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Nonrigid Optical Flow Ground Truth for Real-World

Scenes with Time-Varying Shading Effects
Wenbin Li, Darren Cosker, Zhihan Lv and Matthew Brown

Abstract—In this paper we present a dense ground truth
dataset of nonrigidly deforming real-world scenes. Our dataset
contains both long and short video sequences, and enables the
quantitatively evaluation for RGB based tracking and registra-
tion methods. To construct ground truth for the RGB sequences,
we simultaneously capture Near-Infrared (NIR) image sequences
where dense markers – visible only in NIR – represent ground
truth positions. This allows for comparison with automatically
tracked RGB positions and the formation of error metrics. Most
previous datasets containing nonrigidly deforming sequences are
based on synthetic data. Our capture protocol enables us to
acquire real-world deforming objects with realistic photometric
effects – such as blur and illumination change – as well as
occlusion and complex deformations. A public evaluation website
is constructed to allow for ranking of RGB image based optical
flow and other dense tracking algorithms, with various statistical
measures. Furthermore, we present an RGB-NIR multispectral
optical flow model allowing for energy optimization by adoptively
combining featured information from both the RGB and the
complementary NIR channels. In our experiments we evaluate
eight existing RGB based optical flow methods on our new dataset.
We also evaluate our hybrid optical flow algorithm by comparing
to two existing multispectral approaches, as well as varying our
input channels across RGB, NIR and RGB-NIR.

Index Terms—Dense Ground Truth, Optical Flow, Near-
Infrared Dyes, GRB-NIR Imaging, Multispectral Optical Flow.

I. INTRODUCTION

TRacking is a difficult task involved in many fields e.g.

postproduction [1], long term tracking [2], [3], [4], recon-

struction [5] and interaction [6]. The quantitative evaluation of

optical flow algorithms is a difficult challenge – particularly

given long nonrigid scenes with natural noise. The Middlebury

benchmark [7] and the variations [8], [9], [10] are currently

the most widely used Ground Truth (GT) in the community.

Tracking algorithms which use RGB/Color images may be

submitted to the benchmark website for ranking and evaluation.

However, this dataset is limited by the lack of object blur,

complex nonrigid motion and long image sequences. Most

of these limitations are due to the stop-motion method of
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Fig. 1. A baseline algorithm [14] is performed on the RGB channel of
one of our ground truth sequences featureless. The figure highlights
a dense NIR GT patch – used to evaluate RGB based tracking – in
an otherwise near-textureless RGB region.

capture: a scene is first captured under normal lighting; and

then a second image of the same scene is captured using

ultraviolet lighting. To address these limitations, Butler et

al. [11] proposed a dataset based on a 3D animated film

Sintel, which contains inter-frame GT through long sequences

and geometric blur under different renderings. However their

inherent limitation is the use of synthetic sequences, which

lacks real-world photometric effects and textural properties.

Similar to Sintel, Garg et al. [12] rendered synthetic video

sequences accompanying with GT by projecting the scene

motion (Motion Capture) of a realistic waving flag onto an

image plane. Although KITTI [13] benchmark enables the

evaluation in real-world street scenes, there is still a lack of

nonrigid GT for long sequences.

In this paper, we propose such a GT dataset – allowing

for the first time the benchmark of dense tracking algorithms

on real-world nonrigidly deforming scenes captured at video

rate. Sequences may be tracked using the RGB channel, and

their performance measured against the GT. The key insight to

capture such a dataset is the use of multispectral imaging – in

particular, RGB&Near-Infrared (RGB-NIR) imaging which has

recently been shown useful in computer vision, e.g. multispec-

tral SIFT [15], image dehazing [16] and registration [17], [18].

A property of such imaging is the ability to apply markers

visible in one spectrum (e.g. NIR), but invisible in another (e.g.

RGB). Therefore, an algorithm can be applied to the RGB

sequence alone, and its performance is then compared to the

invisible markers in the NIR channel. To accompany with the

data, we provide an evaluation platform which allows users to

download the RGB data, upload their tracking results and then

view the accuracy versus other methods on our GT.

The second focus of our paper is to investigate how

multispectral (RGB-NIR) imaging might improve the quality of

tracking, by proposing a multispectral optical flow formulation.

The variational optical flow model began with the pioneering
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Fig. 2. RGB-NIR Camera and the NIR visible dyes. Top Left: The inside
structure of the camera. Bottom Left: Sample images captured by the RGB
CCD sensor and NIR CCD sensor respectively. Top Right: The relative
transmittance of our RGB CCD sensor and NIR CCD sensor (yellow). Bottom

Right: The absorbance of the NIR visible dyes respect to various wavelength.

work of Horn and Schunck [19] and Lucas and Kanade [20].

Some complementary concepts have since been developed to

deal with the shortcomings of their original models such as

spatial discontinuities [21], large displacements [14], motion

detail loss through coarse-to-fine minimization [22] and local

smoothness [23]. Of these methods, Xu et al.’s (MDP) [22]

approach is currently amongst top 3 (by average) in the Middle-

bury evaluation while the Li et al.’s (LME) [23] approach has

state-of-the-art performance given nonrigid surface motion [12].

However, all of these methods are applied on image pairs

within the visible spectrum (RGB/Color) and are sensitive to

motions in large featureless regions in which the basic Intensity

Consistency assumption is weakened.

To take an advantage of extra spectrums, Markandey and

Flinchbaugh [24] consider the IR image within an optical

flow method, which solves a system of two data terms

(RGB/Grayscale and IR). They assume an equal contribution

(a known fixed weight) from both channels. This may reduce

the precision in some cases (Fig. 5). Barron and Klette [25]

propose an approach using all three individual color channels,

and shows improvement over the grayscale.

Contributions

To summarize there are two major contributions in our

paper: (1) we present a nonrigid GT dataset (Fig. 1) for RGB

image based dense tracking (e.g. optical flow) methods, and

an evaluation website allowing users to rank the performance

of their method versus others. The dataset contains dense

inter-frame correspondences from eight short and five long

sequences with varying photometric properties; and (2) we

present a multispectral (RGB-NIR) optical flow model (vnflow).

Within this model, we propose a novel weighting scheme which

adoptively selects the best available image features in either the

RGB or the complementary NIR channel to enhance motion

analysis.

In our experiments, we evaluate ten existing RGB based

optical flow methods on our dataset - ranking them based

on various statistics (the same presented on our evaluation

website). We then turn the attention to our vnflow method

which illustrates the potential benefit of using combined spectra

(e.g. RGB-NIR) for optical flow estimation.

II. NON-RIGID GROUND TRUTH DATASET

Ground Truth (GT) for RGB/Color optical flow is difficult to

capture – how does one simultaneously acquire an invisible set

of GT positions upon which to evaluate algorithm performance

on the visible RGB channel? One important advance in this

area was proposed by Baker et al. with the introduction of

the Middlebury benchmark [7]. Due to their contribution, the

optical flow community has rapidly developed in recent years.

However, Baker et al. also point out limitations of their work

– the lack of object blur and occluded motion – which are

discussed in more recent state-of-the-art datasets [11]. The

main limitations of current benchmarks , which we address in

this work, are as follows:

Long Image Sequences: As discussed in [11], most of

the Middlebury sequences are short in length, which leads

to a lack of evaluation on long term correspondence. While

Sintel provides long synthetic sequences (more than 50 frames)

and GT for each pair of frames, our dataset provides long

sequences from real-world objects – thus exhibiting realistic

photometric effects and textural properties.

Realistic Noise: The lack of realistic blur is a common

issue in both Middlebury and KITTI. Our dataset includes

realistic camera blur and other noise, e.g. strong shadows,

reflectance and illumination changes.

Complex Nonrigid Motions: Unlike Middlebury and

Sintel, our dataset is specifically focused on nonrigid motion,

containing examples of stretching, large bends and creases.

A. RGB-NIR Imaging System

In order to acquire our GT, we construct a controllable scene

(i.e. lighting and motion properties) using an RGB-NIR Imaging

System and NIR Visible Dyes.

RGB-NIR Camera: In this paper, a hybrid camera (JAI

AD-080GE) is used to capture both RGB and NIR images

from the same scene simultaneously. Fig. 2 shows internal

construction of the camera, where natural light is split onto

the RGB and NIR CCD sensors respectively. As opposed to

experimental bench-based RGB-NIR beam-splitter setups [26],

the overall system is both compact and portable. Such a system

simultaneously captures a series of continuous images in both

the RGB and NIR channels at 20 FPS.

NIR Visible Dyes: In order to generate dense features on

object surfaces for our GT dataset, we utilize NIR Visible

Dyes (NIR819D, QCR Solutions Corp.) which absorb the

spectrum in a range of approximately 700 to 870 nm with a

peak at around 819 nm. Our NIR Visible Dyes are spread

onto object surfaces in order to generate fine patterns of

which the diameter is within 1 mm, with a maximum 2 mm

distance between any pair of neighboring patterns. Fig. 2 shows

dense patches painted by our dyes that are visible in the NIR

channel while remaining invisible in the RGB channel. To

illustrate the statistical dependencies of the patches between

different bands, 20,000 RGB-NIR patches (3× 3 pix.) with

the dyes applied are randomly selected and plotted as pairwise
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R−G  JE: 4.41 G−B  JE: 4.44 R−B  JE: 4.72

B−NIR  JE: 5.40Gray−NIR  JE: 4.88 R−NIR  JE: 5.19 G−NIR  JE: 5.21

Fig. 3. Pairwise distributions for the RGB and NIR channels of 20,000
sampled patches from our ground truth dataset.

distributions using joint entropy in Fig. 3. Note that we compute

the joint entropy as H(X ,Y ) =−∑X ,Y P(X ,Y )log2[P(X ,Y )]. It

is observed that the joint entropy of {R,G,B,Gray}-NIR is

larger than between the visible bands (R,G,B). Therefore, the

NIR Visible Dyes provide richer visible information apart from

RGB channel – making it suitable for a GT basis especially

in largely textureless RGB channel regions. The Middleburry

benchmark adopts UV-flourescent dye, only visible under the

UV lighting. This leads to an issue that they have to stop

the object movement and switch to UV lighting when they

need to capture the dye-featured image. In this case, their

sequences may lose the blurry photometric effects. However,

our NIR Visible Dyes together with RGB-NIR Camera allows

a continuous capture (up to 20 FPS) which is able to preserve

the blur and other real-world photometric effects possible. In

practice, our dyes give the best invisibility on the cotton surface,

but are hard to remain completely invisible on other materials.

Our dyes cannot be applied to human for long because it would

harm the skin in some cases.

Motion Control Component: To precisely control the

displacement of objects in our GT scenes, a motion control

mechanism is constructed using LEGO NXT Mindstorms

robotics kits which produce controllable and uniform inter-

frame movements for our GT surfaces.

In the following section, we describe dataset construction

together with our proposed evaluation methods.

B. Ground Truth Estimation

Once we have obtained the corresponding pairs of RGB and

NIR images, we use the feature-rich NIR channel to construct

a dense GT flow field. In this subsection we describe this

process and other important properties in detail.

Image Properties: Our RGB-NIR camera captures images

at 1296×966 pixels. The Motion Control Component of our

system allows us to precisely range motions from subpixel

to 40 pixels. Similar to Middlebury, all the captured RGB

sequences are downsampled by a factor of 3, resulting in an

image size of 432×322 after the Subpixel Motion Estimation

step (presented later in this subsection).

Data Acquisition: To capture the data properly, we set

up a capture system using our Motion Control Component and

RGB-NIR Camera. The motor (NXTMotor) of the component

is able to precisely rotate by 1 degree step. Together with the

Lego bricks and bars, Motion Control Component precisely

controls the motion of the object surfaces in the scale of [1,46]

cm. Most of the motion represented in the dataset is parallel

to the camera plane. Furthermore, Our camera is distortion

free and follows a pinhole model. In this case, the calibration

aims to find out the relation f between the object movement

MMCC (in cm) and the pixel displacement Mp within the image

space. Here we have Mp = f (MMCC). In practice, we fix the

distance (1.5m) between the objects and camera while the

camera forward direction is perpendicular to the object surface.

We then capture the surface motion with a certain MMCC; and

manually measure the Mp from the image. We repeat this

process before capturing each of sequences and obtain the

size of search window 2Mp ×2Mp pix. for the following Pixel

Correspondence estimation.

Pixel Correspondence: We use a parfum spray to gener-

ate fine patterns on the objects. In most cases, the diameters

of such patterns are smaller than 1 mm, corresponding to

approximately 1 pixel of the image (Fig. 5 (Left)). And those

patterns are still highly variable in terms of intensity and shape.

Therefore pixel correspondences are achieved by matching

the dye patterns between neighboring NIR images. Unlike

the Color-SSD tracker used in Middlebury, we consider both

intensity and shape. A SIFT descriptor with 128 dimensions is

computed for each pixel in an image. We nominate a GT match

between pixels where the Euclidean Distance of their SIFT

vectors is smallest within a given search window. This window

size (2Mp×2Mp pix.) is predefined using the maximum motion

in the Motion Control Component. To improve robustness

we examine the matched results across adjacent frames. A

correspondence is labeled with a value “NAN” (Not-A-Number)

if the intensity difference between the forward matched result

and the backward matched result is greater than a threshold.

The region mask containing “NAN” values is recorded as

an occlusion map. Note that we do not apply an existing

optical flow method onto the NIR images to estimate the

correspondences. Although the optical flow is able to give us

the per-pixel dense correspondence, the encoded smoothness

term may overly smooth the motion at the object boundaries and

small motion details. This would further reduce the precision

of the GT.

Subpixel Motion Estimation: After obtaining GT pixel

correspondence, we follow the Middlebury subpixel motion

estimation process. We apply the Lucas-Kanade kernel [20]

to each search window for subpixel motion using 1/20 pixel

precision. We then calculate the average of up to 9 motion

vectors in each 3× 3 window in order to down-sample the

motion field to dimension 432×322.

Realistic Noise: The controllable nature of our RGB-NIR

Imaging System allows us to incorporate varieties of noise

and artefacts into our GT dataset. We increase the exposure

time of the RGB CCD sensor to bring object blur into the

visible channel, while using a suitably fast exposure time on the

NIR CCD sensor to capture a corresponding blur-free image.

Alternatively, defocus blur could also be obtained by modifying

the aperture settings. Shadow and illumination changes are

generated using infrared-free light (LED lighting), leading

to realistic shadows in the RGB channel without affecting

illumination in NIR channel (Fig. 4).
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Frame One (RGB) Frame Two (RGB)Frame One (NIR) Frame Two (NIR) GT Flow Field

Fig. 4. Examples from our ground truth dataset. Top Row: str.shadow contains strong shadows and subtle nonrigid motion. Bottom Row: crush (frames 38
and 39) is a video sequence containing complex nonrigid deformations and self occlusions.

Sequence Descriptions: Here we provide labels for each

of the sequences in our dataset, as well as brief descriptions

of their characteristics. Our dataset contains two types of GT

sequence – Short Sequences and Long Sequences. We capture

eight short sequences in total, each of which contains ten frames

with dense GT between middle pair of images. Each sequence

is captured so as to include specific common image properties.

In terms of sequence naming, single contains nonrigid motion

of single object. illumination contains strong reflectance and

illumination change while both mObjs and triObjs contain

multiple objects with nonrigid movement. featureless contains

small motions for a featureless object surface while crease

contains a large crease on multiple objects. blur and str.shadow

contain both camera blur and strong shadows respectively. In

addition, five longer sequences are captured with dense inter-

frame GT for every neighboring image pair. Each sequence

contains 50 frames and includes multiple realistic photometric

effects and nonrigid motion. mBlur contains focus blur, motion

blur and large displacements, while circle contains complex

creases. crush presents a large crushing movement with self

occlusions and stretch shows elastic deformation. Finally, wave

presents a real-world waving cloth. We also provide training

set which contains 3 short and 3 other long GT sequences.

Fig. 4 shows two sample sequences (str.shadow and crush)

from our dataset where tracking algorithms are executed on the

RGB data, and the NIR channel - with the aid of NIR visible

dyes - provides our GT flow fields upon which to compare to

the RGB flow fields. In the following section, we introduce our

evaluation methods along with the public website to openly

evaluate algorithms.

C. Evaluation Methods and Statistics

Similar to Middlebury, we provide tests of Endpoint Error

(EE) and Angle Error (AE). Users are expected to download

the RGB data from our evaluation platform, and compute flow

fields between all frames in the Long Sequences and for one

image pair for each sequence in the Short Sequences. Users then

upload their result and our evaluation system compares it to the

GT flow fields calculated on our NIR channel (which includes

the NIR visible dyes). For robustness statistics, we perform

Average (Avg.), Accumulated (Acc.), Standard Deviations (SD),

RX and AX [7] where RX presents the percentage of pixels that

have an error reading above X; And AX is for the accuracy of

the error reading at the Xth percentile, after sorting the errors

from low to high. Avg., SD and {A50, A75, A99, A100}
are given for both EE and AE; {R0.5, R0.75, R1, R2} are

performed for EE; Acc. is calculated for EE in long sequences

only; {R2, R5, R7.5, R10} are computed for AE.

As shown in Fig. 6, we generate a comparison table for

cross-evaluation of user uploaded flow field results against any

other methods previously uploaded to our evaluation system.

For long sequences, we can plot results selected by the user

with respect to a specific frame index.

III. RGB-NIR VARIATIONAL OPTICAL FLOW MODEL

In the previous sections, we described a GT dataset and

evaluation website for algorithms operating on RGB data. In

this section, we now slightly change focus and introduce a

novel algorithm which combines both RGB and NIR channels

in such a way as to maximize the distinguishing information

from each channel. Certain visual information can be poorly

represented in an RGB channel. It is therefore prudent in many

cases to also consider the NIR channel (and vice-versa). In

our evaluation section we examine these properties in more

detail. Note that for fairness, our public RGB-only evaluation

website does not include results of our vnflow or any future

multispectral methods.

Our algorithm considers a pair of consecutive frames in an

image sequence. The current frame is denoted by I1(x) and

its successor is I2(x) where I = (V,N)T , {V : Ω ⊂ R
3 → R}

represents a rectangular image in the RGB channel and

{N : Ω ⊂ R} denotes a rectangular image in the NIR channel.

Both V and N are aligned and share the same Cartesian

coordinate where x=(x,y)T is a pixel location. The optical flow

displacement between I1(x) and I2(x) is defined as w = (u,v)T .

Our proposed optical flow approach leads to the following

energy function:

E(w) = (1−λ (x))EV (w)+λ (x)EN(w)+ γES(w) (1)

where the Visible RGB Energy EV (w) contains both Intensity

Constancy and Gradient Constancy assumptions between the

visible components V1(x) and V2(x) of the images while our

main contribution i.e. Invisible NIR Energy is represented as

the term EN(w). A high-order regularization ES(w) is adopted.
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Visible RGB Energy: Following the Intensity Constancy

assumption, we assume that the intensity of a pixel is not varied

by its displacement throughout an image sequence. In addition,

we also make a Gradient Constancy assumption [14] to

provide additional stability where pixel intensity is violated by

illumination changes. The Visible RGB Energy term encoding

these assumptions is thus formulated as:

EV (w) =
∫

Ω
φ(‖V2(x+w)−V1(x)‖2)dx

+θ

∫

Ω
φ(‖∇V2(x+w)−∇V1(x)‖2)dx (2)

For robustness against occlusions and boundary blur, we

apply the increasing concave function φ(s2) =
√

s2 + ε2 with

ε = 0.001 to solve this formation. The remaining term ∇ =
(∇x,∇y)

T is a spatial gradient and θ ∈ [0,1] denotes a linear

weight. The smoothness term is a dense pixel based regularizer

that penalizes global variation. The objective is to produce a

globally smooth constraint:

ES(w) =
∫

Ω
φ(‖∇u‖2 +‖∇v‖2)dx (3)

Invisible NIR Energy: A visible RGB Energy term is

widely used in optical flow [14] but error-prone in featureless

regions or unclear boundaries. We therefore propose to inspect

additional spectral channels given these situations. We include

an Invisible NIR Energy term as a complementary assumption

to the classic framework, namely to introduce additional texture

information to optical flow estimation. Similar to the RGB

Intensity Constancy, we assume that the pixel intensity in the

NIR channel is not changed by displacement, which yields an

energy term as follows:

EN(w) =
∫

Ω
φ(‖N2(x+w)−N1(x)‖2)dx (4)

Where the term EN(w) presents the continuous energy in

the NIR channel. Note that both terms EV (w) and EN(w) share

the same spatial smoothness regularizer.

Detail-Aware Weight λ (x): In Fig. 5 (Left) we show an

image patch in which two points P1 and P2 are plotted. The

small region centered on P2 contains soft shadow in the RGB

channel but has more distinguishing features in the NIR channel.

For the point P1, the situation is opposite. The Endpoint Error

(EE) with respect to the different λ (x) values are plotted in

Fig. 5 (Right). We observe that plain texture leads to larger

errors in the optical flow estimation. Dynamically taking more

contribution from the channel containing more detailed texture

is therefore adopted in our method.

A. Minimization Framework

Prior to energy minimization, λ (x) Initialization is per-

formed to improve overall optical flow energy in featureless

regions. A numerical scheme is then applied to minimize the

continuous RGB-NIR energy within a pyramidal framework.

Both steps are described in following sections.

λ (x) Initialization.: Inspired by the kernel-based edge

detector where an Intensity Gradient is used to represent

geometric information in the texture space, we define a weight

{λ (x) : R 7→ [0,1]} using an Intensity Gradient as follows:

λ (x) =

(

1+ exp

{

−a

( |∇N1(x)|
|∇V1(x)|+ |∇N1(x)|

−b

)})−1

where x denotes a pixel location while ∇ = (∇x,∇y)
T

presents the intensity gradient calculated using a 3×3 Sobel

Kernel; a and b are parameters chosen to be 10 and 0.5

respectively. The weight λ (x) is intensity-dependent and can

be precalculated before energy minimization. Given an n-level

image pyramid, the input images I1, I2 and the weight map

λ (x) are resized to the same scale on each level. These are

denoted by Ii
1 = (V i

1,N
i
1)

T , Ii
2 = (V i

2,N
i
2)

T and λ i, and are used

in the following energy minimization phase.

RGB-NIR energy optimization.: In this process, we aim

to find the global minimum of the energy in Eq. (1) which

is continuous but highly nonlinear. We need to remove the

nonlinearity and obtain the final linear system. Thus, we apply

nested fixed point iterations on w by mainly following the

numerical scheme in [27]. In the implementation, the image

pyramid is constructed using a downsampling of 0.75. The

final linear system is solved with successive over-relaxation.

For more details of our optimization scheme, please refer to

the supplementary document.

IV. EXPERIMENTS

In this section, we evaluate (1) eight publicly available optical

flow algorithms from Middlebury using our nonrigid GT dataset

(executed on the RGB channel, and compared against the NIR

GT flow fields), and (2) our proposed multispectral optical flow

method (vnflow) comparing to two multispectral approaches,

highlighting the potential benefits of Detail-Aware Weighting.

We consider ten baseline methods in our experiments. Eight

of those is executed on the RGB channel of our dataset. The

remaining two (MCOF and COF) are evaluated using the NIR

channel (and invisible NIR dye GT). Algorithms from Xu et

al. (MDP) [22] (AEE rank 4/119) and Li et al. (LME) [23]

(rank 11) are state-of-the-art optical flow methods. The former

has leading performance in the Middlebury evaluation while

the latter achieves the state-of-the-art results on Garg et

al. [12]. Combined local-global Optical Flow (CLG-TV) [28]

(AIE rank 10/119) highlights the utility of bilateral filtering

and anisotropic regularization, which gives high performance

in image interpolation. Large Displacement Optical Flow
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Fig. 7. Screen shot of our public evaluation website for long sequences, illustrating the Endpoint Error (EE) evaluation.

(LDOF) [14] (AEE rank 89) is a variational model integrating

rich feature descriptors and is designed to overcome large

displacement issues. Classic+NL [29] (rank 28) improves the

TV-L1 framework by combining a Lorentzian penalty and a

median filtering heuristic. Horn and Schunck (HS) [19] (rank

108), Black and Anandan (BA) [21] (rank 101) and Improved

TV-L1 (ITV-L1) [30] (rank 56) are classic modelswidely used in

real-world image registration. MCOF [24] is considered as the

classic approach using both RGB and NIR channels while COF

is a robust implementation of [25] using additional smoothness

constraint [19] and coarse-to-fine optimization [27]. Those

selected baselines may not cover all the state-of-the-art methods

of the community but are able to represent strength/performance

in all typical measures.
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We first perform an evaluation on the short sequences of

our GT dataset (i.e. each of the above algorithms are executed

on the RGB channel only). Fig. 6 shows a screen shot of our

public evaluation website where eight optical flow methods

are quantitatively compared to each other using their default

parameter settings. Note that the relative Middlebury AEE rank

(Average rank, captured on Feb. 23, 2016) of the baseline

methods is also listed for comparison. We observe that LME

leads all trials in Avg.EE. ITV-L1 and Classic-NL respectively

rank 2.50 and 3.25 in general Avg.EE. The former outperforms

most other algorithms in featureless while the latter shows

more robust toward flow discontinuities (mObjs, triObjs and

crease) and blur motion (blur). Note that most methods have a

large error (>0.5 Avg.EE.) for illumination because the strong

illumination change violates the Intensity Consistency. In this

case, LME (Avg.EE 0.09), ITV-L1 (Avg.EE 0.11) and LDOF

(Avg.EE 0.29) give higher performance over the other methods.

Interestingly, compared to Middlebury the short sequences of

our dataset result in a significantly different ranking. We believe

this is due to the range of new photometric effects in our GT

which are absent in Middlebury. MDP achieves top performance

in Middlebury but ranks (in relative terms) 6 in featureless and

4.13 in Avg.EE by average. This is because large textureless

regions in featureless provide less SIFT features, in turn

weakening its inner motion detail preservation. Additionally,

LME ranks higher (in relative terms) than in Middllebury. The

reason may be due to the local smoothness and deformation
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Fig. 10. Visual results of vnflow on real-world sequences (From Left To

Right) hat, office, football, arts and dark. Note that we show the overlaps of
two input images in the top two rows. Hence the blur is not caused by the
image quality.

penalties [23], which is robust to complex motion (Avg.EE 0.12

in blur) and textureless regions (Avg.EE 0.09 in featureless).

An evaluation on the RGB channel of the long sequences

is also performed as shown in Fig. 7. Similar to the short

sequence case, LME provides the best Avg.EE in all trials while

Classic+NL, ITV-L1 and MDP yield equally top performance

in stretch. All the methods display comparatively larger Avg.EE

in mBlur due to the camera blur and fast motion in the scene. In

the robustness test (SD), ITV-L1 reaches the top performance

on both crush and stretch while LME yields the best results on

the other sequences. Our graph view in Fig. 7(b) shows that

both LME and ITV-L1 give lower accumulated error (Acc.EE)

against the other baselines along the entire crush sequence.

To evaluate our hybrid RGB-NIR optical flow algorithm –

and the potential benefit of using our weighting scheme and

multiple spectrums for dense tracking – we compare our method

which includes the proposed Detail-Aware Weight (vnflow.DA)

against MCOF, COF as well as three other implementations

using fixed weights (0, 0.5 and 1) in Fig. 8. Note that our

implementation of COF is applied using all R, G, B and

NIR channels. It is observed that vnflow.DA outperforms all

other baseline methods in Avg.EE in all cases. Our algorithm

without NIR energy (λ = 0) shows low overall performance

(Avg.EE rank 7.75) while with only NIR energy (λ = 1) it

ranks 4.38 in Avg.EE. In addition, LME with NIR imagery

achieves comparably lower overall Avg.EE but shows large

A100 error in str.shadow due to the large shadow that affects the
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inner detail preservation process. MCOF takes the advantage

from additional NIR channel and gives precision generally

closed to our methods using fixed weights. In some difficult

cases e.g. mObjs etc, the precision of MCOF is affected by

the primitive optimization scheme. Furthermore, COF yields

competitive performance in overall (Avg.EE rank 4.5) and

shows the improvement over the case used RGB channel only

(Avg.EE rank 7.75).

We then perform an Avg.EE comparison of LME, MDP

and four vnflow implementations on str.shadow by varying the

feature distribution in the NIR channel. As shown in Fig. 9, we

are ramping up the exposure to reduce the overall number of

NIR features in the image. As expected, less NIR information

(higher exposure) generally increases the Avg.EE. However,

even with a very low quantity of NIR information (+2.0),

vnflow.DA still shows improvement over other implementations

using fixed weights (0, 0.5 and 1).

Fig. 10, a compelling illustration, visualises how switching

between RGB and NIR information can contribute to the strong

performance of vnflow.DA. Our vnflow.DA uses texture details

invisible in the RGB channel where required (and vice-versa).

This provides an explanation to why the algorithm gives higher

accuracy against other methods which are using either the

RGB or NIR channels alone. However, it should be noted

that our evaluation here is a relative one – providing the

first insight into how optical flow (and other tracking) can

potentially benefit from multiple spectrums. An absolute RGB-

NIR evaluation would require a third hidden spectrum – in

the same way that to evaluate RGB algorithms in our new

dataset and evaluation framework we have required NIR for

GT (i.e. a second spectrum). Such an evaluation of dedicated

RGB/NIR (or other multispectral) methods may not be practical

until multispectral tracking, hardware and other suitable dyes

become more widespread.

V. CONCLUSION

In this paper, we present a new publicly available ground

truth dataset for evaluating RGB/Color based optical flow

algorithms. By leveraging RGB-NIR imaging and NIR visible

dyes, our dataset provides dense ground truth for real-world

objects in short and long sequences, as well as with nonrigid

motion, illumination changes and motion blur. Algorithms are

executed on the RGB sequences, and their result is compared

to the ground truth obtained by analysing the dense patters only

visible in the NIR channel. We also propose a multispectral

optical flow framework which utilizes an adoptive weighting

scheme to balance the contributions of different channels

in order to optimize overall performance. This provides a

compelling insight into the potential benefits for tracking in

multiple spectra. One further challenge is finding a dye solution

which remains invisible in the RGB channel for any object

surface. This way, ground truth deformations could be obtained

from a wider range of material.
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