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Abstract

The observed motion of subcellular particles in fluorescence microscopy image sequences of live
cells is generally a superposition of the motion and deformation of the cell and the motion of the
particles. Decoupling the two types of movements to enable accurate classification of the particle
motion requires the application of registration algorithms. We have developed an intensity-based
approach for nonrigid registration of multi-channel microscopy image sequences of cell nuclei.
First, based on 3-D synthetic images we demonstrate that cell nucleus deformations change the
observed motion types of particles and that our approach allows to recover the original motion.
Second, we have successfully applied our approach to register 2-D and 3-D real microscopy image
sequences. A quantitative experimental comparison with previous approaches for nonrigid
registration of cell microscopy has also been performed.

Index Terms

Biomedical image processing; image sequence analysis; microscopy; registration

I. Introduction

Time-lapse microscopy enables the observation of dynamic cellular processes. To
understand these processes it is important to analyze and classify the types of motion of
subcellular particles (proteins). However, live cells generally change their form and position
over time. Therefore, when determining the motion of tagged particles within a cell nucleus,
a superposition of the movement of the particles and that of the cell is obtained. To find the
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real motion of the particles, one has to compensate the movement and deformation of the
cell. As an example, in Fig. 1(a) a cell nucleus from a microscopy image sequence is shown
(contrast enhanced), and in Fig. 1(c) sub-cellular particles can be observed from an
additional channel at the same time point (contrast enhanced). In Fig. 1(b), (d) the cell
nucleus and the subcellular particles are shown at a later time point. It can be seen, that the
cell nucleus undergoes significant deformations. Determining the location and motion of the
subcellular particles with respect to the nucleus requires the compensation of the
deformation. This can be achieved by registering dynamic cell microscopy images w.r.t. a
reference frame. By computing the particle positions in the reference frame based on the
registration transformations the particle motion then can be decoupled from the cell
deformation.

In previous work on the registration of microscopy images of cell nuclei mainly rigid or
affine approaches have been used. Rigid registration approaches determine a transformation
which consists of either a translation, a rotation, or a combination of translation and rotation.
Intensity-based rigid registration approaches for 2-D images of cells and cell nuclei have
been used by Wilson and Theriot [1] as well as Würflinger et al. [2]. Goobic et al. [3] used a
correlation-based approach to compute 2-D translation for the registration of intravital video
microscopy images of rolling leukocytes. Sage et al. [4] described a model-based approach
where a least-squares fit of an ellipse to segmented 2-D images of a nucleus has been used to
determine a rigid transformation. To compute the translation of cell nuclei from 3-D
microscopy images Cabal et al. [5] determined the centroids of segmented cell nuclei.
Baheeratan et al. [6] used the phase correlation method to determine rigid transformations
and a landmark-based approach for computing affine transformations of serial sections of
mouse liver cell nuclei. Bornfleth et al. [7] used a correlation-based method to compute 3-D
translation and 2-D rotation of cells to determine the motion of subchromosomal foci.
Rieger et al. [8] employed the center of mass and the inertia tensor to compute 3-D
translation and rotation of cell nuclei to register labeled proteins. Dzyubachyk et al. [9]
determined 2-D translation and rotation by minimization of an energy functional based on
distance functions to register 3-D microscopy images. Point-based approaches to determine
3-D translation and rotation of live cells have been used by Gerlich et al. [10] and Matula et

al. [11]. Bacher et al. [12] used an intensity-based approach for rigid and affine registration
of cell nuclei.

However, rigid or affine transformations cannot cope with deformations of live cells.
Therefore, nonrigid or elastic registration approaches are required (for surveys on general
non-rigid registration approaches see, e.g., [13], [14]). Up to now, only few approaches for
nonrigid registration of cell nuclei images have been described. These approaches either use
thin-plate splines and semiautomatically extracted point landmarks (e.g., [15]) or an
extension of the demons algorithm with symmetric forces using segmented images (e.g.,
[16]) or original images (e.g., [17]). Mattes et al. [15] employed a thin-plate spline
transformation model and semiautomatically extracted point landmarks. 2-D images of fixed
cells are analyzed and the observed deformation is due to staining. A problem with this
approach is the proper selection of corresponding point landmarks, which has a strong
impact on the transformation. Yang et al. [16] used segmented images and an extension of
the demons algorithm to register 3-D static images of different cell nuclei as well as
dynamic cell nuclei images. A disadvantage of this approach is the requirement of a
segmentation. Kim et al. [17] directly utilized the intensity information based on the demons
algorithm to register 2-D and 3-D images from time-lapse microscopy of cell nuclei. For use
of registration approaches in other biological applications such as the registration of gene
expression patterns we refer to, e.g., Peng et al. [18] and Preibisch et al. [19].
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Previous intensity-based approaches for nonrigid registration of dynamic cell nuclei images
are based on the demons algorithm. The demons algorithm [20] is based on an optic flow
equation and can be interpreted as an iterative optimization approach using the steepest
descent algorithm. However, in comparison to other optimization schemes, the steepest
descent algorithm is known for relatively low convergence rate, especially in the
neighborhood of the solution. In contrast, the Lucas-Kanade algorithm [21], which has been
previously used for optic flow estimation in 2-D video images, can be interpreted as an
iterative Gauss-Newton optimization method, which is superior in accuracy and
convergence compared to the steepest descent method (e.g., see the performance evaluation
study on optic flow estimation [22]).

In this contribution, we suggest to incorporate the Lucas-Kanade optic flow algorithm [21]
within an approach for non-rigid temporal registration of cell nuclei in dynamic microscopy
image sequences (for an earlier version of this paper see [23]). We also introduce two
extensions of this algorithm. The first extension is based on a symmetric formulation and the
second extension is based on a weighting approach. In addition, we propose to use spatial
and temporal regularization for estimating the transformation. Our approach determines
registration transformations from the nucleus channel of time-lapse microscopy image
sequences. The computed transformations are then employed to transform the positions of
subcellular particles, which are observed in the second channel, into a reference frame.
Afterwards, the motion of the particles is classified into directed, diffusive, and obstructed
motion.

Our new nonrigid registration approach is fully automatic and has been successfully applied
to 2-D as well as 3-D synthetic and real microscopy image sequences. Based on synthetic
images we demonstrate that the motion types of particles are changed under cell deformation
and that our approach is able to recover the original motion. The real image sequences
depict nuclei of living cells with strong deformations since the cells are going into mitosis
(cell division). Note, that in previous work only cells in interphase have been studied, which
do not undergo cell division. Our approach has been successfully applied to these images
and a quantitative comparison with previous schemes have been performed.

This paper is organized as follows: In the following section, we present our intensity-based
approach for nonrigid temporal registration of fluorescence microscopy image sequences.
Then, we describe experimental results from a simulation study on the motion type of
particles under deformation. Afterwards, we present experimental results of our approach for
2-D and 3-D synthetic as well as real microscopy image sequences, and describe a
quantitative comparison with other approaches. Finally, we conclude this paper with a
summary.

II. Nonrigid Optic Flow-Based Temporal Registration

In this section, we first present our incremental approach for temporal registration of an
image gk at time point k to the reference image g1 at the first time point. Our approach is
based on an iterative nonrigid registration scheme for subsequent images. We first briefly
review previous demons-based approaches for nonrigid registration. Then we present our
nonrigid temporal registration approach based on the Lucas-Kanade algorithm, and we
introduce two extensions of this algorithm.

A. Temporal Registration of Image Sequences

Our approach for nonrigid registration of temporal cell microscopy image sequences is
based on an incremental scheme, which computes the transformation of an image gk at time
point k to the reference image g1 (first image of an image sequence). In the first step, we
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compute a nonrigid registration of the image g2 at time point 2 to the reference image g1,
represented by a dense deformation vector field u(g2, g1). Then we compute a
transformation u(g3, g2) of the image g3 to the image g2. Concatenation of u(g3, g2) with
u(g2, g1) and subsequent regularization of the deformation field with a Gaussian kernel GT

then yields u(g3, g1) = GT * (u(g3, g2) ∘ u(g2, g1)). In general, the transformation of an
image gk at time point k > 1 is obtained by u(gk, g1) = GT * (u(gk, gk−1) ∘ u(gk−1, g1)), where
u(g1, g1)is a zero vector field.

The computed transformations from the nucleus channel (first channel) are used to
determine the positions of the particles (second channel) with respect to the reference frame.
The location pk of a particle at time point k is transformed to the reference frame by

, where u−1(gk, g1, pk) denotes the vector of the inverse deformation
field of u(gk, g1) at pk. The inverse deformation field is obtained by using a B-spline-based
representation of the deformation field which is sampled in the coordinate system of the
original source image.

B. Nonrigid Registration of Subsequent Images

In our approach, at each time point k > 1 of an image sequence we compute for subsequent
images gk and gk−1 a non-rigid transformation represented by a dense deformation vector
field u(gk, gk−1) using an iterative scheme. At each iteration i the deformation vector field is
calculated by

(1)

where ui−1(gk, gk−1) is the deformation field from the previous time point,  is an

update field,  is the transformed image at time point k, x denotes the
spatial coordinate, and GD and GU are Gaussian kernels which are used for regularization of
the deformation and update fields. It has been noted earlier (e.g., [24]), that the
regularization of vector fields using Gaussian kernels can be interpreted as an approximation
to elastic deformations. The initial deformation field u0(gk, gk−1) is a zero vector field. The
final deformation field u(gk, gk−1) is obtained after a certain number of iterations or when

the mean squared intensity differences between the images gk−1 and  are below a certain
threshold value. In all our experiments we used σD = 2.0 and σU = 2.0 for the standard
deviations of the Gaussian kernels for regularization of the deformation and update field,
respectively. These values were chosen based on initial experiments and proved to be an
acceptable compromise between smoothing the deformation field to reduce errors and
preservation of the overall accuracy.

C. Nonrigid Registration Using the Demons Algorithm

For computing the update field  in (1), the demons algorithm [20] can be used.
Then at each iteration i for each voxel x we have

(2)

where ∇gk−1 is the gradient of the image gk−1, and cD is a normalization constant.
Alternatively, an improved variant of the demons algorithm with symmetric forces (e.g.,
[16]) can be used:
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(3)

where  is the gradient of the transformed image  at voxel x. This variant is called

symmetric because the gradients of both images  and gk−1 are used.

D. Nonrigid Registration Using the Lucas-Kanade Algorithm

The demons algorithm described above can be interpreted as a steepest-descent optimization
scheme. In [25] it has been shown in the context of estimating the optic flow in 2-D video
images, that the Lucas-Kanade algorithm [21], which can be interpreted as an iterative
Gauss-Newton optimization method, is superior with respect to convergence rate and
accuracy in comparison to the steepest-descent approach (as used in the demons algorithm).
Therefore, to improve the convergence and accuracy of nonrigid temporal registration we
here suggest to use the approach in [21] for computing the dense deformation vector field
u(gk, gk−1) between the images gk and gk−1. The approach of Lucas-Kanade minimizes for
each position xc the sum of squared intensity differences between the target image gk and the
source image gk−1 over a neighborhood region Ω around xc by

(4)

where U is the vector at voxel position xc of the deformation field u(gk, gk−1), and d is the
image dimension. Note, that x + U is a local transformation model since (4) is minimized for
each voxel xc separately. Note also, that the resulting deformation field u(gk, gk−1) is a
nonrigid transformation for all types of local transformation models. Using a linear
expansion of gk(x + U) (4) can be written as

(5)

where gk, ∇gk, and gk−1 are evaluated at the position x. Minimization of (5) yields a system
of linear equations:

(6)

from which the vector U can be determined. In our experiments we used the reference
implementation by Barron et al. [22] for this approach, where the gradient ∇gk is computed
by a four point central difference scheme and the terms on both sides of (6) are weighted
with the gradient norm ||∇gk||, and a Gaussian function is used to emphasize the center of the
neighborhood Ω. For the neighborhood region Ω we used in our experiments a size of 5 × 5
pixels and 5 × 5 × 5 for the 2-D and 3-D images, respectively. Using smaller neighborhood
regions yielded worse results, whereas using larger neighborhood regions led to an increase
in the computation time without a significant improvement of the accuracy.

E. Symmetric Lucas-Kanade Approach

The solution (6) of the Lucas-Kanade approach [21] only exploits the gradient ∇gk of one
image. Thus, in image regions where the gradient ∇gk is a zero vector (or close to a zero
vector), U cannot be computed (or cannot be computed robustly). We propose to extend the
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original formulation in (4) such that the gradients of both images are exploited. Our
approach is based on the minimization problem

(7)

A linear expansion of (7) yields

(8)

Minimization of (8) leads to a linear system of equations which includes the gradients of

both images  and gk−1:

(9)

This symmetric formulation allows to compute vectors U in image regions where at least one
of the image gradients ∇gk or ∇gk−1 is not a zero vector (or not close to a zero vector). In
contrast, if ∇gk in (6) is zero (or close to a zero vector) then U cannot be determined. Note
that in previous work, a symmetric minimization problem has been used for global

parametric image alignment (e.g., [26]), however, we here propose to use the symmetric
formulation for estimation of local optical flow.

In our nonrigid registration approach we use the symmetric formulation in conjunction with

the iterative scheme in (1), where at each iteration (7) is solved with  instead of gk and

where  is the transformed target image gk using ui−1(gk, gk−1) from iteration i − 1, and U

is the vector at voxel position xc of the update deformation field . The image
gradients we determined by a Gaussian derivative kernel with a standard deviation of σδ =
1.5. The value for the standard deviation was chosen based on initial experimental results
covering a range of values from σδ = 0.5 up to σδ = 2, where the chosen value yielded the
best result.

F. Weighting Approach

In this section, we describe a second extension of the Lucas-Kanade algorithm [21], which is
based on the optimization method of Levenberg-Marquardt (e.g., [27]), but exploits a
different similarity measure. We motivate this extension by noting, that the linear

approximation  used in [21] is, in general, good for relatively small
magnitude values of U. However, for large magnitude values of U the linear approximation
is not good when the intensity surface of a local image region cannot be described by a
linear function (because higher order terms are neglected in the approximation).
Consequently, the solution obtained from (6) is subject to errors. To cope with problems due
to approximation errors when iteratively solving linear systems of equations like (6), a
standard technique is to introduce a weight matrix Di:

(10)
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In the well known nonlinear optimization method of Leven-berg-Marquardt [27] Di is a

diagonal matrix with elements , and c0 at iteration 0 is set to a fixed value.
Note, that during the iterative optimization the Leven-berg-Marquardt method switches
between the Gauss-Newton method and the steepest-descent method depending on the
matrix Di. Note also, that the Lucas-Kanade algorithm can be interpreted as a Gauss-Newton
method, which is preferable if the current estimate is close to the solution (i.e., the linear
approximation used in the Lucas-Kanade approach is good). In contrast, if the current
estimate is far from the solution, then the steepest descent method is preferable. Thus, using
the Levenberg-Marquardt method within the Lucas-Kanade algorithm generally improves
the solution.

In the method of Levenberg-Marquardt [27] at each iteration i a metric Ei for the similarity

of the images  and gk−1 within the region Ω is computed by  and
compared with the previous value Ei−1. If the metric has decreased during iteration i (i.e., if
the images have become more similar), then the elements of Di are decreased by a constant
factor (e.g., ci = ci−1/C, where C > 1). The system of linear equations in (10) then becomes
more similar to the original solution in (6). In contrast, when the metric increases, then the
elements of Di are increased by a constant factor (e.g., ci = ci−1C). A disadvantage of the
Levenberg-Marquardt method is that the comparison of the metrics Ei and Ei−1 in
subsequent iterations is only exploited qualitatively, since the factor ci is only a qualitative

measure for the image similarity and does not reflect the quantitative value of the metric.
For example, a change of the metric from Ei−1 = 1000 to Ei = 999 results in the same factor
ci as a change of the metric from Ei−1 = 1000 to Ei = 100. Instead we here measure the
image similarity by a comparison of the image gradients. This allows to define the weights
based on an quantitative measure. In our approach at every iteration i we determine a
quantitative value of the image similarity based on the image gradients which defines the
weights. For each voxel x we compute a weight function w(x) by

(11)

where the first term of the sum evaluates the similarity of the gradients w.r.t. the magnitude
and the second term evaluates the similarity w.r.t. the angle. The weight function w(x) is
zero when the image gradients are identical, and close to 1 when they are most dissimilar.
The weights are then used to compute the entries of the diagonal matrix by

, where c is a constant (in our experiments we used c = 1.0, which in
initial experiments yielded good results). Note, that another possibility for the weight

function would be to use a normalized value of the image metric .
However, using the image gradients is generally more robust w.r.t. intensity variations and,
in addition, more directly determines the deviation from the linear approximation used in the
Lucas-Kanade approach.

G. Combined Symmetric Weighting Approach

Our weighting approach described above can also be combined with our symmetric approach
in (9) yielding
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(12)

where . We will refer to this extension as the symmetric

weighting approach.

III. Experimental Study Using Simulated Particle Motion

Before applying the above described nonrigid registration approaches we first study the
effects of the deformation of a cell on the motion types of particles. To this end we have
generated 3-D particle motion data with characteristics as observed in real experiments. We
distinguish between three different types of particle motion: Directed, diffusive, and
obstructed motion. We have generated 1000 particle tracks for each motion type, where each
track consists of 23 time points.

The motion of particles can be characterized by the mean squared displacement (MSD),
which on average is a function of the time interval Δt:

(13)

where D is the diffusion coefficient and α characterizes the motion type. The parameter α is
approximately 1 for diffusive motion, larger than 1 for directed motion, and smaller than 1
for obstructed motion [12]. In Fig. 2(a) the average MSD over 1000 particles as a function
of Δt is shown for each motion type. Directed motion has been generated by a mixture of a
Pearson random walk and a directed motion to a randomly chosen location with an
increasing instantaneous velocity from 0.5 μm/ΔT to 1.0 μm/ΔT, where ΔT is the discrete
time interval between two measurements. Diffusive motion was simulated by a Pearson
random walk with an instantaneous velocity of 1.0 μm/ΔT. Finally, obstructed motion was
simulated by a Pearson random walk within a small confined spherical region (radius of 1.8
μm) with an instantaneous velocity of 0.7 μm/ΔT. The particles are restricted to a larger
spherical region (radius of 10 μm) to simulate subcellular particles within a nucleus. The
values were chosen in accordance with the motion of particles as observed in real
microscopy images.

The MSD can be used to classify the motion type of a population of particles as described
above. However, the determination of the motion type of a single particle from a finite set of
time points can be error prone, because diffusive motion is a random process and the MSD
describes the average behaviour from an ideally infinite number of samples. In our
experiments we found, for example, that diffusive motion can be misclassified as directed or
obstructed motion, which has also been observed in previous work [28]. Therefore, to
improve the classification results, we classify the motion type of an individual particle by
the relative shape anisotropy of the gyration tensor [29]. Whereas in previous work shape
anisotropy was used to classify 2-D particle tracks (e.g., [28], [30]), we here use shape
anisotropy to classify 3-D particle motion. The gyration tensor S of a particle track p(t) for N
time points is defined by

(14)
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where the coordinate system has been chosen such that . The eigenvalues λ1, λ2,
and λ3 of the tensor can be used to compute the squared radius of gyration s2, the asphericity
b, the acylindricity c, and the relative shape anisotropy k2:

(15)

(16)

(17)

(18)

where λ1 ≥ λ2 ≥ λ3. The relative shape anisotropy k2 is zero for an isotropic shape of the
particle track and one for an anisotropic shape. If, for example, the particle track can be
described by a linear function (a straight line), the shape of the track is anisotropic and the
parameter k2 is one. If the shape of the track exposes a tetrahedral or higher symmetry, the
shape can be considered as isotropic and k2 tends to zero [29]. For each single simulated
particle track we compute k2 for all subtracks (partial tracks) with a length of 10 time points,
and the mean value over all subtracks is used to classify the particle motion. In Fig. 3(a) the
histogram of k2 of all particle tracks is presented. The histogram shows that directed particle
motion can well be distinguished from diffusive and obstructed particle motion by applying
a threshold of k2 = 0.6.

Diffusive and obstructed motion can be distinguished by determining the maximum distance
dmax of the particle position at a certain time point to the starting position at the first time
point. The classification accuracy depends on dmax and the radius of the confined region for
obstructed motion. In Fig. 3(b) the histogram and the cumulative histogram of dmax is shown
for 1000 particles with diffusive motion for all 23 time points. It can be seen that if we use
dmax = 1.8 μm in accordance with the radius of the confined region as mentioned above, then
only about 5% of particles with diffusive motion are misclassified as particles with
obstructed motion (i.e., 5% of the particles do not exceed a maximum distance of 1.8 μm). In
our case to distinguish between diffusive and obstructed motion we used a threshold of dmax

= 1.8 μm + ct, where ct = 0.1 μm is a tolerance term to take into account small numerical
errors.

IV. Experimental Results Using Synthetic Image Sequences

In this section, we describe experimental results of applying our approach for nonrigid
temporal registration of nuclei images and subsequent particle motion classification based
on synthetic data. To simulate a nucleus, we have generated 3-D image data of a spherical
cell with an outer radius of 10 μm. For the motion of the particles within the nucleus we use
the simulated data as described in the previous section. The motion is restricted to a
spherical region with a radius of 10.0 μm. In Fig. 4(a) a visualization of the sphere by three
orthogonal slices is shown. The spherical cell consists of an inner sphere (radius of 2.5 μm)
with uniform intensity of 175, a region between radii of 2.5 μm and 5.0 μm with uniform
intensity of 150, a region between radii of 5.0 μm and 7.5 μm with uniform intensity of 175,
and an outer region between radii 7.5 μm and 10 μm with an intensity level of 200. The
voxel size is 0.22 μm × 0.22 μm × 0.22 μm. The 3-D synthetic images of a spherical cell
nucleus were generated to serve as image data where ground truth is known, and based on
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which the performance of the different approaches can be compared quantitatively. Using
different regions with different intensity values compared to a completely homogeneous cell
nucleus has the advantage that an interior intensity structure is introduced which can be
exploited by the intensity-based registration approaches. Our experimental results showed,
that this relatively coarse model of a cell nucleus is well-suited for a quantitative evaluation
of the different approaches.

To evaluate the effects of a deformation of a cell nucleus on the determined motion types we
have computed deformation fields based on an analytic solution of the Navier equation:

(19)

where u(x) denotes the deformation vector u at voxel x, and μ as well as λ are the Lamé
coefficients. The analytic solution has been obtained by defining displacements at the border
of the sphere, which act as boundary conditions. The deformation was chosen such that the
radius of the spherical cell was decreased from 10 μm at the first time point to 5 μm at the
last time point.

The computed deformation fields were then used to deform the generated image data of the
spherical cell as well as the particle motion data, resulting in a 3-D image sequence and 3-D
particle data over time with deformation. The image sequence consists of 23 3-D images of
size 100 × 100 × 100 voxels. We have added Gaussian noise to the images with standard
deviations σn = 1.0 and σn = 2.0, resulting in two image sequences. A visualization of the
deformed sphere at the last time point is shown in Fig. 4(b), and the averaged MSD for the
corresponding particle motion data is shown in Fig. 2(b). In comparison to Fig. 2(a), which
shows the averaged MSD for the original data, it can be seen, that the deformation changes
the observed motion types. To recover the true motion types we have applied our non-rigid
registration approaches as well as the demons-based approaches. The computed
transformations were used to register the particle positions with respect to the reference
frame. The results for classification of the particle motion are shown in Table I for the
approaches using temporal regularization for the image sequence with Gaussian noise of σn

= 1.0. The first and second row give the results for the original particle data and for the
particle data with deformation, whereas the remaining rows summarize the results after
application of the different nonrigid registration approaches. It can be seen, that for all
approaches the most significant improvements are achieved for obstructed motion. The
demons-based approaches resulted in a classification accuracy for obstructed motion of
72.6% (non-symmetric) and 72.5% (symmetric), respectively. The Lucas-Kanade algorithm
using the reference implementation of Barron et al. [22] yielded similar results as the
demons-based approaches. The best result is obtained by the symmetric approach, which
increases the classification accuracy for obstructed motion from 45.2% to 77.7%. The
averaged classification accuracy for all motion types for the symmetric approach is 84.67%,
which is a significant improvement compared to the unregistered case with 64.93% and
compared to the demons-based approaches with 82.30% (non-symmetric) and 82.20%
(symmetric), respectively.

The averaged classification accuracies for different levels of Gaussian noise and for the
approaches without and with temporal regularization (σT = 2.0) are shown in Table II. The
original particle data can be classified with an overall accuracy of 95.80%. A small fraction
of particles with diffusive motion is misclassified as directed motion and vice-versa, due to
the overlap of the histograms of the relative shape anisotropy parameter (see Fig. 3(b)), and
some particles with diffusive motion are misclassified as obstructed motion. Under
deformation the overall classification accuracy is decreased to 64.93%. Using the demons-
based approaches for registration yielded a classification accuracy of 82.90% (non-
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symmetric) and 82.79% (symmetric) without temporal regularization (averaged over the two
noise levels of σn = 1.0 and σn = 2.0), and 82.12% (non-symmetric) and 82.00% (symmetric)
with temporal regularization, respectively. The Lucas-Kanade approach (Barron et al. [22])
yielded similar results as the demons-based approaches. Our approaches yielded a
significantly higher accuracy, where the best result is obtained by the weighting approach
with an accuracy of 84.75% (without temporal regularization) and 84.23% (with temporal
regularization).

The averaged MSD for the registered particle motion using the symmetric weighting
approach is shown in Fig. 2(c), and a visualization of the registered image at the last time
point is shown in Fig. 4(c). In comparison to the unregistered case in Fig. 2(b) and Fig. 4(b)
we obtain a significant improvement. We have also quantified the motion type parameter α
for the particle data without registration and with registration using our approaches as well
as the demons-based approaches, and we have summarized the results for the image data
with Gaussian noise (σn = 1.0) in Table III. For the unregistered particle data with
deformation significant errors are obtained for the diffusive and obstructed motion.
However, after registration the motion type parameter is relatively well recovered using our
approaches, and the result is significantly better compared to the demons-based approaches.
In addition, we have computed the mean absolute error ēMSD of the MSD curves by
averaging the absolute differences between the MSD curves after registration and the
original MSD curves (without deformation). The results for all nonrigid registration
approaches are shown in Table IV. It can be seen that the best results are obtained for our
approaches, in particular, for the symmetric weighting approach.

V. Experimental Results Using Real Image Data

We have also applied our approach to four 2-D and two 3-D multichannel time-lapse
fluorescence microscopy image sequences of live cells. The image sequences depict in one
channel nuclei of living human cells (U2OS cell line) with different chromatin stainings
(H2A-mCherry, YFP-SP100 with Hoechst), and in a second channel subcellular particles
(CFP stained PML bodies). Strong deformations occur since the cells are going into mitosis
(cell division). The images were acquired by a DeltaVision RT widefield microscope
(Applied Precision) at a resolution of 0.21576 μm × 0.21576 μm for the 2-D image
sequences, and 0.21576 μm × 0.21576 μm × 0.5 μm as well as 0.21576 μm × 0.21576 μm ×
1.5 μm for the 3-D image sequences. The four 2-D image sequences consist of 100 up to 200
images per sequence and have a resolution of 384 × 384 up to 512 × 512 pixels. The two 3-
D image sequences have resolutions of 480 × 480 × 10 and 512 × 512 × 15 voxels with 100
and 149 images per sequence. As an example, in Fig. 5(a), (b) the original images at time
points 0 and 70 from a 2-D image sequence are shown. In Fig. 5(c) the difference image
between the original images is displayed (contrast-enhanced) and in Fig. 5(d) the difference
image of the registered images using the symmetric weighting approach is presented
(contrast-enhanced). It can be seen that we obtain a good alignment. In Fig. 5(e) the
registration transformation for the image at time point 70 using the symmetric weighting
approach is represented as a vector field.

To evaluate the performance of the nonrigid registration approaches, we calculated the root
mean squared (RMS) intensity error and the correlation coefficient (CC) between registered
images from subsequent time points. In Fig. 6(a), (b) the RMS error and the CC averaged
over all images of a 2-D image sequence consisting of 150 images are shown. It can be seen
that the best results are obtained using our approaches (three curves at the bottom of the
RMS diagram and at the top of the CC diagram). The symmetric approach performs best. In
comparison, the demons-based approaches show a much lower convergence rate. We have
used 10 iterations for each image pair. The computation time for one iteration using images
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with 512 × 512 pixels and a single-core implementation is approximately 2.9, 3.3, and 5.3
seconds for the demons, the symmetric demons, and the Lucas-Kanade approach,
respectively. Our symmetric, weighting, and symmetric weighting approaches take 6.2, 6.9,
and 7 seconds, respectively. However, it should be noted that all algorithms can be highly
parallelized.

In addition, we performed a quantitative evaluation using ground truth for all four 2-D
image sequences, as well as for the two 3-D image sequences. Ground truth was determined
for each image of the image sequences by manually localizing spot-like structures within the
nucleus. In each of the 2-D image sequences we determined the locations of 9 structures
over 38 up to 125 subsequent images, and in each of the 3-D image sequences the positions
of 6 structures over 28 up to 83 subsequent images were localized. For each structure we
computed the error as the mean Euclidean distance to its ground truth location at the first
image without registration and after registration. In Fig. 7 the error for an example structure
is shown for a 2-D image sequence using no temporal regularization (a) and using temporal
regularization (σT = 2.0) (b). Fig. 8 shows the analogous results for a 3-D image sequence. It
can be seen, that our approaches yield significantly lower errors compared to the
unregistered case and compared to the demons-based approaches. The results for the mean
error ē averaged over all 9 structures in all considered images of the 2-D image sequences
are shown in Table V without temporal regularization and with temporal regularization
using different values of the standard deviation (σT = 1.0, 1.5, 2.0). Without registration we
have ē = 18.76 pixels. Without temporal regularization and using the demons-based
approaches yielded ē = 10.53 pixels and ē = 6.79 pixels, respectively. The Lucas-Kanade
algorithm (Barron et al. [22]) yielded ē = 11.20 pixels. In comparison, our approaches
resulted in much lower errors of ē = 2.20 pixels, ē = 1.71 pixels, and ē = 2.07 pixels for the
symmetric, weighting, and symmetric weighting approach, respectively. With temporal
regularization we obtained analogous results, while for all approaches the mean error
increased. In Table VI the results for the mean error averaged over all 6 structures in the 3-D
image sequences are shown. Without registration we have ē = 23.09. Without temporal
regularization and using the demons-based approaches yielded ē = 21.12 voxels (non-
symmetric) and ē = 18.08 voxels (symmetric), respectively. The Lucas-Kanade approach
(Barron et al. [22]) yielded ē = 18.38 voxels. The best results are obtained by our approaches
with averaged mean errors of ē = 5.80 voxels (symmetric), ē = 5.47 voxels (weighting), and
ē = 5.00 voxels (symmetric weighting). With temporal regularization we obtained analogous
results, while the errors increased. In summary, the registration error has been significantly
reduced by our approaches in comparison to the unregistered case and compared to the
demons-based approaches.

Moreover, we determined the motion types of the particles from the 2-D image sequences
(169 particles in total) by computing the MSD and determining α before and after
registration. Using the demons-based approaches yielded a change of the motion type of
35.5% (non-symmetric) and 41.4% (symmetric) of the particles, respectively. Our approach
corrected the motion type of 56.2%, 57.4%, and 55.6% of the particles for the symmetric,
the weighting, and the symmetric weighting approach, respectively. Thus, a significant
larger number of particles was corrected.

VI. Discussion

From the experimental results based on synthetic as well as real images it turned out that our
approaches consistently yield better results than the previous demons-based approaches. The
demons-based approaches can be interpreted as steepest descent optimization schemes,
which are known for relatively low convergence rate, especially in the neighborhood of the
solution. In comparison, our approaches, which are extensions of the Lucas-Kanade
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algorithm, can be interpreted as Gauss-Newton optimization schemes, which are superior in
accuracy and convergence compared to the steepest descent method (see, e.g., [22], [31]).
This is probably a main reason for the improved performance of our approaches. For the
synthetic images, the best result was obtained by our approaches with a classification
accuracy of approximately 84%. Without registration the classification accuracy is about
65%. Thus, the use of registration yields a significant improvement. One reason why the
classification accuracy after registration is not higher is probably due to the used
classification scheme for the motion types of single particles. For the original data without
deformation the classification accuracy is about 96%. Thus, besides further improvements of
the registration approaches, improvements of the classification scheme are expected to
further improve the classification accuracy. Based on our experimental results it also turned
out that temporal regularization did not improve the registration result. It seems that the used
spatial regularization already introduces enough smoothing for estimating the deformation
vector field.

VII. Summary

We have presented a novel intensity-based approach for temporal registration of 2-D and 3-
D multichannel fluorescence cell microscopy images. Our approach determines for each
image of an image sequence a nonrigid transformation to the image at the first time point
(reference coordinate system). The transformation then can be used to decouple the
movement and deformation of a cell from the movement of nuclear particles. This allows an
improved classification of the particle motion. Our approach is based on two extensions of
an optic flow algorithm. The first extension is based on a symmetric formulation of the
original minimization problem. The second extension is a weighting approach, which is
based on the nonlinear optimization method of Levenberg-Marquardt and uses as weighting
function the similarity of image gradients during iterative optimization. Based on
simulations we have shown that the deformation of a cell changes the observed motion type,
and that registration is required to obtain an improved classification of particle motion.
Using 2-D and 3-D synthetic as well as real image sequences, we have analyzed the
performance of our approach and we have performed a quantitative comparison with
previous approaches for temporal registration of cell nuclei images. It turned out, that our
approach yields a significant improvement compared to previous schemes. In future work,
we plan to analyze in more detail the classified motion of particles based on a very large
number of images and assess biological hypotheses about cellular processes.
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Fig. 1.

Example images from a multichannel microscopy image sequence: (a) cell nucleus at time
point 0, (b) cell nucleus at time point 80, (c) subcellular particles at time point 0, (d)
subcellular particles at time point 80.
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Fig. 2.

Averaged mean squared displacement (MSD) of synthetic particle motion: (a) original data,
(b) deforming cell (unregistered), (c) after registration using our nonrigid registration
approach.
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Fig. 3.

(a) Histogram of relative shape anisotropy for directed, diffusive, and obstructed particle
motion data, (b) histogram and cumulative histogram of the maximum distance of the
particle position to the position at the first time point for 1000 particles with diffusive
motion.
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Fig. 4.

(a) Original synthetic image at time point 0, (b) original image at time point 22, (c)
registered image at time point 22 using our nonrigid registration approach.
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Fig. 5.

(a) Original image at time point 0, (b) original image at time point 70, (c) difference of the
original images, (d) difference of the registered images, (e) registration transformation
visualized as a vector field.
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Fig. 6.

(a) Root mean squared (RMS) intensity error and (b) correlation coefficient (CC) averaged
over a real image sequence.
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Fig. 7.

Error of the position of a nucleus structure to the ground truth position without and with
registration of a 2-D image sequence using the different nonrigid registration approaches: (a)
without temporal regularization, (b) with temporal regularization using σT = 2.0.
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Fig. 8.

Error of the position of a nucleus structure to the ground truth position without and with
registration of a 3-D image sequence using the different nonrigid registration approaches: (a)
without temporal regularization, (b) with temporal regularization using σT = 2.0.
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TABLE I

Classification Accuracies for the Different Non-Rigid Registration Approaches With Temporal Regularization
With σT = 2.0 (Synthetic Images, Gaussian Noise With Standard Deviation σn = 1.0)

Accuracy [%] Directed Diffusive Obstructed Total

Original data 95.3 92.1 100.0 95.80

With deformation 87.0 62.6 45.2 64.93

Demons 92.0 82.3 72.6 82.30

Symmetric demons 92.1 82.3 72.5 82.20

Lucas-Kanade 92.4 81.6 72.2 82.07

Symmetric 92.5 83.8 77.7 84.67

Weighting 92.7 83.8 77.4 84.63

Symmetric weighting 92.4 84.1 77.3 84.60
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TABLE III

Results for the Motion Type Parameter α of the MSD Curves for the Different Non-Rigid Registration
Approaches (Synthetic Images)

α Directed Diffusive Obstructed

Original data 1.61 0.97 0.61

With deformation 1.69 1.44 1.46

Demons 1.58 1.06 0.89

Symmetric demons 1.58 1.06 0.90

Lucas-Kanade 1.59 1.06 0.88

Symmetric 1.55 1.00 0.80

Weighting 1.57 1.02 0.81

Symmetric weighting 1.54 0.98 0.79
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TABLE IV

Results for the Mean Error ēMSD of the MSD Curves for the Different Non-Rigid Registration Approaches

(Synthetic Images)

ēMSD [μm2] Directed Diffusive Obstructed

With deformation 2.09 0.89 0.97

Demons 1.93 0.34 0.18

Symmetric demons 1.95 0.34 0.20

Lucas-Kanade 1.96 0.39 0.17

Symmetric 1.75 0.32 0.12

Weighting 1.76 0.32 0.12

Symmetric weighting 1.66 0.27 0.12
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