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Abstract. In this paper we present a method for nonrigid registration
of myocardial perfusion MR images. Instead of registering pairs of im-
ages within the observed sequence, we register the observed sequence to
a pseudo ground truth, which is a motion/noise-free sequence estimated
from the observed one. As the corresponding images of the two sequences
have almost identical intensity distributions, our method overcomes the
challenges arising from rapidly varying image intensity and contrast. The
pseudo ground truth and the deformation fields for the observed sequence
are obtained simultaneously by minimizing an energy functional integrat-
ing both the registration error and the spatiotemporal constraints on the
pseudo ground truth in an expectation-maximization fashion. We have
tested the proposed nonrigid registration method on real cardiac MR
perfusion scans, both qualitatively and quantitatively. Experimental re-
sults show that the proposed method is able to successfully compensate
for the heart motion during contrast enhancement.

1 Introduction

Myocardial perfusion magnetic resonance imaging (MRI) has demonstrated great
potential for diagnosing cardiovascular diseases. In a myocardial perfusion MRI
study, the heart is scanned along short-axis slices repeatedly at the same phase
of the cardiac cycle through electrocardiographic gating, following a bolus injec-
tion of a contrast agent. Patient breathing during image acquisition often causes
large variations in the position of the left ventricle (LV) in different frames. At
the same time, the shape of the heart may change during contrast enhancement
due to variations in heart rate. Therefore, it is desirable to perform nonrigid reg-
istration on time-series perfusion images to account for local elastic deformation.

The challenges in perfusion image registration mainly arise from rapid inten-
sity changes of the heart ventricles during the wash-in/wash-out of the contrast
agent. Mutual information (MI) [1] and normalized gradient fields [2,3] have been
used to account for time-varying intensity. However, these methods are either
computationally expensive or pure gradient based.

To minimize the intensity difference between the reference and floating images,
some approaches achieve registration of an image sequence by registering every
two consecutive frames [4,2]. However, this serial registration scheme tends to
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Fig. 1. Initial alignment of a myocardial perfusion MR image sequence

accumulate registration errors. In [3], Wollny et al. proposed to select the refer-
ence frame according to the breathing periodicity, but this method still requires
registration of images from different perfusion phases. To avoid this problem,
changes in image intensity were modeled by a Cluster-aware Active Appearance
Model built from an annotated training set [5]. In another approach, Indepen-
dent Component Analysis was used to generate a time-varying reference image
for motion compensation [6]. However, in the above two approaches, it is not
easy to choose the appropriate number of clusters or independent components.

In this paper, we propose a novel registration method that overcomes the
challenges arising from time-varying intensity by using pseudo ground truth.
The pseudo ground truth is an estimate of the image sequence that would have
been acquired without being affected by motion or noise. We design an energy
function that integrates both nonrigid registration and pseudo ground truth
estimation, which can be minimized iteratively by solving a system of linear
equations and applying nonrigid registration to corresponding pairs of images
between the observed sequence and the pseudo ground truth sequence. In con-
trast to pairs of images within the observed sequence, these pairs of images have
similar intensities, and the registration problem is therefore greatly simplified.

The rest of the paper is organized as follows. Section 2 describes our nonrigid
registration algorithm. Section 3 presents the experimental results on real patient
cardiac perfusion MRI data sets, followed by conclusion in Section 4.

2 Method

We propose to solve the nonrigid registration problem in three steps: 1) auto-
matic selection of one reference frame and detection of a region of interest (ROI)
that contains the LV; 2) initial alignment by identifying the global translation
of the ROI in each frame; and 3) estimation of local elastic deformation. For the
first two steps, we adopt the methods described in [7] and [8], respectively. In
the following sections, we focus on the last step, i.e., nonrigid registration.

Fig. 1 displays the results after initial alignment for 5 selected frames from
a myocardial perfusion MRI study, in which the bounding box of the ROI has
been shifted to the best match location in each frame. By aligning the ROI from
different frames, we obtain a roughly registered ROI sequence that still contains
residual motion incurred by the local elastic deformation of the LV.
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2.1 Energy Function for Nonrigid Registration

Instead of registering pairs of images within the image sequence, we propose to
register each image to its counterpart in a pseudo ground truth image sequence
that is assumed to be free of motion. This avoids the problem caused by unknown
intensity variations between different frames, because registration is between
images with almost identical intensity distributions.

Given an observed image sequence g, we solve for a pseudo ground truth
sequence f and a nonrigid deformation function H that minimize the following
energy functional:

E(H(g), f) = Ed(H(g), f) + αEs(f) + βEt(f), (1)

subject to the constraint on H that its underlying displacement field is zero
for the reference frame, and is smooth for the rest frames. In (1), Ed is the
data fidelity term that measures the difference between the pseudo ground truth
sequence f and the nonrigidly deformed sequence H(g); Es is the spatial smooth-
ness constraint penalizing the intensity difference between neighboring pixels of
the same tissue type; and Et is the temporal smoothness constraint penalizing
the second order derivative of the intensity-time curve of each pixel; α and β are
positive scalars that control the weights of different terms.

To rewrite the energy functional in matrix-vector form, each image sequence
is represented as a column vector, e.g., if g(i, j, t) is the intensity at pixel (i, j)
in MRI frame t, then the column vector g is given by:

g = vec (g) = [ g(1, 1, 1) . . . g(Ni, 1, 1) . . . g(1, Nj, 1) . . .

g(Ni, Nj , 1) . . . g(1, 1, Nt) . . . g(Ni, Nj , Nt) ]T,

where Ni and Nj are respectively the number of rows and columns of each image,
and Nt is the number of frames. Similarly, we define f = vec(f) as the column
vector of the pseudo ground truth f .

Data Fidelity Term. Let g̃ = H(g) denote the image sequence obtained by
deforming g with H . The data fidelity term Ed is the sum-squared intensity
difference between g̃ and f :

Ed(H(g), f) = Ed(g̃, f) = (g̃ − f)T(g̃ − f), g̃ = vec(g̃) = vec(H(g)). (2)

Spatial Smoothness Constraint. Motivated by the observation that pixels
of the same tissue type have similar intensities in each frame of the sequence, we
impose a spatial smoothness constraint on f by penalizing the sum of weighted
intensity differences between each pixel and its nearest neighbors:

Es(f) = Es(f) =
K∑

k=1

(Ds
kf)

TWk(Ds
kf), (3)

where K is the number of neighboring pixels being considered, and in this work
we use K = 4; Ds

k is the first order spatial derivative operator along the direction
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between each pixel and its kth neighbor, and Wk is the corresponding weight
matrix derived from the intensity-time curves, such that intensity differences
between neighboring pixels of different tissue types are not penalized.

Let Df (N) and Db(N) respectively denote the first order forward and back-
ward derivative operators of size N ×N . The four derivative operators are then
respectively given by Ds

1 = INt ⊗ INj ⊗ Df (Ni), Ds
2 = INt ⊗ INj ⊗ Db(Ni),

Ds
3 = INt ⊗ Df (Nj) ⊗ INi , and Ds

4 = INt ⊗ Db(Nj) ⊗ INi , where ⊗ represents
the Kronecker operator and IN denotes the identify matrix of size N × N .

Another observation is that pixels of the same tissue type have intensity-time
curves that exhibit similar temporal dynamics. Therefore, we use the correlation
coefficients between intensity-time curves of neighboring pixels to set the weight
matrix Wk. Here the intensity-time curves are obtained from the deformed im-
age sequence g̃. Let ρijk denote the correlation coefficient between the intensity
vectors of pixel (i, j) and its kth neighbor, thus Wk = diag(vec(wk)) and

wk(i, j, t) =
{

ρijk, if ρijk > ρth

0, otherwise (4)

where ρth ∈ [0, 1) is a user-defined threshold to ensure that only intensity differ-
ences between neighboring pixels of the same tissue type are penalized.

Temporal Smoothness Constraint. As the contrast agent gradually perfuses
through the heart, generally the intensity increase/decrease step-size does not
vary much during the same perfusion phase. Therefore we impose a temporal
smoothness constraint on f by penalizing the second order time derivative of the
pseudo ground truth:

Et(f) = Et(f) = (Dt
2f)

T(Dt
2f). (5)

Let Dtt(N) denote the second order derivative operator of size N × N . The
second order time derivative operator is given by Dt

2 = Dtt(Nt) ⊗ INj ⊗ INi .

2.2 Energy Minimization

In our implementation, the energy functional defined in (1) is minimized by
iteratively solving for the optimal H and f , in an expectation-maximization
fashion. In each iteration, first we keep H fixed, and estimate the pseudo ground
truth f by minimizing

E = (g̃ − f)T(g̃ − f) + α

K∑

k=1

(Ds
kf)

TWk(Ds
kf) + β(Dt

2f)
T(Dt

2f). (6)

This minimization requires solving a system of linear equations:
[
I + α

K∑

k=1

(
Ds

k
TWkDs

k

)
+ βDt

2
TDt

2

]
f = g̃,

which can be solved by using Gaussian elimination and results in an estimate f̂ .
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Then we perform registration between the reference image (static image) in
g and its counterpart image (moving image) in f̂ and the resulting deformation
field is then applied to all the images in f̂ , which leads to a calibrated pseudo
ground truth image sequence f so as to ensure that the underlying deformation
field for the reference frame is zero. Next, we keep f fixed, and register each image
in g to its counterpart. The resultant deformation fields completely and uniquely
define the deformation function H , and hence g̃ can be updated accordingly.
Here we use the demons algorithm described in [9] to register corresponding
images. Nevertheless, this pseudo ground truth based approach can be used in
conjunction with many other registration methods.

The initial condition is g̃ = g, i.e., the original observed image sequence, which
implies the initial deformation function H is the identity. The weight matrices
Wk, k = 1, · · · , K are re-estimated using the updated g̃ at each iteration. The
iteration continues until E cannot be further reduced.

3 Experimental Results

We have tested the proposed method on 9 slices of perfusion images from 7
patients. The images were acquired on Siemens Sonata MR scanners following
bolus injection of Gd-DTPA contrast agent. For all the data sets in our study, we
consistently observed monotonic decrease of the energy function, which had little
change after 3 or 4 iterations. Based on visual validation from video, the heart
in the registered sequence was well stabilized. Next, we present the experimental
results for a representative data set in two aspects: contour propagation and
comparison of intensity-time curves.

3.1 Contour Propagation

Given the contour that delineates the boundary of the LV blood pool in the
reference frame, one can propagate this contour to other frames according to the
deformation field obtained using the method described in Section 2. Therefore,
one way to evaluate the performance of the nonrigid registration algorithm is to
verify whether the propagated contour well delineates the boundaries of the LV
blood pool in other frames.

The first two rows in Fig. 2 compares the propagated contours before and
after applying nonrigid registration for 4 consecutive frames from a real cardiac
MR perfusion scan. These frames are chosen because the LV in these images
undergoes noticeable shape changes. As shown in the top row, the contours
before nonrigid registration do not lie exactly at the boundaries between the LV
blood pool and the LV myocardium, especially at the regions that are indicated
by the bright arrows. In contrast, the contours in the second row, after nonrigid
registration using the proposed method, delineate well the boundaries between
the LV blood pool and the LV myocardium.

To further demonstrate the performance of the proposed method, we com-
pare our results with those obtained by serial registration using the demons
algorithm [9], in which every two consecutive frames are registered to propagate
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Fig. 2. Contour propagation for 4 consecutive frames from a real patient cardiac MR
perfusion scan: contours before applying nonrigid registration (top row); contours prop-
agated by our method (second row), serial demons registration (third row), and MI-
based registration (bottom row)

from the reference frame to the rest of the sequence. As shown in the third row in
Fig. 2, the propagated contours in all four frames are away from the true bound-
aries in the bottom right region due to the accumulation of registration errors.
We have also applied the free-form deformation (FFD) registration method [10]
using MI as the similarity measure, in which the reference frame is used to reg-
ister all other frames in the sequence. As shown in the bottom row in Fig. 2,
the propagated contours do not delineate the boundaries as accurately as those
obtained by our method (see the second row in Fig. 2).

For quantitative evaluation, we manually drew the contours that delineate
the LV blood pool in each frame for one slice, and measured the maximum
and mean distances between the propagated contours and the corresponding
manually-drawn contours. For the four frames shown in Fig. 2, the maximum
distances were 2.9, 2.5, 1.7, and 1.7 pixels with only translation, as compared
to 0.8, 0.9, 0.7 and 1.1 pixel(s) after applying our registration method. Over the
entire sequence, the average mean distance was decreased from 0.70 pixel to 0.58
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Fig. 3. Comparison of the average intensity-time curves of four neighboring pixels
from the myocardium for the original (raw) data set, after compensating for global
translation, and after performing nonrigid registration

pixel. In contrast, using the serial demons registration and the MI-based method,
the average mean distance was increased to 1.40 and 1.95 pixels, respectively,
due to accumulation of registration errors and large registration errors in frames
having distinct intensity distributions from that of the reference frame.

3.2 Comparison of Intensity-Time Curves

In cardiac perfusion MRI, changes in pixel intensity corresponding to the same
tissue across the image sequence are closely related to the concentration of the
contrast agent. As the concentration of the contrast agent changes smoothly
during the perfusion process, the intensity-time curves should be temporally
smooth at pixels that are located on the LV myocardium.

We use a 2×2 pixel window to select a region in the LV myocardium, and the
window is chosen to be close to the LV blood pool such that the motion of the LV
can be reflected in the intensity-time curve of the window. Fig. 3 plots the aver-
age intensity-time curves within the window, for the original/raw data set (green
triangle), after compensating for global translation (blue cross), and after perform-
ing nonrigid registration (magenta circle). For the original image sequence, the
intensity-time curve exhibits very big oscillations in the secondhalf of the sequence,
inwhichtheglobal translation is largedue topatientbreathing.After compensating
for the global translation, the intensity-time curve becomes temporally smoother
but still has some oscillations, e.g., in frames 37 − 40 and 52 − 58. This is because
global translation is not capable of describing shape changes in these frames. How-
ever, after compensating for the local deformationby performing nonrigid registra-
tion, the intensity-time curve becomes smoother at frames when the LV undergoes
noticeable local deformation, with only small local oscillations due to noise.

4 Conclusion

This paper presents a novel nonrigid registration algorithm for cardiac perfusion
MR images. Unlike most registration methods that estimate the deformation
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between pairs of images within the observed perfusion sequence, we introduce a
pseudo ground truth to facilitate image registration. The pseudo ground truth
is a motion-free sequence estimated from the observed perfusion data. Since the
intensity distributions of the corresponding images between the pseudo ground
truth sequence and the observed sequence are almost identical, this method
successfully overcomes the challenges arising from intensity variations during
perfusion. Our experimental results on real patient data have shown that our
method is able to effectively compensate for the elastic deformation of the heart,
and that it significantly outperforms the serial demons registration method and
an MI-based method when registering myocardial perfusion images.
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