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Nonrigid Registration Using Free-Form
Deformations: Application to Breast MR Images

D. Rueckert,* L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes

Abstract— In this paper we present a new approach for the
nonrigid registration of contrast-enhanced breast MRI. A hierar-
chical transformation model of the motion of the breast has been
developed. The global motion of the breast is modeled by an
affine transformation while the local breast motion is described
by a free-form deformation (FFD) based on B-splines. Normalized
mutual information is used as a voxel-based similarity measure
which is insensitive to intensity changes as a result of the contrast
enhancement. Registration is achieved by minimizing a cost
function, which represents a combination of the cost associated
with the smoothness of the transformation and the cost associated
with the image similarity. The algorithm has been applied to
the fully automated registration of three-dimensional (3-D) breast
MRI in volunteers and patients. In particular, we have compared
the results of the proposed nonrigid registration algorithm to
those obtained using rigid and affine registration techniques. The
results clearly indicate that the nonrigid registration algorithm is
much better able to recover the motion and deformation of the
breast than rigid or affine registration algorithms.

I. INTRODUCTION

C
ARCINOMA of the breast is the most common ma-

lignant disease in women in the western world. 9.5%

of women will develop the disease in the United Kingdom

[1]. The major goals of breast cancer diagnosis are early

detection of malignancy and its differentiation from other

breast disease. Currently, the detection and diagnosis of breast

cancer primarily relies on X-ray mammography. For further

differentiation of mammographic or clinical abnormalities,

ultrasonography, transcutaneous biopsy, and MRI are used.

Although X-ray mammography has the advantage of high

sensitivity, almost approaching 100%, in fatty breast tissue,

high resolution up to 50 m, and low cost, it has a number

of disadvantages, such as low sensitivity in dense glandular

breast tissue, low specificity, and poor signal-to-noise ratio.

Furthermore, the projective nature of the images and the

exposure to radiation limit its applicability, especially for
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young premenopausal women with a genetic predisposition

to develop breast cancer.

This has led to the investigation of alternative imaging

modalities, such as MRI, for the detection and diagnosis

of breast cancer [2]. Even though MRI mammography has

disadvantages, such as a low spatial resolution of around

1 mm and the need for contrast agents, it has a number of

advantages, including the tomographic, and therefore three-

dimensional (3-D) nature, of the images. This allows the

application of MRI mammography to breasts with dense tissue,

postoperative scarring, and silicon implants. Furthermore, the

lack of radiation makes it applicable to young premenopausal

women. Typically, the detection of breast cancer in MRI

requires the injection of a contrast agent such as Gadolinium

DTPA. It is known that the contrast agent uptake curves of

malignant disease differ from benign disease and this property

can be used to identify cancerous lesions [3]. To quantify the

rate of uptake, a 3-D MRI scan is acquired prior to the injection

of contrast media, followed by a dynamic sequence of 3-D

MRI scans. The rate of uptake can be estimated from the

difference between pre- and postcontrast images. Any motion

of the patient between scans, or even normal respiratory and

cardiac motion, complicates the estimation of the rate of uptake

of contrast agent by the breast tissue.

To facilitate the analysis of pre- and postcontrast enhanced

MRI, Zuo et al. [4] proposed a registration algorithm which

minimizes the ratio of variance between images. However,

their algorithm is based on the assumption that the breast is

only undergoing rigid motion. Kumar et al. [5] proposed a

nonrigid registration technique which uses an optical-flow type

algorithm, but is based on the assumption that the intensities

in the pre- and postcontrast enhanced images remain constant.

A similar approach has been suggested by Fischer et al. [6].

To overcome the problems caused by nonuniform intensity

change, Hayton et al. [7] developed a pharmacokinetic model,

which is combined with an optical-flow registration algorithm.

This algorithm has been applied to the registration of two-

dimensional (2-D) breast MRI, but relies on the assumption

that the change of intensities can be sufficiently explained by

the pharmacokinetic model, which is not always the case.

Any registration algorithm for the motion correction of

contrast-enhanced breast MRI must take into account that

the breast tissue deforms in a nonrigid fashion and that

the image intensity and contrast will change, due to the

uptake of the contrast agent. In recent years, many voxel-

based similarity measures have shown promising results for

multimodality image registration (for a detailed overview see
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[8]). In particular, voxel-based similarity measures based on

joint entropy [9], mutual information [10]–[13], and normal-

ized mutual information [14], [15] have been shown to align

images acquired with different imaging modalities, robustly.

However, most of these approaches are limited either to

rigid or affine transformations. In contrast, many nonrigid

registration algorithms based on elastic deformations, such as

animal [16] or demons [17], rely on the assumption that the

intensity of tissues between images remains constant. This is

also true for nonrigid registration algorithms based on fluid

deformations [18], [19]. A notable exception is the registration

algorithm proposed by Meyer et. al [20], which is based on a

thin-plate spline deformation and uses mutual information as

a voxel-based similarity measure. However, due to prohibitive

computational complexity of the thin-plate spline warps, the

registration is restricted to a very limited number of degrees

of freedom. This is not sufficient for most applications, which

involve significant nonrigid deformations.

In this paper, we develop an algorithm for the nonrigid

registration of 3-D contrast-enhanced breast MRI, which com-

bines the advantages of voxel-based similarity measures, such

as mutual information, with a nonrigid transformation model

of the breast. The next section introduces a hierarchical

transformation model which captures the global and local

motion of the breast. The global motion of the breast is

modeled by an affine transformation, while the local breast

motion is described by a free-form deformation (FFD) based

on B-splines. Since the intensity and contrast between the pre-

and postcontrast enhanced images will change, we will use

voxel-based similarity measures based on normalized mutual

information. Section III shows results of the application of

the algorithm to volunteer as well as clinical patient data.

In addition, the results obtained by the nonrigid registra-

tion algorithm are compared with those of rigid and affine

registration algorithms. These results demonstrate that rigid

and affine transformation models often are not sufficient to

model the motion of the breast adequately. Finally, Section IV

summarizes the results and discusses current and future work

in this area.

II. IMAGE REGISTRATION

The goal of image registration in contrast-enhanced breast

MRI is to relate any point in the postcontrast enhanced

sequence to the precontrast enhanced reference image, i.e.,

to find the optimal transformation

which maps any point in the dynamic image sequence

at time into its corresponding point in the

reference image , taken at time . In general,

the motion of the breast is nonrigid so that rigid or affine

transformations alone are not sufficient for the motion

correction of breast MRI. Therefore, we develop a combined

transformation which consists of a global transformation

and a local transformation

(1)

A. Global Motion Model

The global motion model describes the overall motion of

the breast. The simplest choice is a rigid transformation which

is parameterized by 6 degrees of freedom, describing the

rotations and translations of the breast. A more general class

of transformations are affine transformations, which have six

additional degrees of freedom, describing scaling and shearing.

In 3-D, an affine transformation can be written as

(2)

where the coefficients parameterize the 12 degrees of

freedom of the transformation. In a similar fashion, the global

motion model can be extended to higher order global transfor-

mations, such as trilinear or quadratic transformations [21].

B. Local Motion Model

The affine transformation captures only the global motion

of the breast. An additional transformation is required, which

models the local deformation of the breast. The nature of the

local deformation of the breast can vary significantly across

patients and with age. Therefore, it is difficult to describe the

local deformation via parameterized transformations. Instead,

we have chosen an FFD model, based on B-splines [22], [23],

which is a powerful tool for modeling 3-D deformable objects

and has been previously applied to the tracking and motion

analysis in cardiac images [24]. The basic idea of FFD’s is

to deform an object by manipulating an underlying mesh of

control points. The resulting deformation controls the shape

of the 3-D object and produces a smooth and continuous

transformation.

To define a spline-based FFD, we denote the domain of the

image volume as , ,

. Let denote a mesh of control

points with uniform spacing . Then, the FFD can be

written as the 3-D tensor product of the familiar 1-D cubic

B-splines

(3)

where , , ,

, ,

and where represents the th basis function of the B-spline

[22], [23]

In contrast to thin-plate splines [25] or elastic-body splines

[26], B-splines are locally controlled, which makes them

computationally efficient even for a large number of control

points. In particular, the basis functions of cubic B-splines
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have a limited support, i.e., changing control point

affects the transformation only in the local neighborhood of

that control point.

The control points act as parameters of the B-spline

FFD and the degree of nonrigid deformation which can be

modeled depends essentially on the resolution of the mesh of

control points . A large spacing of control points allows

modeling of global nonrigid deformations, while a small

spacing of control points allows modeling of highly local

nonrigid deformations. At the same time, the resolution of

the control point mesh defines the number of degrees of

freedom and, consequently, the computational complexity.

For example, a B-spline FFD defined by a 10 10 10

mesh of control points yields a transformation with 3000

degrees of freedom. The tradeoff between model flexibility and

computational complexity is mainly an empirical choice which

is determined by the accuracy required to model the deforma-

bility of the breast tissue versus the increase in computing

time. In order to achieve the best compromise between the

degree of nonrigid deformation required to model the motion

of the breast and the associated computational cost, we have

implemented a hierarchical multiresolution approach [23] in

which the resolution of the control mesh is increased, along

with the image resolution, in a coarse to fine fashion.

Let denote a hierarchy of control point meshes

at different resolutions. For simplicity, we will assume that

the spacing between control points decreases from to

control mesh , i.e., the resolution of the control mesh

is increasing. Each control mesh and the associated spline-

based FFD defines a local transformation at each level

of resolution and their sum defines the local transformation

(4)

In this case, the local transformation is represented as a

combination of B-spline FFD’s at increasing resolutions of

the control point mesh. To avoid the overhead of calculating

several B-spline FFD’s separately, we represent the local

transformation by a single B-spline FFD whose control point

mesh is progressively refined. In this case, the control point

mesh at level is refined by inserting new control points to

create the control point mesh at level . We will assume

that the control point spacing is halved in every step. In this

case, the position of control point coincides with

that of control point and the values of the new control

points can be calculated directly from those of , using

a B-spline subdivision algorithm [27].

In general, the local deformation of the breast tissues should

be characterized by a smooth transformation. To constrain

the spline-based FFD transformation to be smooth, one can

introduce a penalty term which regularizes the transformation.

The general form of such a penalty term has been described by

Wahba [28]. In 3-D, the penalty term takes the following form:

(5)

where denotes the volume of the image domain. This

quantity is the 3-D counterpart of the 2-D bending energy

of a thin-plate of metal and defines a cost function which is

associated with the smoothness of the transformation. Note that

the regularization term is zero for any affine transformations

and, therefore, penalizes only nonaffine transformations [28].

C. Normalized Mutual Information

To relate a postcontrast enhanced image to the precontrast

enhanced reference image, we must define a similarity criterion

which measures the degree of alignment between both images.

Given that the image intensity might change after the injection

of the contrast agent, one cannot use a direct comparison of

image intensities, i.e., sum of squared differences or corre-

lation, as a similarity measure. An alternative voxel-based

similarity measure is mutual information (MI), which has been

independently proposed by Collignon [10] and Viola [11],

and which has been shown to align images from different

modalities accurately and robustly [29]. Mutual information

is based on the concept of information theory and expresses

the amount of information that one image contains about

a second image

(6)

where denote the marginal entropies of

and denotes their joint entropy, which is calculated

from the joint histogram of and . If both images are

aligned, the mutual information is maximized. It has been

shown by Studholme [14] that mutual information itself is

not independent of the overlap between two images. To avoid

any dependency on the amount of image overlap, Studholme

suggested the use of normalized mutual information (NMI) as

a measure of image alignment

(7)

Similar forms of normalized mutual information have been

proposed by Maes et al. [15].

D. Optimization

To find the optimal transformation, we minimize a cost

function associated with the global transformation parameters

, as well as the local transformation parameters . The cost

function comprises two competing goals. The first term repre-

sents the cost associated with the image similarity in

(7), while the second term corresponds to the cost associated

with the smoothness of the transformation in (5)

(8)

Here, is the weighting parameter which defines the tradeoff

between the alignment of the two image volumes and the
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Fig. 1. The nonrigid registration algorithm.

smoothness of the transformation. For the purpose of this

paper, we have determined the value of experimentally and

found that a value of provides a good compromise

between the two competing terms of the cost function. We

have also observed that the intrinsic smoothness properties of

B-splines mean that the choice of is not critical for low

resolutions of the control point mesh. The regularization term

is more important for high resolutions of the control point

mesh. The reason for this is the fact that the ability of the FFD

to model localized deformations increases with decreasing

control point spacing. This raises the need for regularization,

especially for dense control point meshes.

For computational efficiency, the optimization proceeds in

several stages. During the first stage, the affine transformation

parameters are optimized, using an iterative multiresolution

search strategy [13]. Since the smoothness term of the cost

function in (5) is zero for any affine transformation, this step

is equivalent to maximizing the image similarity measure

defined in (7). During the subsequent stage, the nonrigid

transformation parameters are optimized as a function of the

cost function in (8). In each stage, we employ a simple iterative

gradient descent technique which steps in the direction of the

gradient vector with a certain step size . The algorithm stops

if a local optimum of the cost function has been found. In

practice, it is sufficient to assume a local optimum if

for some small positive value . The nonrigid registration

algorithm can be summarized in Fig. 1.

III. RESULTS

We have applied the registration algorithm to volunteer data

without contrast enhancement, as well as to clinical patient

data with contrast enhancement. To assess the quality of the

registration in volunteer data, we have calculated the mean and

variance of the squared sum of intensity differences (SSD)

SSD (9)

as well as the correlation coefficient (CC)

CC (10)

Here denote the average intensities of the images

before and after motion and the summation includes all voxels

within the overlap of both images. In these images, the SSD

and the CC provide an indirect measure of the registration

quality as the position of the breast tissue changes, but the

tissue composition, and hence image intensity, does not. Since

the motion of each breast is normally uncorrelated, we have

manually defined a rectangular region of interest (ROI) around

each breast and then registered both ROI’s independently.

A. Volunteer Data

To test the ability of the algorithm to correct the nonrigid

motion of the breast, two separate 3-D MR scans of eight

volunteers were acquired (aged between 28–47 yr). After

the first scan each volunteer was asked to move inside the

scanner. For the volunteer studies, a 3-D FLASH sequence

was used with TR ms, TE ms, flip angle

35 , FOV mm, and coronal slice orientation. The MR

images were acquired on a 1.5 Tesla Siemens Vision MR

system without contrast enhancement. The images have a size

of 256 256 64 voxels and spatial resolution of 1.33

1.33 2.5 mm. An example of these images before and

after motion is shown in Fig. 2(a) and (b). The corresponding

difference image is shown in Fig. 2(c). Ideally, we would

expect that the difference image only shows the underlying

noise of the image acquisition. However, the effect of the

misregistration due to the motion of the breast is clearly visible

in the difference image. We have compared three different

types of transformations: Pure rigid and affine transforma-

tions as well as the proposed nonrigid transformation model.

The registration results based on the different transformation

models and the corresponding difference images are shown

in Fig. 3(a)–(f). After rigid and affine registration there is
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(a) (b) (c)

Fig. 2. Example of misregistration caused by motion of a volunteer. (a) Before motion. (b) After motion. (c) After subtracting (b) from (a) without registration.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Example of different transformations on the registration for the volunteer study in Fig. 2: after (a) rigid, (b) affine, and (c) nonrigid registration.
The corresponding difference images are shown in (d)–(f).

still a considerable amount of misregistration visible in the

difference image. However, after nonrigid registration the

amount of misregistration visible in the difference image has

been reduced significantly.

Table I summarizes the results of the registration quality of

the volunteer datasets in terms of squared sum of intensity

differences (SSD) and correlation coefficient (CC) for the

different transformation models. The results clearly show that

the registrations which are based on rigid or affine transforma-

tions improve the correlation between the images before and

after motion. However, both transformation models perform

significantly worse than the proposed nonrigid transformation

model. The results also show that the nonrigid registration

performs better as the resolution of the control point mesh of

the spline-based FFD increases. While a control point spacing

of 20 mm yields already improved correlation compared to

affine transformations, a control point spacing of 15 or 10 mm

yields even higher correlation. The main reason for this is the

increased flexibility of the spline-based FFD to describe local

deformations of the breast as the number of control points

increases.

In addition we performed a second experiment in which

we wanted to assess the ability of the algorithm to correct

for different degrees of motion. The imaging protocol consists

of six consecutive 3-D MR scans of two volunteers, using

the same image acquisition parameters as described earlier.

Between each scan the volunteers were asked to move by a

different amount. The amount of motion the volunteers were

asked to simulate was: 1) no movement, 2) cough, 3) move

head, 4) move arm, and 5) lift out of coil and back. As before,

we compared rigid, affine, and nonrigid registration with no

registration. The results are summarized in Figs. 4 and 5.
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Fig. 4. Comparison of the registration error in terms of SSD for different degrees of volunteer motion. (a) No voluntary movement. (b) Cough.
(c) Move head. (d) Move arm. (e) Lift out of coil and back.

Fig. 5. Comparison of the registration error in terms of CC for different degrees of volunteer motion. (a) No voluntary movement. (b) Cough. (c) Move
head. (d) Move arm. (e) Lift out of coil and back.

Fig. 4 compares the registration error in terms of SSD for

the different degrees motion: In the case of no movement, all

registration techniques provide a very similar improvement,

compared to no registration. However, in all other cases

the nonrigid registration performs better than rigid or affine

registration. Furthermore, the nonrigid registration performs

better at a control point spacing of 10 mm than at 20 or

15 mm. A similar observation can be made by comparing the

correlation coefficient (CC) in Fig. 5 between the images with

and without registration.

B. Patient Data

We have also applied the algorithm to contrast-enhanced

MR images from a group of eight different patients. For the



718 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 8, AUGUST 1999

(a) (b) (c)

Fig. 6. Example of misregistration in a contrast-enhanced patient study. (a) Before injection of the contrast medium. (b) After injection of the contrast
medium. (c) After subtraction of (a) and (b) without registration.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Example of different transformations on the registration for the patient study in Fig. 6. (a) After rigid. (b) After affine. (c) After nonrigid registration.
The corresponding difference images are shown in (d)–(f).

patient studies, a sequence of six 3-D scans was used with

TR ms, TE ms, flip angle 35 , FOV mm,

and axial slice orientation. The MR images were acquired on a

1.5-T Siemens Vision MR system with Gd-DTPA (Magnevist,

Schering) contrast enhancement. The images have a size of

256 256 voxels and a spatial resolution of 1.37 1.37

4.2 mm. A typical dataset contains approximately 30–40

slices, depending on the size of the breast. The time interval

between the individual 3-D scans of the postcontrast sequence

is approximately one minute. However, since most of the

motion occurs immediately after the injection of the contrast

agent, we have used only the first image of the postcontrast

sequence.

To assess the registration quality in the patient datasets, we

asked two clinical radiologists to assess the images visually

and to rank them according to their quality (where the lowest

rank corresponds to the best quality). We compared no regis-

tration as well as the following three registration techniques:

1) rigid, 2) affine, and 3) the proposed nonrigid registration

technique. For the nonrigid registration technique we used

a control point spacing of 10 mm, since this has provided

the best results in the volunteer experiments. The radiologists

were presented with the pre-contrast images, the postcontrast

images, and the corresponding difference images in a blinded

fashion. The results of the ranking and significance tests for

all pairwise multiple comparison procedures are summarized

in Table II. In 94% of the cases, both radiologists ranked

the nonrigid registration technique as the best technique.

In the remaining 6% of the cases, there was very little

motion between the pre- and postcontrast images so that all
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(a) (b)

(a) (b)

Fig. 8. A MIP of the difference images of the patient study in Fig. 6. (a) Without registration. (b) With rigid. (c) With affine. (d) With nonrigid registration.
The tumor can be recognized after registration with all three techniques, but is most clearly visible in (d).

TABLE I
COMPARISON OF THE AVERAGE REGISTRATION ERROR OF THE VOLUNTEER

STUDIES IN TERMS OF SQUARED SUM OF INTENSITY DIFFERENCES
(SSD) AND CORRELATION COEFFICIENT (CC) FOR DIFFERENT

TYPES OF TRANSFORMATION. THE SPLINE-BASED FFD HAS BEEN
EVALUATED AT A CONTROL POINT SPACING OF 20, 15, AND 10 mm

registration techniques ranked equally well. The table also

shows that there is little difference in the ranking between

the rigid and affine registration techniques.

An example of a pre- and postcontrast enhanced image of a

patient data set without registration is shown in Fig. 6. The dif-

ference image shows a substantial amount of motion artifacts,

due to considerable patient movement after the injection of the

contrast agent. Fig. 7 shows the postcontrast enhanced image

TABLE II
VISUAL ASSESSMENT AND RANKING OF THE REGISTRATION
QUALITY IN THE PATIENT DATASETS BY TWO RADIOLOGISTS

(WHERE THE LOWEST RANK CORRESPONDS TO THE BEST QUALITY)

and the corresponding difference images after rigid, affine,

and nonrigid registration. The results demonstrate that all

three registrations techniques lead to a significantly improved

localization of the uptake of contrast agent, compared to the

difference image in Fig. 6(c). The tumor is clearly visible in

all three difference images, but is best defined in the difference

image with nonrigid registration. This can be verified by

inspecting a 3-D reconstruction of the difference image in

the form of a maximum intensity projection (MIP). Fig. 8(a)
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shows a MIP reconstruction, viewed from the positive

direction, without registration. The misregistration artifacts

make a interpretation of the reconstruction very difficult. In

the MIP reconstruction after rigid and affine registration in

Fig. 8(b) and (c), the tumor conspicuity is improved but there

is still a significant amount of misregistration artifacts visible,

due to motion of the chest wall and skin. Finally, the MIP

reconstruction after nonrigid registration in Fig. 8(d) shows

a much improved definition of the tumor and a significant

reduction of the misregistration artifacts. This confirms that

the proposed nonrigid registration algorithm can eliminate

misregistration artifacts while preserving enhancing regions.

IV. DISCUSSION

We have developed a fully automated algorithm for the

nonrigid registration of 3-D breast MRI based on normalized

mutual information. The algorithm uses a nonrigid transforma-

tion model to describe the motion of the breast in dynamic MR

images. The proposed combination of affine transformations

and spline-based FFD’s provides a high degree of flexibility

to model the motion of the breast. In contrast to physics-based

deformation models [30], the algorithm makes no assumptions

about the elastic properties of the breast tissue. Even though

physics-based deformation models might seem an attractive

alternative, for example to model additional constraints such

as incompressibility, they are usually difficult to evaluate and

verify. Moreover, the elastic properties of the breast tissues can

vary significantly across patients and with age, which renders

the application of such models difficult.

The experimental results have shown that the nonrigid regis-

tration of 3-D breast MRI can reduce motion artifacts between

images significantly. The results have also demonstrated that

in many cases rigid or affine registration techniques are not

sufficient to correct motion in 3-D breast MRI. In some of

the difference images a small amount of structure is visible,

even after nonrigid registration. This may be caused by partial

volume effects, which are more pronounced for acquisitions

with poor resolution in the slice direction. In future screening

studies a significant improvement of the image resolution is

envisaged which will reduce partial volume effects further.

The registration of these images currently takes between

15–30 min of CPU time on a Sun Ultra 10 workstation, which

makes routine application in a clinical environment possible.

We have also demonstrated the applicability of the algorithm

to the motion correction in contrast-enhanced MRI. However,

further work is needed to assess and evaluate the impact

of the algorithm for the detection and diagnosis of breast

cancer, which is the topic of a forthcoming paper [31]. Future

work will involve the application of the proposed registration

algorithm to data from the MRC-supported U.K. study of MRI

as a method of screening women at genetic risk of breast

cancer.
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