   and   L2(p)+2\c\ = L2(p).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] NONRESIDUALLY FINITE ONE-RELATOR GROUPS 111

We can assume henceforth

(2) that there is no cancellation at ii "1 ;

and for the time being

(3) thati^l and r/1.

By (2) there can be cancellation at no more than one of sr and tr. By (1) we have

\sr\ = \x\ + \y\ = \tr\.

Thus neither s nor t may cancel completely against r. For suppose s did then it

would follow from (3) that

|jr| = |r|-|i| < |r| + |f| = \tr\,

which is a contradiction. It follows that s and t have initial segments in common

with x and y respectively. Hence by (1) there can be no cancellation at ys and xt.

Furthermore if there is cancellation at y~1x then x, y, s and t all have a common

initial segment ; call it c. Let x=cxc~1,y=eye ~1,s = cs,t—ct,r = rc~1 and/J=c~ xpc.

Then Lx(p)úLx(p) and L2(p) + 2\c\ âL2(p).

Since xy^yx we cannot have both s=\ and t=l. Suppose s= 1 (if /= 1 we can

use a similar argument) then

\r\ = |*| + |j>| = \tr\ > \r\-\t\.

Hence some but not all of / cancels at tr so that we can write t=is~1 and r=sr

where ?# 1 and s^l. Clearly xy=sr and yx—ir and the lengths are not altered by

the new notation, so we are back to our previous discussion.

Although the proof of the lemma is now complete, we must make an additional

comment in order to use it in the next section. At each step in the reduction process

outlined in the proof, a product p is conjugated into a new product p. We can find

u, v, ü and v such p = u~1v'uvm and p = ü~1v'üvm, however given u and v we cannot

always cloose w and v to be the images of u and v under the conjugation. We can,

on the other hand, except when lm= — 1, choose ü and v so that ü'Hü and v are

the images of u~1vu and v respectively. In particular [ü, vK, ¿5"] will be the image of

[u, vh, vu] under the same conjugation which takes p to p.

4. Theorem B. The proof of Theorem B may now be completed (see Corollary

2.3) by proving

Lemma 4.1. If u and v are any noncommuting elements in a free group, freely

generated by a set X and G = (X; w~ Vwt;m>, then for all A and p. not divisible by I

and m respectively [u, vh, v"]^l.

Proof. We may assume without loss of generality that /^ \m\ > 1 and by Lemma

3.1 that there exists x,y,... such that u~1vluvm=p and p is cyclically reduced,

where one of the following is valid :

(i) u=x~1z, v=yx, m>0 andp=z~1(xy)'z(yx)m.

(ii) u=x~1, v=z~xyzx, m>0 andp = (xz~lyz)1 ~ 1xz~ 1y2zx(z~^zx)™~1.
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(iii) u = x~1z, v=yx, m<0 andp = z~1(xy)'z(x~1y~1)~m.

(iv) u = x~1, v=yx = tr, xy = sr, m<0 andp = (xy)'~1st~1(x~1y~1)~m~1.

Our proof, as with most proofs in the theory of one relator groups, is modeled

after that of the Freiheitssatz [6, p. 252 et seq.]. Thus we assume inductively that

the lemma is valid for all p* with L2(p*)<L2(p). The lemma holds vacuously for

products of length 0. Furthermore we assume for the moment that there exists a

generator ae X which appears in v such that the exponent sum of a in v is zero,

i.e. <to(d) = 0. It follows also that aa(p)=0.

We then consider the Magnus subgroup, M, generated by

fa'ba', a-'ca',... ; i = 0, ± 1,...}

where X={a, b, c,...}. M is the normal subgroup of G generated by {b, c,...} and

me M if and only if aa(m) = 0. If me M we let mi=a~imai and assume that mt is

written as a word in the generators {.. ,,b-ub0,bx,...;..., e_a, c0, cu ...}.

Since <ra(/0=0 some generator other than a, b say, appears in p and, for some

i, bi appears in p0. If a and ß are respectively the least and greatest of the indices i

such that bt appears in p0,

Xq = \ba, ba+x, • • •, bg',..., c_i, c0, Ci,... ;...}

and G0=gp {^o}, then GQ = (X0;p¿) and moreover L2(p0)<L2(p).

We now analyze the structure of G0, show that it contains [u, t/, vu] and that

it is not 1.

Cases (i) and (iii). Let aa(u) = n and o-a(y) = k. We may assume w^O. It follows

thatcra(x)= — kand aa(z)=n — k. Hencey=y0ak,x=a~kx0,z=an~kz0,v=yx=y0x0,

u = x~1z=anx' 1z0andp0 = zö\xny¿)lz0(y0x0)min Case(i) orz0_ H^njní^oí^o"^o x)"m

in Case (iii). In either case

[u, v\ vu] = [a^-^o, (y0x0)\ (jo^o)"]

=   fco" '(XnVj'^cOoXo)*, (JW))"].

Now if «=0, we are done by induction.

If «>0, we let N=normal subgroup of G0 generated by (xny„)1; then

G0/N=<:X0;(xnyn)l,(y0xory.

We might as well have assumed that b appeared in v and thus that ¿>( appears in

y0x0 for some i. If p and a are respectively the least and greatest of the indices i

such that bi appears in y0x0, r=min (a+l, p + n),

Ya = \ba, ba+1,..., ba;..., c_j, c0, clf... ;...},

Yß = \bt, bz+i,..., bB;..., c_1( c0, cl5... ;...},

T-i = {b„ ..., ba;..., c-i, c0, Ci,...;...},

and He = gp( Ye) in G/N for 6 = a, ß or r, then

FF, = <ra;(>>o*o)m>,       ^^(y,;^^)'),       Hz = <,Yz;   >,

and moreover Gq/A^ is the generalized free product of Ha and Hß amalgamating Hz.
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Since A and p. are not divisible by / and m respectively, (xnyn)h and (y0xQy both

have finite order but are not 1 in G0/N and hence none of their conjugates lie in the

amalgamated subgroup 77„ which is free. Consequently [u, vK, v"] has length at

least four in the generalized free product G0/N and so cannot be 1.

Case (ii). Let aa(u)=n and aaiz)=k. We may assume n^O. It follows that

aa(x)=—n and aa(y) = n. Hence y = aky0an~k, x = a~nx0, z = akz0, v = z~1yzx

=z0~1y0z_nx0, u=x~1 = x0~1an and

Po = (xnzñ1ynzoy-1xnz- ^nyoz -nX0(zô1y0znx0)m-1.

Moreover

[u,v\vu] = [xô1an,(zô1yoZ-nxoy,(zô1y0z-nX0y]

= [(xnZñ ^„Zo) " \ZÖ XyoZ - n*o)\ (Z0- ̂ VqZ _ nx0)u].

Now if n = 0, we are done by induction.

Ifn>0, then

Co = (X0;(xnz-1ynz0)1 = (zô1yoZ-nXo)my.

We may proceed exactly as in the previous case by considering G0/N where N is

the normal subgroup of G0 generated by (xnzñ 1ynz0)1. However, in this case G0 is

already a generalized free product this time of two free groups and again an argu-

ment similar to the previous one can be used.

Case (iv). Let aa(u)=n and aait) = k. We may assume n^O. It follows that

aa(x)=-n, aa(y)=n, oAr)=-k and aA[s)=k. Hence y=y0an, x=a~nx0,

t=t0ak, s = s0ak, r = a'kr0, v=yx=y0x0 = tr=t0r0, u = x~1 = xS1an, p0 =

(xnyn)' " Vo~ x(*ö lySx) - m - S and

[u, v\ v"] = [x0-V, (y0x0)\ (yoXo)"]

= l(xnyn)~x(yoXo)\(yoXoY]-

Now if «=0, we are done by induction.

If n > 0, note that r0 e gp iX0) so that

G0 = (X0;(xnyn)l = (y0x0)-my.

We may proceed now as in Case (ii).

Finally we deal in the standard way with the possibility that ax(v)^0 for all

x e X which appear in p. Since u and v do not commute there must be at least two

distinct elements a and b of X which appear in p and hence also in v with nonzero

exponent sum. Let aaiv) = a and abiv)=ß. Then the map a^-AB, b-+BA~a,

c -> C,... extends to an embedding of G into

H={A,B,C,...;U'1VlUVmy

when U and V are the images of u and v. Now aA(V) = 0 and, although the length

of the new relator is longer than that ofp, when we consider as we did before 770,

the length of the relator in T70 will be shorter than that of p. Thus by the previous

argument, the image of [u, vA, vu] is not 1 and thus neither is [u, vx, vu] itself.
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