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B. Guérinb) S. Cho, S. Y. Chun, X. Zhu, N. M. Alpert, and G. El Fakhria)

Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General
Hospital, 55 Fruit Street, Boston, Massachusetts 02114

T. Reeseb) and C. Catana
Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, Massachusetts 02129

(Received 6 October 2010; revised 13 April 2011; accepted for publication 14 April 2011;

published 31 May 2011)

Purpose: We propose a novel approach for PET respiratory motion correction using tagged-MRI

and simultaneous PET-MRI acquisitions.

Methods: We use a tagged-MRI acquisition followed by motion tracking in the phase domain to

estimate the nonrigid deformation of biological tissues during breathing. In order to accurately esti-

mate motion even in the presence of noise and susceptibility artifacts, we regularize the traditional

HARP tracking strategy using a quadratic roughness penalty on neighboring displacement vectors

(R-HARP). We then incorporate the motion fields estimated with R-HARP in the system matrix of

an MLEM PET reconstruction algorithm formulated both for sinogram and list-mode data represen-

tations. This approach allows reconstruction of all detected coincidences in a single image while

modeling the effect of motion both in the emission and the attenuation maps. At present, tagged-

MRI does not allow estimation of motion in the lungs and our approach is therefore limited to

motion correction in soft tissues. Since it is difficult to assess the accuracy of motion correction

approaches in vivo, we evaluated the proposed approach in numerical simulations of simultaneous

PET-MRI acquisitions using the NCAT phantom. We also assessed its practical feasibility in PET-

MRI acquisitions of a small deformable phantom that mimics the complex deformation pattern of a

lung that we imaged on a combined PET-MRI brain scanner.

Results: Simulations showed that the R-HARP tracking strategy accurately estimated realistic re-

spiratory motion fields for different levels of noise in the tagged-MRI simulation. In simulations of

tumors exhibiting increased uptake, contrast estimation was 20% more accurate with motion cor-

rection than without. Signal-to-noise ratio (SNR) was more than 100% greater when performing

motion-corrected reconstruction which included all counts, compared to when reconstructing only

coincidences detected in the first of eight gated frames. These results were confirmed in our proof-

of-principle PET-MRI acquisitions, indicating that our motion correction strategy is accurate, prac-

tically feasible, and is therefore ready to be tested in vivo.

Conclusions: This work shows that PET motion correction using motion fields measured with

tagged-MRI in simultaneous PET-MRI acquisitions can be made practical for clinical application

and that doing so has the potential to remove motion blur in whole-body PET studies of the torso.

VC 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3589136]
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I. INTRODUCTION

Complex, nonrigid respiratory motion degrades the spatial

resolution of PET studies, creating distorted images due to

motion blurring and artifacts due to mismatches between the

emission and the transmission data. As the spatial resolution

of clinical PET scanners improves, losses of image quality

due to motion become a major limitation of the diagnostic

accuracy of clinical cardiac1,2 and oncology PET studies.3–5

Respiratory gating6–8 is sometimes used to reduce motion

blurring in thoracic clinical PET imaging. Such acquisition

strategy assumes that organ motion is periodic and therefore

consists in binning events into different sinograms corre-

sponding to different states of motion of the chest in order to

reduce motion blurring within image frames. As the duration

of the gated frames is reduced, so is the effect of motion,

allowing accurate quantification of the tracer in small struc-

tures. The trade-off is that as the motion effect is reduced,

the signal-to-noise (SNR) ratio of the gated reconstruction

worsens since it contains a fraction of all counts, which ulti-

mately reduces its diagnostic power.8 In addition, uncom-

pensated motion during acquisition of attenuation data may

cause artifacts in the reconstruction, even in gated acquisi-

tion strategies, a fact that is usually ignored.

To overcome these limitations, approaches have been

designed to reconstruct a single PET image containing all

detected coincidences while incorporating motion estimates
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in the PET reconstruction process. In brain imaging, involun-

tary rigid-body motion of the head can be accurately tracked

using optical or infrared cameras synchronized to the PET ac-

quisition.9–13 However, tracking external markers does not

allow estimation of the nonrigid deformation of the chest and

internal organs. Up to the present day, virtually all nonrigid

motion correction methods are based on image-based regis-

tration algorithms acting on a gated CT acquisition performed

shortly before or after the PET acquisition.14–16 Such techni-

ques are rarely used clinically, however, because they are not

accurate in regions that appear uniform on CT images, e.g.,

the myocardium and the liver. Perhaps more importantly, the

use of additional CT measurements significantly increases

the patient radiation exposure. This renders such approaches

inappropriate to apply in practice and may severely limit the

number of CT gated frames and therefore the accuracy of the

estimated motion fields. Another approach, which avoids

increasing the patient radiation exposure, consists in estimat-

ing respiratory motion fields by applying image-registration

algorithms to respiratory gated MRI images.17–20 Applied

concurrently to the PET acquisition, such techniques could

potentially yield more accurate motion correction than in

PET-CT, thanks to the improved soft tissue contrast of MR

imaging. However, like the PET-CT registration techniques

mentioned above, they would also necessarily have limited

accuracy in uniform regions without T1, T2 or proton density

contrast. Finally, several groups have proposed estimating

nonrigid motion fields from the PET data itself. Methods

have been developed that attempt motion estimation from the

PET data simultaneously with the reconstruction procedure21

and as a separate step from reconstructed gated images.22–24

It is not clear yet that such approaches yield accurate motion

estimates because of poor statistics within the PET frames,

poor spatial resolution of the PET data, and uniform PET sig-

nal within organs that move significantly during respiration,

e.g., the myocardium and the liver.

Ideally, respiratory PET motion correction should (i) not

increase the patient radiation exposure; (ii) be accurate in

uniform regions like the liver and the myocardium and (iii)

not significantly increase the acquisition and processing time.

Ongoing technological developments in simultaneous PET-

MR imaging25–27 offer the promise of more ideal PET motion

correction by using motion sensitive MR pulse sequences

that are accurate in regions with no PET, CT, T1, T2, and

proton density contrast and do not increase the patient radia-

tion exposure. Velocity encoded phase contrast MRI (VEPC-

MRI) allows estimation of velocity vectors for every pixel of

an MRI image by subtracting two phase images acquired

with different velocity encoding gradients but otherwise iden-

tical acquisition parameters.28,29 Tagged-MRI is another MRI

technique that allows estimation of the complex deformation

of biological tissues by superimposing a regular tagging pat-

tern on the object magnetization distribution30–34 (for a

review of MR-based motion estimation approaches, see Ref.

35). Both tagged-MRI and VEPC-MRI are established tech-

niques that have been used extensively to quantify myocar-

dial motion31–34 and measure blood flow,28,29 but, to our

knowledge, these have not yet been used to motion correction

PET data acquired simultaneously with the MRI acquisition.

This is becoming feasible and practical as whole-body com-

bined PET-MRI scanners are being developed by several

medical device manufacturers, and prototypes have already

been installed.36,37 Note that tagged-MRI and VEPC-MRI

are fundamentally different from MR motion estimation via

intensity-based image registration17–20 since they are intrinsi-

cally sensitive to motion (i.e., their accuracy does not depend

on the presence of T1 or T2 contrast).

In this work, we propose estimation of nonrigid motion

fields using a tagged-MRI acquisition performed simultane-

ously with the PET acquisition, using a combined PET-MRI

scanner. We chose to use tagged-MRI rather than VEPC-

MRI to estimate motion fields because tagged-MRI directly

yields the displacement vectors that are needed to motion

correct the PET data, whereas VEPC-MRI estimates velocity

vectors that are tangent to the trajectory of material points.

This MRI-motion tracking technique (i) does not increase

the patient radiation exposure, (ii) is accurate in uniform

regions without CT, PET, T1, T2, and proton density con-

trast, and (iii) does not significantly increase the PET acqui-

sition time since both the PET and MRI datasets are

acquired concurrently. A limitation of tagged-MRI (and

VEPC-MRI) is that it does not allow estimation of motion in

the lungs. Our approach is therefore only capable of correct-

ing for motion in soft tissues like the kidneys or the liver.

We propose incorporating these motion fields into the sys-

tem matrix of an iterative PET reconstruction algorithm,

allowing reconstruction of a single image containing all

detected counts while at the same time correcting the raw data

for detector sensitivity, random and scatter coincidences, and

motion in the attenuation map. This approach is general and

can be applied to correct PET acquisitions for breathing and

cardiac motion; however, we focus in this work on respiratory

motion correction. Since it is difficult to objectively assess the

accuracy of motion correction approaches in vivo, we

explored the accuracy of the proposed method using numeri-

cal simulations and assessed its practical feasibility in proof-

of-principle physical acquisitions of a small deformable phan-

tom imaged on a prototype combined PET-MRI brain scan-

ner. Future studies will be dedicated to assessing the approach

in vivo in both animals and humans.

We describe our tagged-MRI motion estimation strategy

in Sec. II, and the incorporation of these motion estimates in

the PET reconstruction in Sec. III. We then explore the accu-

racy of our motion correction approach using numerical sim-

ulations of PET and tagged-MRI acquisitions in Sec. IV.

Finally, we show a proof-of-principle study of the proposed

approach in simultaneous PET-MRI acquisitions using a

combined PET-MRI scanner and a deformable phantom

mimicking the complex, cyclical deformation of a lung.

II. MOTION ESTIMATION USING TAGGED-MRI

To estimate respiratory nonrigid motion fields we propose

using a tagged-MRI acquisition (C-SPAMM) performed

simultaneously with the PET acquisition followed by motion

tracking in the phase domain (R-HARP).
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II.A. Complementary spatial modulation of
magnetization

Spatial modulation of magnetization (SPAMM) is a

motion sensitive MRI pulse sequence, the time diagram of

which is shown in Fig. 1.

It is possible to show that the longitudinal component of

the magnetization vector following a SPAMM sequence fol-

lows a sinusoidal pattern in the direction of the tagging gra-

dient. The wave vector of this spatial sine wave is equal to k

5cGs, where c is the proton gyromagnetic ratio, G is the

tagging gradient, and s is its duration.30,31 Therefore, acquir-

ing MRI data after a spoiled SPAMM sequence yields

images that are the superposition of the object magnetization

distribution and the sinusoidal tagging pattern.32,33

Since the sinusoidal tagging pattern created by a SPAMM

sequence deforms with the patient during respiration, gating

a SPAMMþ readout acquisition reveals the complex defor-

mation of tissues during breathing. It is important to note

that the sinusoidal pattern created by a SPAMM sequence is

visible even in uniform regions without T1, T2, and proton

density contrast. In contrast with nonrigid motion estimation

using registration algorithms applied to gated CT, PET and/

or anatomical MRI frames, respiratory gated tagged-MRI

therefore has the advantage of yielding accurate motion esti-

mates even in uniform regions like the liver and the myocar-

dium. Since tagged-MRI acquisitions are used to track

motion and not to image the T1, T2, and proton density con-

trast of the chest tissues, two independent SPAMM acquisi-

tions can be performed using opposite second flip angle (i.e.,

a first dataset is acquired using u2 and a second with �u2)

and subtracted in order to isolate the sinusoidal tagging pat-

tern on reconstructed amplitude images31 (C-SPAMM).

Note that C-SPAMM can create not only 1D but also 2D and

3D tagging patterns by using more than one gradient direc-

tion in the sequence shown in Fig. 1. Finally, tagging can be

performed along any logical axis; however we assume

herein, without loss of generality, that 3D tagging is per-

formed along the x, y, and z axes.

II.B. Regularized harmonic phase motion tracking

Dense motion fields can be estimated from a gated

tagged-MRI acquisition by tracking the C-SPAMM tagging

pattern either on the phase or amplitude reconstructed

images. In the amplitude domain, estimation of motion fields

requires detecting the tag lines in every motion frame38,39

and interpolating the displacement of physical points located

between tags.40–42 Such a process is typically time-consum-

ing and generally requires human intervention to correct

mistakes in the feature detection step.38 In contrast, tracking

motion in the phase domain does not require detecting the

tag lines and is therefore faster, more robust, and does not

require human intervention.34 Another important advantage

of using phase instead of amplitude images is that the phase

is intrinsically scaled to [�p, þp] independent of the MRI

readout sequence and the organ imaged. This reduces the

variability of the pixel intensities to be tracked and consider-

ably simplifies the motion tracking procedure.

We propose tracking motion in the phase domain using

the HARmonic Phase (HARP) algorithm originally proposed

by Osman et al.34 for quantifying myocardial motion (the

phase in question is the harmonic phase obtained by Fourier

transform of the reconstructed magnitude image, not the

phase of the MRI signal itself which is affected by other

effects, such as main field inhomogeneities and flow). The

first step in HARP consists of filtering the tagging patterns in

the x, yand z directions in order to remove residual contribu-

tions of the object magnetization to the phase images, and to

isolate the local deformation of tissues along the x, y and z

directions. Such filtering is most easily performed in k-space

where the 3D tagging pattern consists of six peaks located

on each side of the center of k-space on the tx, ty and tz fre-

quency axes.34 The distance between each peak and the cen-

ter of k-space is inversely proportional to the frequency of

the tagging pattern, so that increasing the frequency of the

tagging pattern makes it easier to filter it in k-space. How-

ever, increasing the tagging frequency also reduces the maxi-

mum amplitude that can be tracked. In practice, the tagging

frequency depends mainly on the amplitude of the motion

imaged and the temporal resolution of the tagged-MRI ac-

quisition and should therefore be optimized for specific

applications.

Since the harmonic phase of a material point is a constant

of motion, local deformations between the reference

(acquired at time t) and a subsequent phase image (acquired

at time t þDt) can be estimated pixel-by-pixel by minimiz-

ing the following phase difference34:

wðdÞ ¼ uðx; tÞ � uðxþ d; tþ DtÞk k2 (1)

where d is the displacement vector of the material point

located at x at time t in the reference frame and

u(x,t)¼ (ux(x,t), uy(x,t), uz(x,t))’ is the phase vector at loca-

tion x and time t combining information about the tissue de-

formation in the x, y and z directions (this is a vector with

nine components, i.e., three for each phase image). This HAR-

monic Phase tracking procedure (HARP) is well-posed as

long as the amplitude of the displacement vector d is smaller

than the period of the tagging pattern.34 Equation (1) was ini-

tially proposed to track myocardial motion. When tracking

motion across the chest, which is more challenging because of

the greater variations of the magnetic susceptibility and the

complex structure of motion fields in the torso, it is useful to

regularize the motion tracking procedure by penalizing large

variations of the displacement field across neighboring pixels

FIG. 1. Schematic representation of a 1D 1-1 SPAMM encoding sequence

followed by two imaging sequences separated by a time evolution Dt.The

image data acquired after the evolution time Dt show tag lines that have

deformed with the object and have faded with the local T1 constant.
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wðd1;…; dMÞ ¼
X

M

i¼1

uðx; tÞ � uðxi þ di; tþ Dtk k2

þ b
X

M

i¼1

X

j2NðiÞ

aij di � dj
�

�

�

�

2
; (2)

where M is the number of pixels in the phase images, N(i)

denotes the set of pixels located in the neighborhood of pixel

i, aij is a weight greater for pixels close to i ð
P

j2NðiÞ aij ¼ 1Þ,
and b is a parameter controlling the strength of the roughness

penalty. Herein, we refer to the motion estimation procedure

based on the minimization of Eq. (2) as Regularized-HARP

(R-HARP).

In regions with little MRI signal, such as the lungs, the

harmonic phase is random and does not contain useful

motion information. To prevent these arbitrary phase values

from biasing the motion estimation at other locations

(because of the roughness penalty), we masked the regions

of the phase images with little MRI signal in the minimiza-

tion procedure of Eq. (2). Note that such masks can be

obtained simply by adding the two C-SPAMM acquisitions,

instead of subtracting them, and thresholding the resulting

amplitude image.

III. MOTION-CORRECTED PET RECONSTRUCTION

Once the motion fields between consecutive motion

frames have been estimated, they can be incorporated in the

system matrix of a PET reconstruction algorithm, allowing

reconstruction of all the detected coincidences into a single

reference frame. Motion corrected list-mode MLEM PET

reconstruction algorithms (MC-EM) have been proposed and

are all of the form14–16,22,43

q
ðaþ1Þ
i ¼

q
ðaÞ
i

~si

X

N

n¼1

~aniðfnÞ
PM

j¼1 ~anjðfnÞq
ðaÞ
j

; (3)

where N is the number of detected coincidences, fn is the

motion frame in which coincidence n was detected, and q is

the vector of pixel intensities to be estimated in the reference

frame. In Eq. (3), ~aniðfnÞ is the “moved” system matrix com-

bining the system matrix and the motion warping operator

registering the frame fn to the reference frame

~AðfnÞ ¼ AUðfnÞ; (4)

where A is the K�M system matrix whose general element

aki is the probability that a coincidence emitted from pixel i is

detected in line of response (LOR) k and U(fn) is the M�M

motion operator deforming the reference image to the

deformed image in frame fn [Note that we do not propose

rebinning the coincidences of the list-mode file in sinograms

corresponding to the different MRI motion frames. Instead,

the MRI motion frames in which coincidences are detected

are determined before reconstruction using an external gating

signal––in this study an analogue signal from the pressure

transducer attached to the phantom (see Sec. IV B 1), and the

entire list file is reconstructed at once using Eq. (3)]. These

motion or warping operators are simply the interpolation mat-

rices allowing computation of the pixel intensities in the

deformed frames from the knowledge of pixel intensities in

the reference frame. They can be computed using motion

fields by simple linear interpolation.16 In Eq. (3), ~si is the

“moved” detection sensitivity of pixel i calculated by back-

projecting the moved system matrices ~Aðf Þ f ¼ 1…F, where

F is the number of motion frames, along all the LORs of the

scanner and summing the sensitivity images corresponding to

each frame. The calculation of sensitivity images in list-mode

reconstruction of PET data is very time consuming,44 so that

in practice F should not be too large in order to reduce com-

putation time. Note that a sinogram version of Eq. (3) is sim-

ply obtained by replacing the loop over N, the number of

events in the list file, by a double loop over K, the number of

sinogram bins, and F (in this case events detected in different

motion frames must be binned in different sinograms).

As pointed out by Lamare et al.,14,15 frame-dependent

attenuation correction can be modeled in ~AðfnÞ by computing

attenuation correction factors (ACF) based on the attenua-

tion maps deformed in every motion frame. Such maps can

simply be obtained by deforming the attenuation map in the

reference frame using the motion interpolation matrices

U(fn). The nonuniform attenuation map in the reference

frame can itself be estimated directly from the MRI data

using atlas registration-based techniques.45–49 Detector sen-

sitivity correction factors and other motion-independent cor-

rection factors can be included in the static system matrix.

Finally, scatter and random corrections can be implemented

as additive terms in the denominator of Eq. (3). Since the

spatial distributions of scatter and random coincidences vary

slowly and do not depend strongly on the activity distribu-

tion, they can be assumed, to first approximation, to be inde-

pendent of the respiratory motion frame and can therefore be

computed for the average respiratory cycle using established

techniques, e.g., the delayed window or the single photons

technique for random estimation and the single scatter simu-

lation for scatter estimation.50–52

IV. EVALUATION IN SIMULTANEOUS PET-MRI
SIMULATIONS AND ACQUISITIONS

IV.A. Simultaneous PET-MRI simulations

As a first evaluation step, we assessed the accuracy of our

correction approach using numerical simulations of the PET

and tagged-MRI acquisitions. Such simulations were useful

to evaluate the accuracy of the motion estimation and image

reconstruction procedures in the presence of noise in both

the PET and tagged-MRI dataset since they allowed compar-

ison with the ground truth.

IV.A.1. Phantom

For both the PET and MRI simulations, we modeled a

breathing patient using the NCAT phantom.53 We modeled a

4 s respiratory cycle divided into 16 frames of 250 ms each.

Activity and attenuation maps as well as the reference motion

fields registering each of the 15 moved frames to the first, ref-

erence frame, were obtained using the NCAT program.
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IV.A.2. MRI simulation

Tagged-MRI simulations were performed using the open

source MRI simulator SIMRI (Ref. 54), which we modified

to model motion of the object during the tagged-MRI

sequence. Relaxation was modeled at 3T using the standard

features of SIMRI and T1, T2, and proton density maps

obtained using the NCAT anthropomorphic phantom53 as

well as published tissue values.55 We modeled a 3D 1-1 C-

SPAMM sequence with u1¼ 45�, u2¼645� and a tagging

period of 2 cm in the x, y, and z directions. After tagging, the

entire spin-state model (magnetization vector field, T1, T2,

and proton density scalar maps) was moved according to the

reference motion fields for each frame. A 2D gradient echo

readout was modeled with TR¼ 100 ms, TE ¼ 10 ms, and

a¼ 10� (perfect slice selection and perfect recovery of the

longitudinal magnetization were assumed in this simulation).

All of the 16 frames modeled were simulated, so that the

timing resolution of this tagged-MRI simulation was 250 ms

per frame. Since T1 fading of the tag lines is significant after

�1 s in biological tissues at 3T, a fresh tagging pattern was

created every four frames in order to avoid complete disap-

pearance of the tag lines at the end of the cycle (i.e., a C-

SPAMM sequence was performed immediately before

acquiring the MRI signal for frames #1, 5, 9, and 13).

Three levels of random Gaussian noise were added to the

simulated k-space data with energies (equal to r2, where r is

the standard deviation of the Gaussian noise distribution)

equal to 5%, 15%, and 25% of the total data energy (equal to

R
M
i¼1jKij

2=M, where ki is the complex value of k-space sample

i and M is the number of k-space samples). For each frame,

three tagging peaks containing motion information in the x, y,

and z directions were filtered as explained in Sec. II B using

3D parallelepipedic hard rectangular filters extending along

the half x, y, and z axes, respectively, that were smoothed by a

3D Hamming window. These peaks were reconstructed on a

128 (x)� 128 (y)� 64 (z) image matrix and their harmonic

phase was extracted. Phase images pertaining to the same tag-

ging segment (As explained above, a fresh tagging pattern

was created before imaging the frames #1, 5, 9, and 13. The

simulation was therefore divided in four segments correspond-

ing to the groups of frames 1–4, 5–8, 9–12, and 13–16) were

registered using R-HARP with values of the regularization pa-

rameter b ranging from 10�1 to 104 by increment of 10 as

well as without regularization (b¼ 0). Since HARP is only ca-

pable of estimating small displacements,34 we registered con-

secutive phase images within each segment. Total motion

fields registering each frame to the first, reference frame, were

obtained by summing the consecutive motion fields using tri-

linear interpolation (interpolation was used in this summation

step because the displacement vectors of a motion field gener-

ally do not land in the centers of pixels of the subsequent

motion field. For example, when computing a combined

motion field a ! c it is necessary to first move each points of

the Cartesian grid according to a ! b and then to move these

new points, which are not positioned on a Cartesian grid any-

more, according to b! c by interpolating the field b ! c at

these new locations). Since this interpolation process neces-

sarily introduced some error in the estimation of the total

motion fields, the total number of summations was minimized

by registering early motion frames backward (1/ 2/ 3 …

/ 9) and late frames forward (10! 11!… ! 16! l).

IV.A.3. PET simulation

Activity maps corresponding to each frames were

obtained by adding six tumors to the NCAT activity map

(three in the liver and a bone tumor in the sternum), blurring

it with an isotropic 3D Gaussian filter with full width at half

maximum (FWHM) equal to 4 mm and deforming it in the

16 motion frames modeled using the known NCAT motion

fields. Note that the NCAT phantom allows only phase-

based binning (frames of constant duration) and not ampli-

tude-based binning (constant amplitude variation between

frames), which better reflects the motion of internal organs.

This was not a serious limitation in our study however

because we used 16 frames, which is enough to capture the

fastest movement of the chest during normal breathing (eight

frames are more routinely used in clinic). Moreover, phase-

based binning is better adapted to motion sensitive MRI ac-

quisition strategies, which are most easily implemented for

sets of frames with constant duration. These activity maps

were projected into sinograms while modeling attenuation

using the reference attenuation maps deformed in every

frame. Ten noise realizations were simulated by adding a

random Poisson noise to these noise-free attenuated sino-

grams, corresponding to the detection of 60 000 coinciden-

ces per slice per frame. These were finally summed two by

two, yielding a total of eight sinograms corresponding to

eight motion frames, in order to model intraframe motion in

the PET data (as explained in Sec. II B, the number of PET

frames should be kept reasonably small in order to reduce

the sensitivity image computation time).

These sinograms were reconstructed into a single PET

image in the reference frame using the ordered-subset, sino-

gram version of the MC-EM algorithm described in Sec. II B

with five iterations and ten subsets. Motion correction was

performed within the reconstruction algorithm using both

the reference motion fields and the motion fields estimated

with R-HARP. The first frame was also reconstructed with-

out motion correction. We evaluated the performance of our

motion correction approach for quantifying tumor activity

by measuring contrast recovery coefficients in the hot

tumors, defined as

CRC ¼
khot=kbkg

c
; (5)

where khot and kbkg are the mean values of region of interests

(ROI) drawn on the hot tumor and the background, respec-

tively, and c is the reference contrast of the hot tumor. We

also measured the signal-to-noise ratio in these tumors,

defined as

SNR ¼
khot � kbkg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2hot þ r2bkg

q ; (6)
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where khot and kbkg are the average of the hot tumor and

background ROIs computed over the ROI pixels and the ten

noise realizations and rhot and rbkg are the average standard

deviation of pixel intensities in the hot and background

ROIs, computed over the ten noise realizations.

IV.B. Simultaneous PET-MRI acquisitions

As a second evaluation step, we imaged a small deforma-

ble phantom mimicking the complex deformation pattern of

a lung using a combined PET-MRI brain scanner. Although

this phantom is a much simplified model of a lung, this

study, which is preliminary to future in vivo animal and

human testing, allowed us to show the feasibility of the pro-

posed approach and to explore issues relative to its practical

implementation.

IV.B.1. Deformable PET-MRI phantom

We have built a small deformable MRI-compatible phan-

tom mimicking the cyclical, nonrigid motion of a lung. As

shown in Fig. 2, this phantom consisted of a balloon inflated

cyclically by a ventilator (Harvard Apparatus, Holliston

MA) with a period of about 1 s, to which were attached five

hollow spheres (Data Spectrum Corporation) filled with18

FDG with activity to background ratio of 2:1 (two spheres),

4:1 (two spheres), and 6:1 (one sphere). The balloon was

filled with air and immersed in a radioactive (FDG) gel solu-

tion of methylcellulose powder well mixed in water with a

thick, but not solid, consistency in order to reduce flow arti-

facts in the tagged-MRI acquisition. The total activity in the

phantom at imaging time was 0.2 mCi. Pressure in the bal-

loon was tracked using a pressure transducer, which created

TTL pulse at the beginning of every motion cycle. This pulse

was then sent to the MRI scanner to trigger the tagged-MRI

acquisition and was written as a trigger event in the PET list-

mode stream.

We imaged this phantom on a prototype combined PET-

MRI brain scanner at the Martinos Center for Biomedical

Imaging, Massachusetts General Hospital, Boston MA. This

system is composed of a Siemens 3T Magnetom TIM Trio

MRI scanner inside of which is inserted an MRI-compatible

BrainPET 1 Siemens scanner operating simultaneously with

the MRI scanner. This 3D PET system is made of 32 detec-

tor cassette modules of six 12� 12 LSO, 2.5� 2.5� 20 mm3

crystal arrays each read out by a 3� 3 array of APDs (axial/

transaxial FOV: 19.25 cm/32 cm, energy resolution: 15% at

511 keV, energy window: 400–650 keV, spatial resolution at

1 cm off center: 2.1 mm FWHM). PET and MRI data were

acquired simultaneously and were processed offline.

IV.B.2. Motion estimation using tagged-MRI

Tagging in the three spatial directions was performed in

one direction at a time using a 1D 1-1 C-SPAMM pulse

sequence with u1¼ 45� and u2¼645� and a tagging period

of 8 mm. Tagged-MRI images were acquired using a 2D gra-

dient echo sequence with TR¼ 0.8 s, TE¼ 2.4 ms, and

a¼ 15�. Since the motion cycle period was shorter than the

T1 relaxation constant of the gel, the imaging volume was

tagged only once at the beginning of each cycle. An entire

volume was acquired for each motion frame by permuting

the order of the z slices acquisition in different motion cycles.

This multiphase/multislice acquisition strategy resulted in the

acquisition of a 4D tagged volume with as many slices as

motion frames, i.e., 32 in this work.

x, y, and z phase volumes were extracted from these 32

tagged volumes at every frame and were interpolated on 1

mm isotropic 128� 128� 128 volume grids using cubic B-

splines. The motion fields between these 32 consecutive

motion frames were estimated using R-HARP with values of

the regularization parameter b ranging from 10�2 to 103 by

increment of 10. Consecutive early frames were registered

backward (1 / 2,…, 16 / 17) and late frames were regis-

tered forward (21 ! 22,…, 32 ! 1) and then summed using

an tri-linear interpolation technique in order to obtain the

motion fields between each of the motion frames and the

first, reference frame (1 / 2, 1 / 3…) while minimizing

the number of interpolation steps.

IV.B.3. Acquisition and reconstruction of list-mode
PET data with quantitative corrections

The list-mode PET data was acquired simultaneously

with the MRI acquisition. Valid prompt and delayed coinci-

dences, and time triggers (from the main clock of the scan-

ner) and gating triggers (from the pressure monitoring unit

described in Sec. IV B 1) were written in the list-mode

stream. Fifteen list-mode files corresponding to 5 min

acquisitions each were acquired, yielding 15 independent

noise realizations of the phantom. The prompt (random)

detection rate was �233 000 (�23 000) coincidences per

second at the beginning and �130 000 (�9300) coincidences

per second at the end of the acquisition.

These 15 list-mode files were reconstructed independently

with and without motion correction using the time-ordered

subset list-mode version of the MC-EM algorithm shown in

Eq. (3) (the same number of coincidences were reconstructed

in all these files in order to allow direct comparison of the

image intensities without scaling). Reconstructions were fully

3D with a maximum ring difference of 40 crystals, 16 subsets
FIG. 2. Schematic representation of our deformable PET-MRI phantom

(height¼ 15 cm; diameter¼ 12.2 cm).
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and four iterations, on a 128� 128� 128 image grid with 2

mm isotropic resolution. As explained in Sec. III, the com-

puting time for calculating the moved sensitivity image

increases linearly with the number of motion frames F.

Although 32 frames were available from the tagged-MRI

acquisitions, we divided the PET motion cycle in only eight

frames in order to reduce reconstruction time (these PET

frames corresponded to the MRI time frames #1, 5, 9, 13, 17,

21, and 25). The attenuation map in the first, reference frame

was obtained by assigning lair¼ 0 cm�1 outside of the phan-

tom and lwater ¼ 0.096 cm�1 inside the phantom. Attenuation

from the MRI transmit and receive coils was also corrected.

As explained in Sec. III, random and scatter corrections

were performed by assuming that the distribution of random

and scatter coincidences in different motion frames did not

change significantly. Moreover, both random and scatter cor-

rections were performed using 2D correction sinograms

which is equivalent to assuming that the distribution of ran-

dom and scatter coincidences is the same in the direct and

cross planes of the brainPET scanner. Random correction

was performed using the delayed window technique50 (since

a decreasing amount of activity was imaged in consecutive

list-mode acquisitions, a random sinogram was computed for

every list-mode file). Scatter correction was performed using

the single scatter simulation (SSS)52 with 263 diffusion cen-

ters per liter on a sinogram grid of size 64 (transax.)� 64

(angle)� 10 (slice) covering a FOV of 36 cm diameter and

an axial FOV of 19.25 cm and using a single iteration. This

sinogram was interpolated to the full size sinogram of the

brainPET scanner (263� 192� 44, same FOV and axial

FOV) while accounting for the arc effect. A scatter sinogram

was computed only once for the first noise realization but

was scaled to every list-mode acquisition independently by

fitting the tails of the scatter distribution to the coincidences

detected outside of the patient after subtracting the random

sinogram from the prompt sinogram.

V. RESULTS

V.A. Simultaneous PET-MRI simulations

V.A.1. Motion estimation using tagged-MRI

Figure 3 shows the average error of motion fields estima-

tion using R-HARP as a function of the noise level in the

tagged-MRI simulation and the regularization parameter b

(the average error was defined as errh i ¼ 1
N�F

PN
i¼1

PF
f¼1

fjdestx;f ;i � drefx;f ;ij þ jdesty;f ;i � drefy;f ;ij þ jdestz;i � drefz;f ;ijg, where N is

the number of pixels, F is the number of frames, and dest and

dref denote the estimated and reference motion fields). As

expected, increasing the noise level in the tagged-MRI ac-

quisition increased the error of the motion field estimation

for all values of the regularization parameter b. We note

however that the smallest estimation error was reached for

the same value of b at all noise levels. Moreover, the error

associated with this optimal value of the regularization pa-

rameter varied only from 0.04 to 0.07 cm when increasing

the noise level from 5% to 25%. These results indicate that

our regularization of the HARP algorithm using a quadratic

roughness penalty is adequate to estimate the complex, non-

rigid motion fields due to breathing in the presence of Gaus-

sian noise in the tagged-MRI acquisition.

Figure 4 shows the motion field registering frame #5 to

frame #1 (reference frame) estimated with R-HARP using

the tagged-MRI simulations with 5% and 25% noise and

with and without regularization. As noted above, using a sin-

gle value of the regularization parameter b yielded accurate

estimates of the motion fields both at low (5%) and high

(25%) noise levels.

Figure 5 shows motion field estimation error maps and

profiles corresponding to the fields shown in Fig. 4. These

images show that motion tracking with R-HARP was accu-

rate almost everywhere in the simulated torso except in

regions surrounding the ribs and the interface between slid-

ing and fixed structures in the thoracic cage (e.g., interface

liver/soft tissues in contact with the ribs). This is due to the

short T2 constant of bone causing a rapid decay of the MR

signal in these structures and to the fact that the reference

motion field was discontinuous at the interface between slid-

ing organs. Like Fig. 4, Fig. 5 also shows that regularizing

the HARP algorithm using a quadratic prior yielded accurate

motion estimation at all noise level in regions with signifi-

cant MRI signal.

V.A.2. Motion corrected PET reconstruction

Figure 6 shows simulated PET images reconstructed with

our MRI-based motion correction (MRI-based MC, tagged-

MRI simulation with 15% noise, regularization with

b¼ 100), with motion correction using the reference motion

fields (reference MC), without motion correction (no MC)

and using only events detected in the first of eight frame

(frame #1). Figure 7 shows contrast recovery coefficients

(mean CRC6 standard deviation computed over ten noise

realizations) and signal to noise ratio (SNR computed over

ten noise realizations) in the six simulated tumors on images

obtained with the same reconstruction strategies.

Incorporating motion fields estimated with tagged-MRI in

the PET reconstruction procedure clearly reduced motion

blurring, yielding much clearer delineation of the liver and

FIG. 3. Average error of motion fields estimated using R-HARP as a func-

tion of the noise level and the regularization parameter b.
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FIG. 4. (a) Reference motion field between the MRI

frames #5 (end inspiration) and #1 (end expiration, ref-

erence frame) in the coronal view. (b) Motion fields

estimated with R-HARP using the tagged-MRI simula-

tions with 5% and 25% noise levels with and without

regularization. As explained in Sec. II B, our motion

tracking procedure was masked in the lungs where little

MRI signal was detected. Motion fields are shown in

the coronal view and deformation vectors are in pixel

units divided by five in this figure.

FIG. 5. (a) Motion field estimation error maps of the

registration frame #5! frame #1 with and without reg-

ularization using the tagged-MRI simulations with 5%

and 25% noise levels. (b) Lower torso and upper torso

profiles through these error maps. The estimation error

is the greatest in the lungs, where it is in fact equal to

the opposite of the reference displacement, since

motion is not estimated in these regions.
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the myocardium and better recovery of the activity in small

tumors. Our motion correction method yielded significantly

greater contrast recovery of the hot small tumors than when

not correcting for motion (MRI-based MC vs no MC). On

the other hand, reconstructing all the counts yielded signifi-

cantly greater SNR than when only reconstructing coinciden-

ces detected in the first frame (MRI-based MC vs frame #1).

The SNR was also greater with MRI-based MC than with no

MC because of the better recovery of the small tumor signal

with MRI-based MC.

We note that modeling motion both in the emission and

the attenuation maps removed artifacts due to emission/

attenuation mismatches that were particularly visible in the

dome of the liver in the absence of motion correction. The

contrast recovery coefficients of tumors #4 (in the sternum),

#5 (right rib), and #6 (left rib) were significantly lower with

MRI-based MC with than the best possible motion correction

(reference MC) because of the difficulty of estimating

motion fields in or around bone structures as explained in

Sec. V A 1 and Fig. 5. We note however that, for all tumors,

the differences between MRI-based MC and frame #1 CRCs

were not significant, while the SNR was systematically

greater with MRI-based MC than with frame #1. CRCs were

also consistently greater with MRI-based MC than with no

MC, even in the tumors #4, #5, and #6.

V.B. Simultaneous PET-MRI acquisitions

V.B.1. Motion estimation using tagged-MRI

Figure 8 shows motion fields registering the acquired

MRI frames #11 and #10 estimated with R-HARP with dif-

ferent values of the regularization parameter b. The presence

of a sphere with a short T2 relaxation constant introduced a

systematic error in the motion field estimation at this loca-

tion. We chose a value of the regularization parameter b that

was large enough to regularize such artifacts (b � 1) but not

so large that it significantly affected the overall structure of

FIG. 6. Simulated PET images in the coronal view reconstructed with (MRI-

based MC) and without motion correction (No MC) and using only events

from the first frame (Frame #1). Also shown are images corrected using the

reference motion fields (Reference MC), which represents the best achieva-

ble performance of our method at this noise level. Grey arrows show arti-

facts on the uncorrected image due to attenuation/emission mismatches.

Black arrows show regions of the uncorrected image with significant motion

blurring.

FIG. 7. (a) Contrast recovery coefficients (average CRC6 standard devia-

tion computed over ten noise realizations) of the six simulated tumors meas-

ured on images reconstructed with the no MC, frame #1 and MRI-based MC

strategies. Also shown are CRC values measured on images corrected using

the reference motion fields. A star indicates a CRC value significantly

greater than with no MC (p < 10�3). (b) Signal-to-noise ratio (computed

over ten noise realizations) in the six tumors reconstructed with the no MC,

frame #1 and MRI-based MC and the reference motion correction

approaches.

3033 Guérin et al.: Non-rigid PET motion correction in simultaneous PET-MR imaging 3033

Medical Physics, Vol. 38, No. 6, June 2011



the motion field (b � 10). In an effort to more quantitatively

determine the optimal value of the regularization parameter,

we also examined the maximum value of the Jacobian deter-

minant jJj of the motion field over all pixels and motion

frames as a function of b. The Jacobian determinant repre-

sents the local volume change and since the gel in our phan-

tom is incompressible, a perfect motion estimation

procedure should in theory yield jJj ¼ 1 everywhere within

the gel. Because of the presence of artifacts in the phase

images, we found that even large values of b yielded values

of jJj slightly different from unity in these regions; however,

most of the reduction in its maximum value across the phan-

tom was achieved for b¼ 10 with little further reduction

using greater values.

V.B.2. Motion correction of list-mode PET data

Figure 9 shows PET images of the deformable phantom

reconstructed with our MRI-based motion correction (MRI-

based MC) using b¼ 10 and without motion correction (no

MC) as well as by reconstructing coincidences detected in

the first PET motion frame only (frame #1). These images

indicate that MRI-based motion correction allowed recovery

of the intrinsic spatial resolution of the scanner that was

otherwise degraded by motion (black arrows) and eliminated

artifacts caused by attenuation/emission mismatches due to

motion (red arrows). Our motion correction strategy also

increased the detectability of the hot tumor #3 compared to

both the no MC and the frame #1 strategies as measured by

the SNR. Indeed, this tumor was barely visible in the no MC

strategy because it was blurred over several slices due to

motion, while in the frame #1 reconstruction strategy its

detectability was reduced by the presence of high back-

ground noise.

Figure 10 shows contrast recovery coefficients (CRC) and

SNR in the three most visible spheres of images of the de-

formable phantom reconstructed with the MRI-based MC, no

MC, and frame #1 strategies. Hot spheres CRCs were system-

atically greater with MRI-based MC and frame #1 than with

no MC since loss of spatial resolution due to motion caused a

reduction of the apparent activity level in these small tumors

(CRCs were smaller than 100% even when performing

motion correction because of partial volume effect). Figure 11

shows standard deviation images corresponding to reconstruc-

tion of the deformable PET-MRI phantom with the no MC,

frame #1 and the MRI-based MC strategies. Like Fig. 10,

these images show that reconstructing all coincidences in a

single reference motion frame reduces the variance of the

reconstructed images compared to when using only the frac-

tion of coincidences detected in the first motion frame.

As noted before, SNRs of small tumors were higher with

MRI-based MC and no MC than with frame #1 because this

gating strategy only allowed reconstructing a fraction of all

counts and therefore increased noise. Although both MRI-

based MC and no MC allowed reconstruction of all counts in

a single image, SNRs were systematically greater with MRI-

based MC than no MC as well since correcting for motion

increased the PET signal in these small tumors.

VI. DISCUSSION

In this work, we have presented a PET motion correction

strategy based on the incorporation of motion fields meas-

ured with tagged-MRI in the system matrix of a PET itera-

tive reconstruction algorithm. Although motion sensitive

MRI pulse sequences like velocity encoded phase contrast

MRI (VEPC-MRI) and tagged-MRI are established techni-

ques routinely used in the clinic, to our knowledge, this

work represents the first published report describing the use

of such techniques for motion correction of PET data. The

main advantages of our strategy over CT-based motion cor-

rection approaches are that (i) it does not increase the

patient’s radiation exposure, (ii) it is accurate even in uni-

form regions without CT, PET, T1, T2, and proton density

contrast, and (iii) it can be performed concurrently with the

PET acquisition (instead of sequentially as in PET-CT imag-

ing). Although combined PET-MRI scanners are not yet

commercially available, they are currently being developed

by several medical devices manufacturers, and prototypes

have already been installed.36,37

We proposed using tagged-MRI to estimate nonrigid re-

spiratory motion fields across the chest instead of VEPC-

FIG. 8. Motion fields estimated with R-HARP with the regularization pa-

rameter b ranging from 10�2 to 103 by increments of 10. In this figure,

images are in the coronal view and displacement vectors are in pixel unit.
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MRI because tagged-MRI directly yields displacement vec-

tors whereas VEPC-MRI estimates velocity vectors that are

tangent to the trajectory of material points. From such

motion fields, interpolation matrices can be computed that

allow warping of the PET image from the reference frame

into the different moved motion frames. These interpolation

matrices can in turn be incorporated in the system matrix of

an MLEM reconstruction of the PET data allowing recon-

struction of all detected coincidences into a single image

while correcting for motion both in the emission and attenua-

tion maps. This algorithm can be formulated both for sino-

gram and list-mode representations and requires that

coincidences are binned in gated sinograms (sinogram repre-

sentation) or that trigger events are included in the list-mode

stream indicating the beginning of every motion cycle (list-

mode representation). As with other motion-corrected PET

reconstruction approaches, a limitation of this reconstruction

strategy is that it involves computing F sensitivity images,

where F is the number of motion frames, which is very time

consuming in practice when reconstructing list-mode data.44

As a practical matter, the number of motion frames should

therefore be chosen so as to minimize reconstruction time

while yielding frames short enough so that intraframe

motion is negligible.

In this work we used a 1-1 C-SPAMM strategy both in

numerical simulations and physical acquisitions to nonselec-

tively tag the entire volume before imaging. Higher order

binomial C-SPAMM sequences can also be used in order to

create a sharper tagging pattern; however, such pulses are

longer, and, since the shape of the tagging pattern is not cru-

cial when tracking motion in the phase domain, it is unlikely

that they will yield more accurate motion field estimates. We

chose to process the tagged-MRI images obtained using this

1-1 C-SPAMM tagging strategy in the phase rather than in

the amplitude domain. The main advantage of this technique,

called HARmonic Phase tracking34 (HARP), is that it is fast

and avoids the need for automatically detecting the tag lines,

which is difficult in practice and usually requires human

intervention.38 As explained in Sec. II B, a limitation of this

approach is that it requires that the tagging period be greater

than the maximum displacement. Slowly varying tagging

patterns can capture larger motion but are also more difficult

to filter out because the distance between the center of k-

space to the tagging peaks is inversely proportional to the

tagging period. In practice, the tagging period should there-

fore be optimized for specific applications. Our numerical

simulation results indicate that a tagging period of 2 cm used

concurrently with a gating acquisition containing F ¼ 16

motion frames allows accurate estimation of nonrigid motion

fields with HARP due to patient breathing.

HARP was originally developed for quantifying myocar-

dial motion.34 Since the end goal of this work is to correct

PET acquisitions for breathing motion, which is more chal-

lenging because of the greater variations of the magnetic

FIG. 9. PET images of the deformable PET-MRI phan-

tom reconstructed using our MRI-based motion correc-

tion approach (MRI-based MC), without motion

correction (no MC) as well as by reconstructing only

events detected in the first PET motion frame (Frame

#1). Reconstructed images are shown in the coronal (a)

and the transaxial views (b) and are identically scaled.

Grey arrows show artifacts on the uncorrected image

due attenuation/emission mismatches. Black arrows

show regions of the uncorrected image with significant

motion blurring.
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susceptibility and the complex structure of motion fields in

the torso, we regularized the HARP motion tracking proce-

dure using a quadratic roughness penalty penalizing large

variations of the displacement field across neighboring pix-

els. Our simulation results show that adding such a quadratic

regularization scheme to HARP (R-HARP) allows accurate

estimation of motion fields due to patient breathing, even in

the presence of noise and artifacts in the phase images. Like

most other motion estimation strategies, a limitation of R-

HARP is that it does not allow estimation of motion in

regions with little MRI signal, such as the lungs. We have

therefore masked out such regions in the motion tracking

procedure in order to prevent the random values of the har-

monic phase in the lungs from introducing bias at other loca-

tions because of the roughness penalty. Such masks were

simply obtained in all motion frames by adding two comple-

mentary SPAMM acquisitions, instead of subtracting them

like in C-SPAMM, and segmenting the resulting amplitude

image. Doing so yielded accurate estimation of the motion

fields everywhere but in the lungs, even in regions that were

very close to the lung boundaries (i.e., in the dome of the

liver in simulations and in the small hot spheres attached to

the balloon in physical acquisitions).

Because it is difficult to objectively evaluate motion cor-

rection approaches in vivo, we have evaluated the accuracy

and practical feasibility of our motion correction approach in

numerical simulations of a breathing patient and in physical

acquisitions of a small deformable phantom using a proto-

type combined PET-MRI brain scanner. These proof-of-prin-

ciple simulations and acquisition studies demonstrate that

tagged-MRI based PET motion correction is accurate in

regions with significant MRI signal, even in uniform regions,

and can be practically implemented on a real system with a

complex block-based PET structure and a nonideal MRI

scanner. Moreover, our PET-MRI simulations indicate that

the spatial and time resolution of the tagged-MRI acquisition

do not need to be very high (we simulated 3 mm isotropic

and 250 ms spatial and temporal resolutions, respectively) in

order to accurately motion correct the PET data. Small hot

tumor contrast (CRC) and signal-to-noise ratio (SNR) were

significantly better when performing MRI-based motion cor-

rection using these parameters than when not performing

motion correction and when reconstructing only one of eight

motion frames alone. These results were confirmed in physi-

cal acquisitions, where low-noise, high-contrast, and arti-

fact-free PET images were reconstructed from list-mode

data with detector sensitivity and frame dependent motion

and attenuation corrections in the system matrix. These

results show that the proposed approach is accurate and fea-

sible, and is therefore ready to be tested in vivo.

Future work will include testing of the proposed approach

in vivo both in animals and humans using brain and whole

body combined PET-MRI scanners. In practice, there will be

two ways of gating both the list-mode PET and the MRI ac-

quisition: (i) by using an external signal, e.g., a respiratory

belt, or (ii) by interleaving navigator echoes within the

tagged-MRI acquisition. The use of navigator echoes to

monitor the state of respiration of the patient is well estab-

lished20 and would preclude the need for additional hard-

ware, e.g., a respiratory belt. Note that both gating strategies

mentioned above monitor the state of respiration of the

patient with a time resolution greater than that actually

needed to perform the motion correction. However, finer

FIG. 11. Standard deviation images computed over 15

noise realizations of the deformable PET-MRI phantom

list-mode data reconstructed with the MRI-based MC,

frame #1 and no MC strategies. Images are shown in

the coronal view and are identically scaled on this

figure.

FIG. 10. (a) Contrast recovery coefficients (average CRC6 standard devia-

tion computed over 15 noise realizations) of the three hottest spheres

attached to our deformable phantom, measured on images reconstructed

with the no MC, frame #1 and MRI-based MC strategies. A star indicates a

CRC value significantly greater than with no MC (p < 10�3). (b) Signal-to-

noise ratio (computed over 15 noise realizations) within the three hottest

spheres estimated on images reconstructed with the no MC, frame #1 and

MRI-based MC strategies.
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temporal resolution of the gating signal could prove very

useful for analyzing the specific breathing pattern of the sub-

ject imaged. This, in turn, would allow detection of abnor-

mally deep and shallow breaths, which should be removed

from the study. Even in the subset of normal breaths, there

might be some variability in the amplitude and direction of

local displacement vectors, which could affect the motion

estimation. Some degree of immunity of our approach to this

problem is provided by the fact that it only requires estima-

tion of motion fields on a coarse grid (�5 mm spatial resolu-

tion) so the average displacement vector in each of these

large voxels should be relatively constant over several peri-

ods of the breathing cycle. It was not possible to study the

capability of our approach to handle abnormally deep of

shallow breaths, nor the variability of normal breaths, in this

study since we imaged a regularly beating phantom. This

problem is outside of the scope of this paper, and we will

address it in a separate publication using in vivo studies.

Application of the proposed approach to in vivo data

acquired in humans and animal will also require estimation

of an attenuation map in the reference frame from MRI

images using, for example, atlas-based techniques.45–49 Such

a process will most likely require acquiring extra proton den-

sity, T1 or T2 weighted MRI images in addition to the

tagged MRI data used for motion correction, because it

might prove difficult in practice to filter out the tagging pat-

tern of C-SPAMM images while preserving adequate spatial

resolution for accurate attenuation correction. The motion

correction procedure methods presented in this work is, of

course, applicable concurrently to any attenuation map esti-

mation method. The authors acknowledge the difficulty of

applying such approaches in vivo however, especially in the

lungs where the attenuation coefficient can vary consider-

ably spatially and between patients, and will dedicate future

work on MR-based attenuation correction especially as it is

applied concurrently to motion correction.
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