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We derive the equations of motion of relativistic, nonresistive, second-order dissipative magnetohy-

drodynamics from the Boltzmann equation using the method of moments. We assume the fluid to be

composed of a single type of point-like particles with vanishing dipole moment or spin, so that the fluid has

vanishing magnetization and polarization. In a first approximation, we assume the fluid to be nonresistive,

which allows to express the electric field in terms of the magnetic field. We derive equations of motion for

the irreducible moments of the deviation of the single-particle distribution function from local

thermodynamical equilibrium. We analyze the Navier-Stokes limit of these equations, reproducing

previous results for the structure of the first-order transport coefficients. Finally, we truncate the system

of equations for the irreducible moments using the 14-moment approximation, deriving the equations of

motion of relativistic, nonresistive, second-order dissipative magnetohydrodynamics. We also give

expressions for the new transport coefficients appearing due to the coupling of the magnetic field to

the dissipative quantities.

DOI: 10.1103/PhysRevD.98.076009

I. INTRODUCTION

The success of relativistic fluid dynamics in describing

the evolution of high-energy heavy-ion collisions [1] and the

existence of very large magnetic fields in these collisions

[2–5] has generated a lot of interest in observing the effects

of the magnetic field on the fluid-dynamical evolution in

these systems. The generic framework that couples the

electromagnetic field to the dynamics of a fluid is referred to

as magnetohydrodynamics [6,7]. There are several works

where the effect of electromagnetic fields on the dynamics of

heavy-ion collisions have been studied (for a review, see

Ref. [8] and references therein), but so far they have been

mostly based on the nonresistive, nondissipative formu-

lation of relativistic magnetohydrodynamics. However,

dissipation plays an important role in understanding the

dynamics of heavy-ion collisions and in particular in

explaining the magnitude of the observed collective flow

(for a review, see Ref. [1] and references therein). Thus, it is

essential to develop a relativistic formulation of dissipative

magnetohydrodynamics.

In principle, the most simple dissipative fluid-dynamical

theory is a relativistic generalization of Navier-Stokes

theory, where the dissipative quantities, bulk viscous

pressure, diffusion currents, and shear-stress tensor, are

proportional to the gradients of the flow field and of

thermodynamical quantities. In the absence of a magnetic

field, the constants of proportionality are three scalar trans-

port coefficients: the bulk viscosity, diffusion constant, and

shear viscosity. A magnetic field breaks the isotropy of

space, introducing several new transport coefficients [9–13],
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which assume different values in the direction of the

magnetic field and in the direction orthogonal to it. The

relativistic generalization of Navier-Stokes theory is, how-

ever, known to be acausal [14] and, at least, linearly

unstable [15–17], rendering it ill-suited for practical use.

Without the magnetic field, these problems were cured by

the causal and stable “second-order” formalism of Israel and

Stewart [18–20]. Israel-Stewart theory can be derived by

starting from the relativistic Boltzmann equation employing

the so-called 14-moment approximation [19,20], and the

success of fluid dynamics in describing the dynamics of

heavy-ion collisions is based on this formalism.

In this paper, we follow the same line of reasoning as

Israel and Stewart, and derive a relativistic causal theory of

second-order dissipative magnetohydrodynamics from the

relativistic Boltzmann equation coupled to an electromag-

netic field. As in the original formulation by Israel and

Stewart, we restrict ourselves to a single-component system

of spinless particles undergoing binary elastic collisions and

use the 14-moment approximation in the framework devel-

oped in Refs. [21–23]. In a first step, we assume the fluid to

have infinite electric conductivity (or zero resistivity),

which allows to replace the electric field by the magnetic

field and considerably simplifies the equations of motion.

We remark that the assumption of infinite electric conduc-

tivity is an idealization which is hard (if not impossible) to

realize in systemswhosemicroscopic dynamics is described

by the Boltzmann equation: the electric conductivity is a

transport coefficient which is proportional to the mean free

path of the particles, such as all other transport coefficients

appearing in dissipative fluid dynamics, and thus should be

of the same order of magnitude as the latter. Nevertheless, as

nonresistivemagnetohydrodynamics is a theory which finds

widespread applications, we decided to first discuss the

simpler case of a nonresistive (albeit dissipative) fluid. The

generalization towards systems with finite conductivity will

be addressed in a subsequent paper.

Let us add a few remarks on the length scales entering

our discussion. (i) The Boltzmann equation is derived

under the assumption that the collision term in this equation

is local, implying that the mean free path λmfp between

collisions is much larger than the typical interaction length
ffiffiffiffiffiffiffiffi

σ=π
p

, where σ is the binary-collision cross section.

(ii) The magnetic field leads to cyclotron motion of the

charged particles. The curvature of the particle trajectories

is given by the inverse Larmor radius R−1
L ¼ qB=k⊥, where

q is the electric charge of the particles and k⊥ is the

momentum of the particle transverse to the direction of the

magnetic induction field B, which has magnitude B ¼ jBj
(in the following the magnetic induction field is in a

simplifying, but somewhat incorrect, manner referred to

as “magnetic field”). In our discussion we will assume that

the magnetic field is sufficiently weak so that we can

neglect the Landau quantization of the cyclotron motion.

This implies that the thermal energy ∼T, where T is the

temperature, is much larger than the cyclotron frequency

∼
ffiffiffiffiffiffiffi

qB
p

. In other words, the thermal wavelength β0≡

1=T ≪ RT , where RT ≡ ðqBβ0Þ−1 is the Larmor radius

of a particle with transverse momentum k⊥ ¼ T. In the

following, we refer to RT as the “thermal Larmor radius.”

Note that this condition does not necessarily imply that the

magnetic field is weak in absolute magnitude; it only

requires that the temperature of the system is sufficiently

large, such that T2 ≫ qB. While our discussion is valid

when λmfp ≫
ffiffiffiffiffiffiffiffi

σ=π
p

and RT ≫ β0, there is a priori no

constraint on the ratio ξB ≡ λmfp=RT ¼ qBβ0λmfp [24], as

long as the first two inequalities are fulfilled.

This paper is organized as follows. In Sec. IIwe review the

structure of the equations of motion of magnetohydrody-

namics, i.e., the evolution equations for energy and momen-

tum coupled toMaxwell’s equations for the electromagnetic

fields. In Sec. III we present the magnetohydrodynamic

equations of motion for the nonresistive, nondissipative

fluid. In Sec. IVA we recall the method of moments and

derive the equations of motion for the moments of the

deviation of the single-particle distribution function from

local thermodynamical equilibrium in the presence of a

magnetic field. In Sec. IV Bwe show how theNavier-Stokes

limit arises from themoment expansion. Finally, in Sec. IV C

we derive the main result of this paper: the equations of

motion for nonresistive, second-order dissipative magneto-

hydrodynamics. Section V concludes this work with a

summary of the results and an outlook to future work.

We adopt natural Heaviside-Lorentz units, ℏ ¼ c ¼ ϵ0 ¼
μ0 ¼ kB ¼ 1. Our convention for the metric tensor is

gμν ¼ diagð1;−1;−1;−1Þ. The fluid four-velocity is

uμðt;xÞ ¼ γð1; vÞT , with γ ¼ ð1 − v2Þ−1=2, leading to the

normalization uμuμ ≡ 1. In the local rest (LR) frame of the

fluid, u
μ
LR ¼ ð1; 0ÞT . The four-momentum kμ of particles is

normalized to their rest mass m0, k
μkμ ¼ m2

0
. The rank-two

projection operator onto the three-space orthogonal to uμ is
Δ

μν ¼ gμν − uμuν. For a four-vector Aμ, we define its

projection onto the three-dimensional subspace orthogonal

to uμ as Ahμi ≡ Δ
μ
νA

ν. The rank-four projection operator is

defined as Δ
μν
αβ ¼ 1

2
ðΔμ

αΔ
ν
β þ Δ

μ
βΔ

ν
αÞ − 1

3
Δ

μν
Δαβ, which is

symmetric and traceless. For a rank-two tensor, we define

the symmetric, traceless projection onto the three-space

orthogonal to uμ as Ahμνi ≡ Δ
μν
αβA

αβ. Our convention and

useful relations for the rank-four Levi-Civita tensor ϵμναβ

are given in the Appendix.

II. EQUATIONS OF MOTION OF

MAGNETOHYDRODYNAMICS

A. Maxwell’s equations and energy-momentum

tensor of the electromagnetic field

In a relativistically covariant formulation of electrody-

namics, the electric field vector E and the magnetic field

vector B constitute the components of the Faraday tensor
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Fμν. The latter is an antisymmetric (and hence traceless)

rank-two tensor (and thus has six independent components,

corresponding to the six components of E and B). Without

loss of generality it can be decomposed with respect to the

fluid velocity as [25,26]

Fμν ≡ Eμuν − Eνuμ þ ϵμναβuαBβ; ð1Þ

while its Hodge dual is

F̃μν ≡
1

2
ϵμναβFαβ ¼ Bμuν − Bνuμ − ϵμναβuαEβ: ð2Þ

Here we defined the electric field four-vector Eμ ≡ Fμνuν
and the magnetic field four-vector Bμ ≡ F̃μνuν ¼
1

2
ϵμναβFαβuν. Using the antisymmetry of the Faraday tensor

and the rank-four Levi-Civita tensor, one readily realizes

that Eμ and Bμ are orthogonal to the fluid velocity, Eμuμ¼0

and Bμuμ ¼ 0. Moreover, in the local rest frame of the

fluid, they coincide with the usual electric and magnetic

fields, i.e., E
μ
LR ¼ ð0;EÞT and B

μ
LR ¼ ð0;BÞT , with Ei ¼

Fi0 and Bi ¼ − 1

2
ϵijkFjk. The electric field is a polar vector,

while the magnetic field is an axial vector dual to Fjk.

The evolution of the electric and magnetic fields are

given by Maxwell’s equations,

∂μF
μν ¼ Jν; ð3Þ

∂μF̃
μν ¼ 0; ð4Þ

where the electric charge four-current Jν serves as source

for the electromagnetic field. It can be tensor-decomposed

with respect to the fluid velocity [26,27],

Jμ ¼ nuμ þVμ; ð5Þ

where n ¼ uμJ
μ is the charge density in the local rest

frame of the fluid and Vμ ≡ Δ
μ
νJ

ν is the charge diffusion

four-current. The solution of Eqs. (3) and (4) determines the

electromagnetic fields as functionals of Jμ.

For nonpolarizable, nonmagnetizable fluids the electro-

magnetic stress-energy tensor is given by [25,28]

T
μν
em ¼ −FμλFν

λ þ
1

4
gμνFαβFαβ: ð6Þ

Using Maxwell’s equations (3) and (4) one can show that

∂μT
μν
em ¼ −FνλJλ: ð7Þ

B. Particle four-current and energy-momentum

tensor of the fluid

For particles without a microscopic dipole moment or

spin the canonical momentum coincides with the kinetic

momentum [28]. Then, the particle four-current and

energy-momentum tensor of the fluid are simply given by

N
μ
f ≡ hkμi; ð8Þ

T
μν
f ≡ hkμkνi: ð9Þ

Here,

h� � �i≡
Z

dK � � � fk; ð10Þ

with fk being the single-particle distribution function and

dK ≡ gd3k=½ð2πÞ3k0� being the Lorentz-invariant measure

in momentum space, where g is the degeneracy factor due

to internal degrees of freedom (note, however, that the spin

degeneracy is 2J þ 1 ¼ 1, since we consider spin-zero

particles), and k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2

0

p

is the on-shell energy.

The particle four-current and the energy-momentum

tensor can be tensor-decomposed with respect to the fluid

velocity,

N
μ
f ¼ nfu

μ þ V
μ
f; ð11Þ

T
μν
f ¼ εuμuν − PΔμν þWμuν þWνuμ þ πμν; ð12Þ

where the particle density nf, the energy density ε, and the

isotropic pressure P are defined as

nf ≡ N
μ
fuμ ¼ hEki; ð13Þ

ε≡ T
μν
f uμuν ¼ hE2

ki; ð14Þ

P≡ −
1

3
T
μν
f Δμν ¼ −

1

3
hΔμνkμkνi; ð15Þ

with Ek ¼ kμuμ being the energy of a particle in the local

rest frame of the fluid. The particle and energy-momentum

diffusion currents orthogonal to the flow velocity are

V
μ
f ≡ Δ

μ
νN

ν
f ¼ hkhμii; ð16Þ

Wμ ≡ Δ
μ
αT

αβ
f uβ ¼ hEkk

hμii; ð17Þ

respectively, while the shear-stress tensor is

πμν ≡ Δ
μν
αβT

αβ
f ¼ hkhμkνii: ð18Þ

For a single-component fluid, the electric charge and

particle four-currents are related by

J
μ
f ≡ qN

μ
f ¼ nfu

μ þV
μ
f; ð19Þ

where nf ≡ uνJ
ν
f ≡ quνN

ν
f ¼ qnf is the charge density in

the local rest frame and V
μ
f ≡ Δ

μ
νJ

ν
f ≡ qΔ

μ
νN

ν
f ¼ qV

μ
f is
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the charge diffusion current. To leading order, the charge

diffusion current is equal to the Ohmic induction cur-

rent, qV
μ
f ≃ J

μ
ind ¼ σEE

μ.

The components of J
μ
f and T

μν
f contain 14 unknowns, or

equivalently, for a given four-vector field uμ the three scalar
quantities nf; ε; P, the two times three (equals six) inde-

pendent components of V
μ
f and Wμ, and the five indepen-

dent components of πμν. If the fluid velocity is a dynamical

quantity, this would add another three unknowns (the three

independent components of uμ). However, the fluid veloc-

ity can be chosen to be proportional to the charge four-

current, which eliminates the charge diffusion current V
μ
f

(the so-called Eckart frame [29]), or to be proportional to

the flow of energy, which eliminates the energy-momentum

diffusion current Wμ (the so-called Landau frame [30]).

Let us assume that the only charge current in the system

is that of the fluid, Jμ ≡ J
μ
f. If we project Maxwell’s

equation (3) onto uν and use Eqs. (1) and (5), we obtain,

∇μE
μ þ 2ωμB

μ ¼ nf; ð20Þ

where we introduced the three-space gradient ∇μ ≡ Δ
α
μ∂α

and the vorticity four-vector

ωμ ¼ 1

2
ϵμναβuν∂αuβ: ð21Þ

In the following, we want to consider the nonresistive limit,

i.e., the electric conductivity σE → ∞. In this limit, the

Ohmic conduction current J
μ
ind would diverge, unless we

demand that Eμ ¼ 0, or E ¼ −v ×B, so that J
μ
ind ≃V

μ
f

remains finite. However, if Eμ ¼ 0, we observe that the

charge density of the fluid (and thus, for our single-

component system, the particle density of the fluid)

assumes a value which is uniquely determined by the

scalar product of the magnetic field four-vector and the

fluid vorticity, nf ¼ qnf ¼ 2ωμB
μ,
1
and is no longer an

independent variable. Projecting Eq. (3) with Δ
α
ν , similar

arguments apply to the charge diffusion currentVν
f ¼ qVν

f.

On the other hand, in dissipative fluid dynamics nf and

Vν
f are traditionally considered as four (out of 14) inde-

pendent variables. In order to maintain this feature, we

introduce an external current, J
μ
ext, such that the total

charge current (5) reads

Jμ ¼ J
μ
ext þ J

μ
f: ð22Þ

Then, nf and Vν
f become independent variables to be

determined by the equations of motion for the fluid. In this

case, our derivation of dissipative magnetohydrodynamics

can be formulated in close analogy to the one of ordinary

dissipative fluid dynamics for single-component systems.

Note that the introduction of an external current does not

affect our argument that Eμ must vanish in the limit of

infinite conductivity.

C. Equations of motion of magnetohydrodynamics

The total energy-momentum tensor of the system is

Tμν ¼ T
μν
em þ T

μν
f : ð23Þ

Note that the separation of Tμν into T
μν
em and T

μν
f is not

unique in the case of polarizable, magnetizable fluids [28].

This problem is absent here, as we consider a nonpolar-

izable, nonmagnetizable fluid.

While the charge current of the fluid is conserved,

∂μJ
μ
f ¼ 0; ð24Þ

the total energy and momentum of the system are not, as the

external charge current induces electromagnetic fields and

thus feeds energy and momentum into the system. In

analogy to Eq. (7) we have

∂μT
μν ¼ −FνλJext;λ: ð25Þ

With Eq. (22), Eq. (7) reads

∂μT
μν
em ¼ −FνλðJext;λ þ Jf;λÞ; ð26Þ

and with Eq. (23) we can derive from Eq. (25) an equation

of motion for the energy-momentum tensor of the fluid,

∂μT
μν
f ¼ FνλJf;λ: ð27Þ

Equations (24), (26), and (27) constitute the equations of

motion of magnetohydrodynamics. While the energy and

momentum of the electromagnetic fields change on account

of the external charge current as well as the internal charge

current of the particles in the fluid, Eq. (26), the energy and

momentum of the fluid change only on account of the

Lorentz force exerted on the charged particles within the

fluid by the electromagnetic fields, Eq. (27). In general,

neither energy and momentum of the electromagnetic fields

nor that of the fluid are conserved separately. The total

energy and momentum are only conserved in the absence of

an external charge current, Jext;λ ¼ 0, so that Eq. (25)

becomes ∂μT
μν ¼ 0.

1
Amusingly, the corresponding term is of the same structure as

the spin-vorticity coupling term discussed in Ref. [31], but the
coefficient assumes a different value, since in that case it is
determined by spin-1=2 fermions in the lowest Landau level,
while here we deal with spinless particles and neglect Landau
quantization.
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III. NONRESISTIVE, NONDISSIPATIVE

MAGNETOHYDRODYNAMICS

A. Assumption of nonresistivity

The charge four-current induced by an electric field is

J
μ
ind ¼ σEE

μ. Awidely used approximation in applications

of magnetohydrodynamics is the assumption that the

fluid is nonresistive, i.e., ideally conducting, such that

σE → ∞. Then, as already stated, in order to have a finite

induced charge current J
μ
ind one has to demand Eμ

→ 0.

From this condition it follows that, in an arbitrary frame,

E ¼ −v ×B, such that the electric field can be eliminated

from the equations of motion.

An ideally conducting fluid implies an infinite mean free

path of charged particles, i.e., the free-streaming limit.

However, in this paper we aim at deriving dissipative

magnetohydrodynamics from an expansion around local

thermodynamical equilibrium, which corresponds to the

opposite limit of a vanishing mean free path. All transport

coefficients appearing in the equations of motion are

proportional to the mean free path of particles, which is

assumed to be much smaller than the typical length scale

over which fluid-dynamical quantities vary. In order to be

consistent, the electric conductivity must be of the same

order as the other transport coefficients (in fact, the famous

Wiedemann-Franz law provides a unique relationship

between the conductivity and the particle diffusion con-

stant), and in principle we do not have the freedom to send

it to infinity. In the case of a finite σE, we are in turn forced

to consider a nonvanishing Eμ. Nevertheless, since non-

resistive magnetohydrodynamics is a theory which is

widely applied to physical systems, we decided to separate

the discussion by first treating the somewhat simpler case

Eμ ¼ 0 (corresponding to a nonresistive fluid), which is the

subject of the present work, and then embarking on a

treatment of the more complicated case Eμ ≠ 0, which will

be the focus of a follow-up to this paper.

For Eμ ¼ 0, the Faraday tensor (1) and its Hodge dual (2)

simplify to

Fμν
→ Bμν ¼ ϵμναβuαBβ; ð28Þ

F̃μν
→ B̃μν ¼ Bμuν − Bνuμ; ð29Þ

while Maxwell’s equations (3) and (4) reduce with

Eq. (22) to

ϵμναβðuα∂μBβ þ Bβ∂μuαÞ ¼ Jν
ext þ Jν

f; ð30Þ

_Bμ þ Bμθ ¼ uμ∂νB
ν þ Bν∇νu

μ; ð31Þ

where _A≡ uμ∂μA is the comoving derivative of any

quantity A and θ≡ ∂μu
μ is the expansion scalar.

The energy-momentum tensor of the electromagnetic

field becomes

T
μν
em → T

μν
B ¼ B2

2
ðuμuν − Δ

μν − 2bμbνÞ; ð32Þ

where we introduced B2 ≡ −BμBμ and

bμ ≡
Bμ

B
; ð33Þ

which is orthogonal to uμ, bμuμ ¼ 0, and normalized

to bμbμ ¼ −1.

For systems with a spatial anisotropy, as for instance

induced by a magnetic field [10,13,32,33], but not neces-

sarily restricted to this case [34] (for a review see Ref. [35]

and references therein), it is convenient to introduce a rank-

two operator projecting onto the two-dimensional subspace

orthogonal to both uμ and bμ,

Ξ
μν ≡ gμν − uμuν þ bμbν ¼ Δ

μν þ bμbν: ð34Þ

Furthermore, since BμνBμν ¼ 2B2 it makes sense to intro-

duce a new dimensionless antisymmetric tensor

bμν ≡ −
Bμν

B
¼ −ϵμναβuαbβ: ð35Þ

Obviously, bμνuν ¼ bμνbν ¼ 0, while Eq. (A2) yields

bμνbμν ≡ −2bμbμ ¼ 2. Moreover, with the help of

Eq. (A1) one can show that

bμαbνα ¼ Ξ
μ
ν : ð36Þ

B. Consequences for energy and momentum

evolution of the fluid

Already at this point we can draw conclusions from the

assumption of nonresistivity for the equations of motion of

magnetohydrodynamics. Projecting Eqs. (26) and (27) onto

the direction of uν leads to

uν∂μT
μν
B ¼ Buνb

νλðJext;λ þ Jf;λÞ ¼ 0; ð37Þ

uν∂μT
μν
f ¼ −Buνb

νλJf;λ ¼ 0; ð38Þ

because of uνb
νλ ¼ 0. The latter equation means that a

magnetic field does not change the fluid energy, which is

therefore separately conserved. This is easily understood

since a magnetic field (contrary to an electric field) only

changes the direction of the momenta of the particle, but

not their energy. On the other hand, projecting Eqs. (26)

and (27) onto the three-space orthogonal to uν we have

Δ
α
ν∂μT

μν
B ¼

�

B2 _uα −∇α

�

B2

2

�

− Δ
α
ν∂μðB2bμbνÞ

�

¼ BbαλðVext;λ þVf;λÞ; ð39Þ
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Δ
α
ν∂μT

μν
f ¼ −BbαλVf;λ; ð40Þ

where we employed Eq. (26) with Eq. (32) to obtain the

first equation. For both equations we used the decom-

position (5) [see also Eq. (19)], and employed the ortho-

gonality bαλuλ ¼ 0.

The interpretation of Eq. (40) is that the momentum of

the fluid changes on account of the interaction of the

magnetic field with the charge diffusion current. Note that

the magnetic field influences the dynamics of the fluid only

by coupling to the dissipative part of the charge current.

Without dissipation, the dynamics of the fluid is unaffected

by the magnetic field; see Eq. (51) below.

C. Equations of motion of nonresistive, nondissipative

magnetohydrodynamics

The equations of motion of nonresistive, nondissipative

magnetohydrodynamics are obtained under the assumption

that the fluid is in local thermodynamical equilibrium

everywhere in space-time. In the case of dilute gases this

assumption implies that the single-particle distribution

function assumes the form [36]

fk → f0k ¼ ½exp ðβ0Ek − α0Þ þ a�−1; ð41Þ

with α0 ¼ μβ0, where μ is the chemical potential associated

with the particle density n0, and a ¼ �1 for fermions/

bosons, while a→ 0 for classical particles. Since we

assumed that we can neglect the Landau quantization of

single-particle energy eigenstates (see the Introduction), the

distribution function is isotropic in the local frame,

Ek;LR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2

0

p

. Local equilibrium means that the

quantities α0, β0, as well as the fluid velocity uμ are

functions of the space-time variable xμ. Since f0k depends

solely on these five independent variables, and since N
μ
f

and T
μν
f computed from Eqs. (8) and (9) with f0k replacing

fk then also depend only on these five variables, the

equations of motion of magnetohydrodynamics are closed.

In the following, we need the thermodynamic integrals

Inqðα0;β0Þ¼
ð−1Þq

ð2qþ1Þ!!hE
n−2q
k ðΔαβkαkβÞqi0; ð42Þ

where h� � �i0 ≡
R

dK � � � f0k is defined in analogy to

Eq. (10). Similarly, the auxiliary thermodynamic integrals

are

Jnq≡

�

∂Inq

∂α0

�

β0

¼ ð−1Þq
ð2qþ1Þ!!hE

n−2q
k ðΔαβkαkβÞqð1−af0kÞi0:

ð43Þ

Since ð∂Inq
∂β0

Þ
α0
¼ −Jnþ1;q, the total derivative is

dInqðα0;β0Þ≡
∂Inq

∂α0
dα0þ

∂Inq

∂β0
dβ0¼Jnqdα0−Jnþ1;qdβ0:

ð44Þ

Using the equilibrium distribution function in Eqs. (8)

and (9) we obtain the conserved quantities in the form for a

nondissipative fluid,

N
μ
f0 ≡ hkμi0 ¼ nf0u

μ; ð45Þ

T
μν
f0 ≡ hkμkνi0 ¼ ε0u

μuν − P0Δ
μν; ð46Þ

where

nf0 ≡ N
μ
f0uμ ¼ I10; ð47Þ

ε0 ≡ T
μν
f0uμuν ¼ I20; ð48Þ

P0 ≡ −
1

3
T
μν
f0Δμν ¼ I21: ð49Þ

Therefore, the total energy-momentum tensor of a non-

resistive, nondissipative fluid reads

T
μν
f0þB ≡ T

μν
f0 þ T

μν
B

¼
�

ε0 þ
B2

2

�

uμuν −

�

P0 þ
B2

2

�

Δ
μν − B2bμbν:

ð50Þ

An immediate consequence of the assumptions of non-

resistivity as well as nondissipativity is that the energy and

momentum of the fluid are separately conserved,

∂μT
μν
f0 ¼ 0: ð51Þ

This follows immediately from Eq. (27), since FνλJλ →

−Bbνλnuλ ¼ 0, but it also follows from Eqs. (38) and

(40), since Vf;λ ≡ 0 for a nondissipative fluid. The energy

of the magnetic field is conserved on account of Eq. (37),

but the momentum is only conserved when Vext;λ ¼ 0,

cf. Eq. (39).

IV. NONRESISTIVE, DISSIPATIVE

MAGNETOHYDRODYNAMICS

In this section, we derive the equations of motion of

nonresistive, dissipative magnetohydrodynamics for a

fluid consisting of a single type of point-like particles

without dipole moment or spin. We also assume that the

particles undergo binary elastic collisions only. Starting

from the Boltzmann equation in the presence of an

external electromagnetic field, we first derive the (infinite)
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set of equations of motion for the irreducible moments of

the deviation

δfk ≡ fk − f0k ð52Þ

of the single-particle distribution function from isotropic

local thermodynamical equilibrium. Then we truncate this

set using the 14-moment approximation. Our treatment

follows closely that of Refs. [22,23], extending the latter

by terms arising from the magnetic field. Note that our

assumption β0 ≪ RT (see the Introduction) allows us to

neglect Landau quantization; otherwise f0k would be

anisotropic. In principle, however, this case can be

discussed using the formalism presented in Ref. [34].

An anisotropy also emerges when using a f0k which is a

solution of the Vlasov equation [32,33], or an anisotropic

distribution function parametrizing deviations from local

equilibrium [37].

A. Equations of motion for the irreducible moments

The relativistic Boltzmann equation coupled to an

electromagnetic field [25,38] is

kμ∂μfk þ qFμνkν
∂

∂kμ
fk ¼ C½f�: ð53Þ

Here the assumption is that the electromagnetic field Fμν

changes the momenta kμ of particles carrying charge q on

large space-time scales ∼RT , while the collision term, being

a quantity which is local in space-time, redistributes them

on small space-time scales ∼
ffiffiffiffiffiffiffiffi

σ=π
p

. We remark that if the

particles carry a dipole moment or spin, there would be an

additional term on the left-hand side [28]. Note that for

Eq. (53) it does not matter whether the electromagnetic

field is generated exclusively via the charge current of the

particles, Jν
f as source term in the inhomogeneous Maxwell

equations, or exclusively via an external charge current

Jν
ext, or by a combination of both. However, on account of

our remarks made at the end of Sec. II B, only the case of a

nonvanishing external charge current allows to treat the

particle current N
μ
f as an independent fluid-dynamical

variable.

Under the assumption that the particles undergo binary

elastic collisions only, the collision term reads

C½f� ¼ 1

2

Z

dK0dPdP0½Wpp0
→kk0fpfp0ð1 − afkÞð1 − afk0Þ

−Wkk0
→pp0fkfk0ð1 − afpÞð1 − afp0Þ�; ð54Þ

where the factors 1 − af represent the corrections from

quantum statistics. The invariant transition rate Wkk0
→pp0

satisfies detailed balance, Wkk0
→pp0 ¼ Wpp0

→kk0 , and is

symmetric with respect to the exchange of momenta,

Wkk0
→pp0 ¼ Wk0k→pp0 ¼ Wkk0

→p0p.

Following Refs. [22,23] we define the irreducible

moments of δfk as
2

ρ
μ1���μn
r ≡ hEr

kk
hμ1 � � � kμniiδ; ð55Þ

where h� � �iδ ¼
R

dK � � � δfk. Here, the irreducible tensor

of rank l is defined as

khμ1 � � � kμli ¼ Δ
μ1���μl
ν1���νl k

ν1 � � � kνl ; ð56Þ

where the rank-2l symmetric and traceless projection

tensor Δ
μ1���μl
ν1���νl is a straightforward generalization of the

rank-four projection tensor Δ
μν
αβ introduced above (for more

details on how to construct the former, see Refs. [34,38]).

The irreducible tensors 1; khμi; khμkνi; khμkνkλi;… form a

complete basis in momentum space and satisfy the follow-

ing orthogonality condition:

Z

dKFðEkÞkhμ1 � � � kμlikhν1 � � � kνni

¼ l!δln

ð2lþ 1Þ!!Δ
μ1���μl
ν1���νl

Z

dKFðEkÞ ðΔαβkαkβÞl; ð57Þ

where FðEkÞ is a sufficiently rapidly converging (but

otherwise arbitrary) function of Ek.

The deviations of the particle four-current and the fluid

energy-momentum tensor from their local equilibrium

values N
μ
f0, T

μν
f0 are

δN
μ
f ≡ hkμiδ ¼ δnfu

μ þ V
μ
f; ð58Þ

δT
μν
f ≡ hkμkνiδ ¼ δεuμuν − ΠΔ

μν þWμuν þWνuμ þ πμν;

ð59Þ

where the corrections to particle density, energy density,

and isotropic pressure are

δnf ≡ δN
μ
fuμ ¼ ρ1; ð60Þ

δε≡ δT
μν
f uμuν ¼ ρ2; ð61Þ

Π≡ −
1

3
δT

μν
f Δμν ¼ −

m2
0

3
ρ0 þ

ρ2

3
: ð62Þ

2
A tensor is called irreducible when it is irreducible under a

group G consisting of Lorentz transformations that leave uμ

invariant. Let F be a subgroup of G consisting of Lorentz
transformations that leave both uμ and bμ invariant. An irreduc-
ible tensor under G may be reducible under F. This reduction of
symmetry leads to a larger number of transport coefficients in
dissipative magnetohydrodynamics than in ordinary dissipative
fluid dynamics; see Sec. IV B.
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The particle and energy-momentum diffusion currents

orthogonal to the fluid velocity are

V
μ
f ≡ Δ

μ
νδN

ν
f ¼ ρ

μ
0
; ð63Þ

Wμ ≡ Δ
μ
αδT

αβ
f uβ ¼ ρ

μ
1
; ð64Þ

while the shear-stress tensor is

πμν ≡ Δ
μν
αβδT

αβ
f ¼ ρ

μν
0
: ð65Þ

Choosing the Landau frame [30] to determine the fluid

velocity implies

uμ ¼
T
μν
f uν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uαT
αβ
f Tf;βγu

γ

q ; ρ
μ
1
¼ 0: ð66Þ

The parameters α0 and β0 entering f0k are determined

by the so-called Landau matching conditions, i.e., demand-

ing that the particle density and energy density resulting

from fk are identical with those resulting from f0k,
nf ¼ nf0; ε ¼ ε0, or in other words

δnf ¼ ρ1 ¼ 0; δε ¼ ρ2 ¼ 0: ð67Þ

Then, the charge four-current and total energy-

momentum tensor in nonresistive, dissipative magnetohy-

drodynamics are

J
μ
f ≡ nfu

μ þV
μ
f; ð68Þ

Tμν ≡ T
μν
f þ T

μν
B

¼
�

ε0 þ
B2

2

�

uμuν −

�

P0 þ Πþ B2

2

�

Δ
μν

− B2bμbν þ πμν: ð69Þ

Equations (24) and (27) with Eqs. (68) and (69) together

with the thermodynamical identities (42) and (43) lead to

the following equations of motion for α0, β0, and uμ:

_α0 ¼
1

D20

½−J30ðnf0θ þ ∂μV
μ
fÞ þ J20ðε0 þ P0 þ ΠÞθ

− J20π
μνσμν�; ð70Þ

_β0 ¼
1

D20

½−J20ðnf0θ þ ∂μV
μ
fÞ þ J10ðε0 þ P0 þ ΠÞθ

− J10π
μνσμν�; ð71Þ

and

_uμ ¼ 1

ε0 þ P0

�

nf0

β0
ð∇μα0 − h0∇

μβ0Þ − Δ
μ
ν∂κπ

κν

− Π _uμ þ∇μ
Π − qBbμνVf;ν

�

; ð72Þ

whereDnq ≡ Jnþ1;qJn−1;q − J2nq, h0 ≡ ðε0 þ P0Þ=nf0 is the
enthalpy per particle, and σμν ¼ ∇hμuνi is the shear tensor.
The equations of motion for α0 and β0 are the same as

Eqs. (39)–(40) of Ref. [22]; however Eq. (72) contains an

additional term due to the magnetic field when compared to

Eq. (41) of Ref. [22].

We now use Eq. (52) to replace fk by δfk in

the Boltzmann equation (53). Then, we take moments of

the Boltzmann equation (53) in momentum space. With the

definitions

_ρ
hμ1���μli
r ≡ Δ

μ1���μl
ν1���νl u

α∂αρ
ν1���νl
r ; ð73Þ

and

C
hμ1���μli
r ≡ Δ

μ1���μl
ν1���νl

Z

dKEr
kk

ν1 � � � kνlC½f�; ð74Þ

we obtain the equations of motion for the irreducible

moments, similarly as shown in Refs. [22,23].

The equation of motion for the irreducible tensors of

rank zero reads

_ρr − Cr−1 ¼ α
ð0Þ
r θ þ G3r

D20

∂μV
μ
f þ

θ

3

�

m2

0
ðr − 1Þρr−2

− ðrþ 2Þρr − 3
G2r

D20

Π

�

þ rρ
μ
r−1 _uμ −∇μρ

μ
r−1

þ
�

ðr − 1Þρμνr−2 þ
G2r

D20

πμν
�

σμν; ð75Þ

where we have defined Gnm ¼ Jn;0Jm;0 − Jn−1;0Jmþ1;0.

Note that the contribution of the magnetic field vanishes

for any scalar moment and exactly corresponds to Eq. (35)

of Ref. [22]. However, the magnetic field is still present and

affects the fluid motion through the acceleration equation,

Eq. (72), as well as through the equations of motion for the

irreducible moments of rank higher than zero (see below).

The equation of motion for the irreducible tensors of

rank one is
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_ρ
hμi
r − C

hμi
r−1 ¼ α

ð1Þ
r ∇μα0 þ rρ

μν
r−1 _uν −

1

3
∇μ½m2

0
ρr−1 − ρrþ1� − Δ

μ
αð∇νρ

αν
r−1 þ αhr∂κπ

καÞ

þ 1

3
½m2

0
ðr − 1Þρμr−2 − ðrþ 3Þρμr �θ þ ðr − 1Þρμνλr−2σμν þ

1

5
σμν½m2

0
ð2r − 2Þρr−2;ν − ð2rþ 3Þρr;ν� þ ρr;νω

μν

þ 1

3
½m2

0
rρr−1 − ðrþ 3Þρrþ1 − 3αhrΠ� _uμ þ αhr∇

μ
Π − αhrqBb

μνVf;ν − qBbμνρr−1;ν; ð76Þ

where ωμν ¼ ð∇μuν −∇νuμÞ=2 is the vorticity tensor. The two terms in the last line are new as compared to Eq. (36) of

Ref. [22] and explicitly contain the magnetic field.

The equation of motion for the irreducible moments of tensor of rank two is

_ρ
hμνi
r − C

hμνi
r−1 ¼ 2α

ð2Þ
r σμν þ 2

15
½m4

0
ðr − 1Þρr−2 − ð2rþ 3Þm2

0
ρr þ ðrþ 4Þρrþ2�σμν þ

2

5
_uhμ½m2

0
rρ

νi
r−1 − ðrþ 5Þρνirþ1

�

−
2

5
½∇hμðm2

0
ρ
νi
r−1 − ρ

νi
rþ1

Þ� þ rρ
μνγ
r−1 _uγ − Δ

μν
αβ∇λρ

αβλ
r−1 þ ðr − 1Þρμνλκr−2 σλκ þ 2ρ

λhμ
r ω

νi
λ þ 1

3
½m2

0
ðr − 1Þρμνr−2

− ðrþ 4Þρμνr �θ þ 2

7
½m2

0
ð2r − 2Þρκhμr−2 − ð2rþ 5Þρκhμr �σνiκ − 2qBbαβΔ

μν
ακgλβρ

κλ
r−1; ð77Þ

where only the last term is new when compared to Eq. (37)

of Ref. [22] and explicitly contains the magnetic field. Here

we also defined the following coefficients which are

formally unchanged from Eqs. (42)–(44) of Ref. [22]:

α
ð0Þ
r ¼ ð1 − rÞIr1 − Ir0 −

nf0

D20

ðh0G2r −G3rÞ; ð78Þ

α
ð1Þ
r ¼ Jrþ1;1 − h−1

0
Jrþ2;1; ð79Þ

α
ð2Þ
r ¼ Irþ2;1 þ ðr − 1ÞIrþ2;2; ð80Þ

αhr ¼ −
β0

ε0 þ P0

Jrþ2;1: ð81Þ

The collision integral can be linearized using Eq. (52) and

written as

C
hμ1���μli
r−1 ≡ −

X

Nl

n¼0

A
ðlÞ
rn ρ

μ1���μl
n ; ð82Þ

where the coefficient A
ðlÞ
rn contains time scales ∼λmfp. In

order to obtain this result, we have assumed that the

magnetic field does not modify the collision integral, so

that we were able to employ the orthogonality relation (57);

for details see Ref. [22].

Note that, once the equations of motion (75)–(77)

(and in principle those for all higher-rank tensors) are

solved and the complete set of irreducible moments is

determined, one can reconstruct the single-particle distri-

bution fk as a solution of the Boltzmann equation.

Following Refs. [22,23],

fk ¼ f0k þ f0kð1 − af0kÞ
X

∞

l¼0

X

Nl

n¼0

ρ
μ1���μl
n khμ1 � � � kμliH

ðlÞ
kn :

ð83Þ

We remark that this relation is an exact equality (i.e., fk is

an exact solution of the Boltzmann equation) only if we

take Nl → ∞. In practice, however, one has to truncate the

sum over n at some finite value, Nl < ∞. The same holds

for the sum over l. Since there are no tensors of rank higher

than two in fluid dynamics, this sum is usually restricted to

l ≤ 2. Furthermore, this also implies that higher-rank

tensors on the right-hand sides of the equations of motion

(75)–(77) will be subsequently neglected.

The coefficients H
ðlÞ
kn are defined as

H
ðlÞ
kn ¼ ð−1Þl

l!J2l;l

X

Nl

i¼n

X

i

m¼0

a
ðlÞ
in a

ðlÞ
im Em

k ; ð84Þ

where the coefficients a
ðlÞ
ij can be written in terms of

thermodynamic integrals and are calculated via Gram-

Schmidt orthogonalization; for details see Ref. [22].

In preparation for a suitable truncation of the infinite set

of equations of motion for the irreducible moments, we

note that an irreducible moment of arbitrary order r and

tensor rank l can always be expressed as a linear

combination of irreducible moments of all orders n and

the same tensor rank,
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ρ
μ1���μl
r ¼

X

Nl

n¼0

ρ
μ1���μl
n F

ðlÞ
−r;n ¼

X

Nl

n¼0

ρ
μ1���μl
n

×
X

Nl

i¼n

X

i

m¼0

a
ðlÞ
in a

ðlÞ
im

Jrþmþ2l;l

J2l;l
; ð85Þ

where

F
ðlÞ
rn ¼ l!

ð2lþ1Þ!!

Z

dKE−r
k H

ðlÞ
kn ðΔαβkαkβÞlf0kð1−af0kÞ:

ð86Þ

The first equality of Eq. (85) is proven using the orthogon-

ality (57) of the irreducible moments and their definition

(55). The second equality of Eq. (85) is shown using the

definitions of the auxiliary thermodynamic integrals (43)

and of the coefficients (84). Note that Eq. (85) is an identity

for 0 ≤ r ≤ Nl, while it is an approximation for r outside

this range, unless Nl →∞. The accuracy of this approxi-

mation can be systematically improved by increasingNl. In

the remainder of this paper, however, we will restrict

ourselves to the so-called 14-moment approximation, i.e.,

we will assume N0 ¼ 2, N1 ¼ 1, and N2 ¼ 0 [22].

B. The Navier-Stokes approximation

Besides a suitable truncation of Eqs. (75)–(77), we also

need a scheme to power count the various terms in these

equations, in order to define the order of the approximation

we are considering. We assume that quantities representing

deviations from local thermodynamical equilibrium, like

the irreducible moments, are of first order in some small

parameter. Furthermore, since macroscopic fields like

α0ðxμÞ; β0ðxμÞ, and uμðxμÞ vary on space-time scales that

are much larger than the microscopic scales contained in

the collision integral, we also assume that derivatives of

these fields are of first order in that small parameter.

In the Navier-Stokes approximation, all second-order

terms, i.e., terms involving products of irreducible

moments and derivatives of α0, β0, and uμ, or derivatives
of irreducible moments are neglected, leaving only the

collision integrals [in linearized form; see Eq. (82)] on the

left-hand sides and the first terms as well as the last terms

involving the magnetic field on the right-hand sides of

Eqs. (75)–(77). Bringing the latter ones to the left-hand side

results in the following set of equations:

X

N0

n¼0;≠1;2

A
ð0Þ
rn ρn ¼ α

ð0Þ
r θ; ð87Þ

X

N1

n¼0;≠1

½Að1Þ
rn g

μν þ qBðF ð1Þ
1−r;n þ αhrδn0Þbμν�ρn;ν ¼ α

ð1Þ
r ∇μα0;

ð88Þ

X

N2

n¼0

½Að2Þ
rn g

μ
αg

ν
β þ qBF

ð2Þ
1−r;nðb

μ
βg

ν
α þ bνβg

μ
αÞ�ραβn ¼ 2α

ð2Þ
r σμν:

ð89Þ

In physical terms, it is assumed that the irreducible

moments no longer evolve in time and assume their

asymptotic solution given solely by the first-order terms

on the right-hand side, multiplied by the inverse of the

coefficient matrix on the left-hand side. The formal solution

of this set of equations is

ρr ¼ ζ
μν
r ∂μuν; ð90Þ

ρ
μ
r ¼ κ

μν
r ∇να0; ð91Þ

ρ
μν
r ¼ η

μναβ
r σαβ; ð92Þ

where the rank-two tensor coefficients can in general be

decomposed in terms of the projection operators Ξμν, bμbν,
as well as the tensor bμν [10],

ζ
μν
r ¼ ζr⊥Ξ

μν − ζrkb
μbν − ζr×b

μν; ð93Þ

κ
μν
r ¼ κr⊥Ξ

μν − κrkb
μbν − κr×b

μν; ð94Þ

while the rank-four tensor coefficient involves the projec-

tion operator Δμναβ and products of Δμν, Ξμν, bμbν, as well
as bμν (for more details, see Ref. [10]),

η
μναβ
r ¼ 2ηr0Δ

μναβ þ ηr1

�

Δ
μν −

3

2
Ξ
μν

��

Δ
αβ −

3

2
Ξ
αβ

�

− 2ηr2ðΞμαbνbβ þ Ξ
ναbμbβÞ

− 2ηr3ðΞμαbνβ þ Ξ
ναbμβÞ

þ 2ηr4ðbμαbνbβ þ bναbμbβÞ: ð95Þ

The scalar transport coefficients ζr⊥; ζrk; ζr×; κr⊥; κrk; κr×;
ηr0; ηr1; ηr2; ηr3; ηr4 are obtained by substituting Eqs. (90)–

(92) into Eqs. (87)–(89) and identifying the coefficients of

the corresponding tensor structures.

The bulk-viscosity coefficients ζr⊥; ζrk; ζr× are then

determined by the following equations:

X

N0

n¼0;≠1;2

A
ð0Þ
rn ζn⊥ ¼ α

ð0Þ
r ;

X

N0

n¼0;≠1;2

A
ð0Þ
rn ðζn⊥ − ζnkÞ ¼ 0;

X

N0

n¼0;≠1;2

A
ð0Þ
rn ζn× ¼ 0; ð96Þ
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and hence in the 14-moment approximation (N0 ¼ 2),

ζ0⊥ ¼ ζ0k ¼
α
ð0Þ
r

A
ð0Þ
r0

; ζ0× ¼ 0: ð97Þ

Note that, as long as the collision integral is assumed to be

independent of the magnetic field, only a tensor structure of

the type ∼Ξμν − bμbν ≡ Δ
μν survives in the bulk-viscosity

tensor (93). In general, however, this does not need to be

the case. An explicit example is given in Ref. [39] where

ζ0⊥ and ζ0k are calculated for a hot quark-gluon plasma in a

magnetic field, taking into account Landau quantization.

The transport coefficients κr⊥; κrk; κr× are found by

inserting Eq. (91) into Eq. (88). This leads to the following

system of coupled equations:

X

N1

n¼0;≠1

½Að1Þ
rn κn⊥ þ qBðF ð1Þ

1−r;n þ αhrδn0Þκn×� ¼ α
ð1Þ
r ; ð98Þ

X

N1

n¼0;≠1

A
ð1Þ
rn κnk ¼ α

ð1Þ
r ; ð99Þ

X

N1

n¼0;≠1

½Að1Þ
rn κn× − qBðF ð1Þ

1−r;n þ αhrδn0Þκn⊥� ¼ 0; ð100Þ

and hence, in the 14-moment approximation (N1 ¼ 1),

κr≡κ0k¼
α
ð1Þ
r

A
ð1Þ
r0

; κ0⊥¼κ0k

�

1þ
�

qB
F

ð1Þ
1−r; 0

þαhr

A
ð1Þ
r0

�

2
�

−1

;

κ0×¼κ0⊥qB
F

ð1Þ
1−r;0þαhr

A
ð1Þ
r0

: ð101Þ

One observes that, when B→ 0, κ0× → 0, while

κ0k → κ0⊥. Also in this case, the diffusion tensor

κ
μν
0
∼ Δ

μν, as expected. Moreover, for any B ≠ 0,

κ0⊥ < κ0k, i.e., due to the cyclotron motion of the particles,

particle (or charge) diffusion transverse to the magnetic

field is reduced as compared to the diffusion parallel to the

magnetic field.

In the limit of a massless Boltzmann gas, where

Jnq ≡ Inq ¼ ðnþ1Þ!
2ð2qþ1Þ!! β

2−n
0

P0, and for a constant binary

cross section σ ¼ const, we obtain for r ¼ 0 the following

expressions: α
ð1Þ
0

¼ β0P0=12, αh
0
≡ −1=h0 ¼ −β0=4,

F
ð1Þ
10

¼ 2β0=3, and A
ð1Þ
00

¼ 4=ð9λmfpÞ, where λmfp ¼
1=ðnf0σÞ is the mean free path of the particles, and thus

the diffusion coefficients assume the values

κ0k ¼
3λmfpnf0

16
; κ0⊥ ¼ 48λmfpnf0

256þ 225ξ2B
;

κ0× ¼ 45ξBλmfpnf0

256þ 225ξ2B
; ð102Þ

where ξB ≡ qBβ0λmfp ≡ λmfp=RT was defined in the

Introduction.

As expected, the longitudinal diffusion is solely given in

terms of the mean free path, since the magnetic field does

not affect the dynamics in the bμ direction. On the other

hand, there is an interplay between the mean free path and

the thermal Larmor radius RT for the transverse diffusion,

since the underlying particles not only collide but also

undergo cyclotron motion. The magnetic-field dependence

of these coefficients is shown in Fig. 1(a).

Let us consider the limiting case where the mean free

path is much larger than the thermal Larmor radius, i.e.,

ξB ≫ 1. This can be achieved either for fixed B by

decreasing the temperature or density, such that the mean

free path increases, or by increasing the magnetic field B,
and thus decreasing the Larmor radius, for fixed density,

i.e., fixed mean free path. In this limit,

(a) (b)

FIG. 1. The magnetic-field dependence of the diffusion coefficients (a) and the shear-viscosity coefficients (b).
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κ0k ¼
3λmfpnf0

16
; κ0⊥ ≃

16

75

λmfpnf0

ξ2B
;

κ0× ≃
λmfpnf0

5ξB
≡

nf0RT

5
: ð103Þ

As expected, the Hall diffusion coefficient κ0× assumes a

value which is independent of the mean free path. Note,

however, that we obtain a nonzero value for this quantity. The

unique relationship between the diffusion coefficient and the

electric conductivity (the Wiedemann-Franz law mentioned

above) then implies that theHall conductivity is also nonzero.

This result is different from the vanishing value quoted in

Eq. (8.198) of Ref. [25], valid for a mixture of an ultra-

relativistic electron gas and a nonrelativistic ion gas.

Finally, inserting Eq. (92) into Eq. (89) leads to the

following set of equations for the shear-viscosity coefficients:

X

N2

n¼0

ðAðlÞ
rn ηn0 þ 4qBF

ð2Þ
1−r;nηn3Þ ¼ α

ð2Þ
r ; ð104Þ

X

N2

n¼0

ðAð2Þ
rn ηn3 − qBF

ð2Þ
1−r;nηn0Þ ¼ 0; ð105Þ

X

N2

n¼0

ðAð2Þ
rn ηn4 −A

ð2Þ
rn ηn3 − qBF

ð2Þ
1−r;nηn2Þ ¼ 0; ð106Þ

X

N2

n¼0

ðAð2Þ
rn ηn2þqBF

ð2Þ
1−r;nηn4−4qBF

ð2Þ
1−r;nηn3Þ¼0; ð107Þ

X

N2

n¼0

ð3Að2Þ
rn ηn1 − 16qBF

ð2Þ
1−r;nηn3Þ ¼ 0: ð108Þ

In the 14-moment approximation (N2 ¼ 0) the above set of

equations is solved by

η00 ¼ ηr

�

1þ 4

�

qB
F

ð2Þ
1−r;0

A
ð2Þ
r0

�2�−1

; ð109Þ

η01 ¼
16

3

�

qB
F

ð2Þ
1−r;0

A
ð2Þ
r0

�2

η00; ð110Þ

η02 ¼ 3

�

qB
F

ð2Þ
1−r;0

A
ð2Þ
r0

�2�

1þ
�

qB
F

ð2Þ
1−r;0

A
ð2Þ
r0

�2�−1

η00; ð111Þ

η03 ¼ qB
F

ð2Þ
1−r;0

A
ð2Þ
r0

η00; ð112Þ

η04 ¼ ηrqB
F

ð2Þ
1−r;0

A
ð2Þ
r0

�

1þ
�

qB
F

ð2Þ
1−r;0

A
ð2Þ
r0

�2�−1

; ð113Þ

where ηr ¼ α
ð2Þ
r =A

ð2Þ
r0 corresponds to the usual shear-viscos-

ity coefficient. As expected, when B→ 0, only η00 remains

nonzero, such that η
μναβ
0

∼ Δ
μναβ, as expected. Note that, for

B ≠ 0, the “standard” shear-viscosity coefficient η00 is

reduced as compared to its value for B ¼ 0. This reduction

of viscosity is similar to the mechanism suggested in

Ref. [40], giving rise to the so-called “anomalous viscosity,”

although that work considered gluon instead of electromag-

netic fields.

In the limit of a massless Boltzmann gas and for a

constant cross section, we obtain for r ¼ 0 the quantities

α
ð2Þ
0

¼ 4P0=5, F
ð2Þ
10

¼ β0=5, and A
ð2Þ
00

¼ 3=ð5λmfpÞ. This

yields η0 ¼ 4λmfpP0=3 and

η00 ¼
12λmfpP0

9þ 4ξ2B
; η01 ¼

64

9

ξ2BλmfpP0

9þ 4ξ2B
;

η02 ¼
36ξ2BλmfpP0

½9þ 4ξ2B�½9þ ξ2B�
; η03 ¼

4ξBλmfpP0

9þ 4ξ2B
;

η04 ¼
4ξBλmfpP0

9þ ξ2B
: ð114Þ

The magnetic field dependence of these coefficients is

shown in Fig. 1(b). For a large ratio of mean free path to

thermal Larmor radius, ξB ≫ 1,

η00 ¼
1

3
η02 ≃

9

4

η0

ξ2B
; η01 ≃

4

3
η0;

η03 ¼
1

4
η04 ≃

λmfpP0

ξB
≡ P0RT :

In this limit, the last two viscosities, η03 and η04, become

independent of λmfp. They appear purely due to the Lorentz

force (and are thus named Hall viscosities). The relation

η03 ¼ η04=4 holds also in the nonrelativistic case [41]. We

note that a similar study of the shear-viscosity coefficients

in the Navier-Stokes limit was recently performed in

Ref. [42], using the Boltzmann equation in the relaxation-

time approximation.

Finally, we remark that the effect of a magnetic field on

the shear viscosity of a strongly coupled N ¼ 4 super-

symmetric Yang-Mills plasma with a large number of

colors was studied in Ref. [11]. In this case, it was shown

that the ratio between η00 and the entropy density s does not
change with the magnetic field, η00=s ¼ 1=ð4πÞ, while the
ratio ðη00 þ η02Þ=s, considered in Ref. [11], was found to

be suppressed in strong magnetic fields. This illustrates

how the microscopic assumptions regarding the fluid, i.e.,

strong versus weak coupling, may alter its response to

magnetic fields.
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C. Second-order magnetohydrodynamical

equations of motion

We now derive the equations of motion for nonresistive,

second-order dissipative magnetohydrodynamics. In this

case, all terms in Eqs. (75)–(77) are kept, but the irreducible

moments ρ
μ1���μl
r with r ≠ 0 are replaced using the 14-

moment approximation (N0 ¼ 2, N1 ¼ 1, N2 ¼ 0) using

Eq. (85). With the definitions (62)–(65) we obtain

ρr¼
X

N0

n¼0;≠1;2

ρnF
ð0Þ
−r;n

¼−
3

m2
0

Π
Jr0D30þJrþ1;0G23þJrþ2;0D20

J20D20þJ30G12þJ40D10

; ð115Þ

ρ
μ
r ¼

X

N1

n¼0;≠1

ρ
μ
nF

ð1Þ
−r;n ¼ V

μ
f

Jrþ2;1J41 − Jrþ3;1J31

D31

; ð116Þ

ρ
μν
r ¼

X

N2

n¼0

ρ
μν
n F

ð2Þ
−r;n ¼ πμν

Jrþ4;2

J42
; ð117Þ

while all higher-rank tensors (l > 2) are assumed to

vanish. The above formulas also hold for negative values

of r.
For r ¼ 0 Eq. (75), together with Eqs. (115)–(117), leads

to an equation of motion for the bulk viscous pressure

τΠ _Πþ Π ¼ −ζθ − lΠV∇μV
μ
f − τΠVV

μ
f _uμ − δΠΠΠθ

− λΠVV
μ
f∇μα0 þ λΠππ

μνσμν: ð118Þ

Similarly, taking r ¼ 0 we obtain a relaxation equation for

the particle diffusion current from Eq. (76)

τV _V
hμi
f þ V

μ
f ¼ κ∇μα0 − τVVf;νω

νμ − δVVV
μ
fθ − lVΠ∇

μ
Π

þ lVπΔ
μν∇λπ

λ
ν þ τVΠΠ _uμ − τVππ

μν _uν

− λVVVf;νσ
μν þ λVΠΠ∇

μα0 − λVππ
μν∇να0

− δVBqBb
μνVf;ν: ð119Þ

The relaxation equation of the shear-stress tensor follows

from Eq. (77) for r ¼ 0,

τπ _π
hμνi þ πμν ¼ 2ησμν þ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ

− τπππ
λhμσνiλ þ λπΠΠσ

μν

− τπVV
hμ
f _uνi þ lπV∇

hμVνi
f

þ λπVV
hμ
f ∇

νiα0 − δπBqBb
αβ
Δ

μν
ακgλβπ

κλ:

ð120Þ

The coefficients of the terms without explicit dependence

on the magnetic field are given in Appendix C of Ref. [22]

(note that nμ ↔ V
μ
f and the index n↔ V). In deriving

these equations of motion only the linear contributions

arising from the collision integrals were retained. We

remark that, given our assumptions, the omitted nonlinear

terms display no dependence on the magnetic field and

were already calculated in Ref. [43].

To the best of our knowledge, Eqs. (118)–(120) provide

the first formulation of nonresistive, second-order dissipa-

tive magnetohydrodynamics that can be causal and linearly

stable around equilibrium, in contrast to the Navier-Stokes

approximation derived in Sec. IV B. As such, this new

system of equations is suitable to investigate the effects of

magnetic fields on relativistic dissipative fluid dynamics,

e.g., in heavy-ion collisions.

The coefficient of the term involving the magnetic field

in Eq. (119) is

δVB ¼ F
ð1Þ
10

þ αh
0

A
ð1Þ
00

; ð121Þ

while the corresponding coefficient in Eq. (120) is

δπB ¼ 2
F

ð2Þ
10

A
ð2Þ
00

: ð122Þ

In the limit of a massless Boltzmann gas with constant

cross section, αh
0
¼ −β0=4, F

ð1Þ
10

¼ 2β0=3, F
ð2Þ
10

¼ β0=5,

A
ð1Þ
00

¼ 4=ð9λmfpÞ, and A
ð2Þ
00

¼ 3=ð5λmfpÞ, such that

δVB ¼ 15

16
β0λmfp; δπB ¼ 2

3
β0λmfp: ð123Þ

Let us finally comment on the first-order Navier-Stokes

limit of the second-order equations (118)–(120). Note that

the first terms on the right-hand sides, proportional to the

standard bulk and shear viscosity as well as particle-

diffusion coefficients, are actually independent of the

magnetic field. But these are not the only first-order terms

in these equations: without an assumption about the

magnitude of the magnetic field, the last terms in

Eqs. (119), (120) are also formally of first order in a small

quantity (Vf;ν or πκλ, respectively). As demonstrated in

Sec. IV B, these terms are to be combined with the first-

order terms on the left-hand side and, after inversion of the

respective coefficient matrices, then lead to the various new

anisotropic transport coefficients discussed above.

On the other hand, when solving the second-order

equations (119) and (120), one does not need to replace

the standard viscosity and particle-diffusion coefficients

with the new anisotropic transport coefficients found in

Sec. IV B, because the effect of the magnetic field is

already taken into account by the terms ∼B in these

equations.
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V. CONCLUSIONS AND OUTLOOK

We have derived, for the first time, the equations of

motion for nonresistive, second-order dissipative magneto-

hydrodynamics from the Boltzmann equation. The deriva-

tion is based on the moment expansion of the Boltzmann

equation coupled to a magnetic field for a single-

component gas of particles without dipole moment or spin.

The magnetohydrodynamical equations of motion were

obtained in the 14-moment approximation. This is essen-

tially a generalization of Israel-Stewart fluid dynamics to

the case of a nonvanishing magnetic field. Despite our

simplifying assumptions, the results exhibit the basic

structure of second-order dissipative magnetohydrodynam-

ics, in particular how the magnetic field couples to the

dynamical evolution of the dissipative quantities. In par-

ticular, we note that within our approximations the form of

the equations remains close to that of Israel-Stewart theory,

with additional terms that couple the fluid to the magnetic

field. As such, the new set of second-order dissipative

magnetohydrodynamical equations derived here allows one

to investigate the effects of magnetic fields in relativistic

dissipative fluids in a causal and linearly stable manner.

Moreover, we have shown how the first-order transport

coefficients split into several components, recovering the

results of Refs. [10,13], with the notable difference that

there is only one bulk-viscosity coefficient in our approxi-

mation. The reason for this is our assumption that the

collision integral is independent of the magnetic field.

There are many possible directions for future work.

(i) The 14-moment approximation gives only an estimate

for the values of the transport coefficients. Improved values

can be obtained by resumming higher orders in Nl in the

moment expansion, as demonstrated in Ref. [22].

(ii) Resistive, second-order dissipative magnetohydrody-

namics is obtained by keeping the electric field Eμ in the

equations of motion. (iii) An extension to spin degrees of

freedom allows to include effects of polarization and

magnetization [28]. (iv) A relativistic treatment requires

to take into account antiparticles with opposite electric

charge. These and further questions will be addressed in

future work.
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APPENDIX

Our conventions for the rank-four Levi-Civita tensor

ϵμναβ are as follows. We take ϵ0123 ¼ þ1, which implies

ϵμναβ ¼ −ϵμναβ. We also have the relations

ϵμαβγϵναρσ ¼ δ
μ
νðδβσδγρ − δ

β
ρδ

γ
σÞ þ δ

μ
ρðδβνδγσ − δ

β
σδ

γ
νÞ

þ δ
μ
σðδβρδγν − δ

β
νδ

γ
ρÞ; ðA1Þ

and

ϵμναβϵκλαβ ¼ 2ðδμλδνκ − δ
μ
κδ

ν
λÞ: ðA2Þ

In flat Minkowski space, all Kronecker deltas can be

replaced by the mixed contra- and covariant metric tensor,

e.g., δ
μ
ν ≡ g

μ
ν .
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