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Abstract

This paper describes methods for recovering time-varying shape and motion of non-rigid 3D

objects from uncalibrated 2D point tracks. For example, given a video recording of a talking person,

we would like to estimate the 3D shape of the face at each instant, and learn a model of facial

deformation. Time-varying shape is modeled as a rigid transformation combined with a non-rigid

deformation. Reconstruction is ill-posed if arbitrary deformations are allowed, and thus additional

assumptions about deformations are required. We first suggest restricting shapes to lie within a low-

dimensional subspace, and describe estimation algorithms. However, this restriction alone is insufficient

to constrain reconstruction. To address these problems, we propose a reconstruction method using a

Probabilistic Principal Components Analysis (PPCA) shape model, and an estimation algorithm that

simultaneously estimates 3D shape and motion for each instant, learns the PPCA model parameters,

and robustly fills-in missing data points. We then extend the model to model temporal dynamics in

object shape, allowing the algorithm to robustly handle severe cases of missing data.

Index Terms

Non-rigid Structure-From-Motion, Probabilistic Principal Components Analysis, Factor Analysis,

Linear Dynamical Systems, Expectation-Maximization

I. INTRODUCTION AND RELATED WORK

A central goal of computer vision is to reconstruct the shape and motion of objects from

images. Reconstruction of shape and motion from point tracks — known as structure-from-

motion — is very well-understood for rigid objects [17], [26], and multiple rigid objects [10],

[16]. However, many objects in the real world deform over time, including people, animals, and

elastic objects. Reconstructing the shape of such objects from imagery remains an open problem.

In this paper, we describe methods for Non-Rigid Structure-From-Motion (NRSFM): extracting

3D shape and motion of non-rigid objects from 2D point tracks. Estimating time-varying 3D

shape from monocular 2D point tracks is inherently underconstrained without prior assumptions.

However, the apparent ease with which humans interpret 3D motion from ambiguous point tracks

(e.g., [18], [30]) suggests that we might take advantage of prior assumptions about motion. A

key question is: what should these prior assumptions be? One possible approach is to explicitly

describe which shapes are most likely (e.g., by hard-coding a model [32]), but this can be

extremely difficult for all but the simplest cases. Another approach is to learn a model from
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training data. Various authors have described methods for learning linear subspace models with

Principal Components Analysis (PCA) for recognition, tracking, and reconstruction [4], [9], [24],

[31]. This approach works well if appropriate training data is available; however, this is often

not the case. In this paper, we do not assume that any training data is available.

In this work, we model 3D shapes as lying near a low-dimensional subspace, with a Gaussian

prior on each shape in the subspace. Additionally, we assume that the non-rigid object undergoes

a rigid transformation at each time instant (equivalently, a rigid camera motion), followed by an

weak-perspective camera projection. This model is a form of Probabilistic Principal Components

Analysis (PPCA). A key feature of this approach is that we do not require any prior 3D training

data. Instead, the PPCA model is used as a hierarchical Bayesian prior [13] for measurements.

The hierarchical prior makes it possible to simultaneously estimate 3D shape and motion for

all time instants, learn the deformation model, and robustly fill-in missing data points. During

estimation, we marginalize out deformation coefficients to avoid overfitting, and solve for MAP

estimates of the remaining parameters using Expectation-Maximization (EM). We additionally

extend the model to learn temporal dynamics in object shape, by replacing the PPCA model with

a Linear Dynamical System (LDS). The LDS model adds temporal smoothing, which improves

reconstruction in severe cases of noise and missing data.

Our original presentation of this work employed a simple linear subspace model instead of

PPCA [7]. Subsequent research has employed variations of this model for reconstruction from

video, including the work of Brand [5] and our own [27], [29]. A significant advantage of

the linear subspace model is that, as Xiao et al. [34] have shown, a closed-form solution for all

unknowns is possible (with some additional assumptions). Brand [6] describes a modified version

of this algorithm employing low-dimensional optimization. However, in this paper, we argue that

the PPCA model will obtain better reconstructions than simple subspace models, because PPCA

can represent and learn more accurate models, thus avoiding degeneracies that can occur with

simple subspace models. Moreover, the PPCA formulation can automatically estimate all model

parameters, thereby avoiding the difficulty of manually tuning weight parameters. Our methods

use the PPCA model as a hierarchical prior for motion, and suggests the use of more sophisticated

prior models in the future. Toward this end, we generalize the model to represent linear dynamics

in deformations. A disadvantage of this approach is that numerical optimization procedures are

required in order to perform estimation.
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In this paper, we describe the first comprehensive performance evaluation of several NRSFM

algorithms on synthetic datasets and real-world datasets obtained from motion capture. We show

that, as expected, simple subspace and factorization methods are extremely sensitive to noise and

missing data, and that our probabilistic method gives superior results in all real-world examples.

Our algorithm takes 2D point tracks as input; however, due to the difficulties in tracking non-

rigid objects, we anticipate that NRSFM will ultimately be used in concert with tracking and

feature detection in image sequences, such as [5], [11], [27], [29].

Our use of linear models is inspired by their success in face recognition [24], [31], tracking

[9] and computer graphics [20]. In these cases, the linear model is obtained from complete

training data, rather than from incomplete measurements. Bascle and Blake [2] learn a linear

basis of 2D shapes for non-rigid 2D tracking, and Blanz and Vetter [4] learn a PPCA model of

human heads for reconstructing 3D heads from images. These methods require the availability

of a training database of the same “type” as the target motion. In contrast, our system performs

learning simultaneously with reconstruction. The use of linear subspaces can also be motivated

by noting that many physical systems (such as linear materials) can be accurately represented

with linear subspaces (e.g., [1]).

II. SHAPE AND MOTION MODELS

We assume that a scene consists of J time-varying 3D points sj,t = [Xj,t, Yj,t, Zj,t]
T , where

j is an index over scene points, and t is an index over image frames. This time-varying shape

represents object deformation in a local coordinate frame. At each time t, these points undergo

a rigid motion and weak-perspective projection to 2D:

pj,t
︸︷︷︸

2×1

= ct
︸︷︷︸

1×1

Rt
︸︷︷︸

2×3

( sj,t
︸︷︷︸

3×1

+ dt
︸︷︷︸

3×1

) + nt
︸︷︷︸

2×1

(1)

where pj,t = [xj,t, yj,t]
T is the 2D projection of scene point j at time t, dt is a 3× 1 translation

vector, Rt is a 2 × 3 orthographic projection matrix, ct is the weak-perspective scaling factor,

and nt is a vector of zero-mean Gaussian noise with variance σ2 in each dimension. We can

also stack the points at each time-step into vectors:

pt
︸︷︷︸

2J×1

= Gt
︸︷︷︸

2J×3J

( st
︸︷︷︸

3J×1

+ Dt
︸︷︷︸

3J×1

) + Nt
︸︷︷︸

2J×1

(2)
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where Gt replicates the matrix ctRt across the diagonal, dt stacks J copies of dt, and Nt is a

zero-mean Gaussian noise vector. Note that rigid motion of the object and rigid motion of the

camera are interchangeable. For example, this model can represent an object deforming within a

local coordinate frame, undergoing a rigid motion, and viewed by a moving orthographic camera.

In the special case of rigid shape (with st = s1 for all t), this reduces to the classic rigid SFM

formulation studied by Tomasi and Kanade [26].

Our goal is to estimate the time-varying shape st and motion (ctRt,Dt) from observed

projections pt. Without any constraints on the 3D shape st, this problem is extremely ambiguous.

For example, given a shape st and motion (Rt,Dt) and an arbitrary orthonormal matrix At,

we can produce a new shape Atst and motion (ctRtA
−1
t ,AtDt) that together give identical 2D

projections as the original model, even if a different matrix At is applied in every frame [35].

Hence, we need to make use of additional prior knowledge about the nature of these shapes. One

approach is to learn a prior model from training data [2], [4]. However, this requires that we have

appropriate training data, which we do not assume is available. Alternatively, we can explicitly

design constraints on the estimation. For example, one may introduce a simple Gaussian prior

on shapes st ∼ N (̄s; I), or, equivalently, a penalty term of the form
∑

t ||st − s̄||2 [35]. However,

many surfaces do not deform in such a simple way, i.e., with all points uncorrelated and varying

equally. For example, when tracking a face, we should penalize deformations of the nose much

more than deformations of the lips.

In this paper, we employ a probabilistic deformation model with unknown parameters. In

Bayesian statistics, this is known as a hierarchical prior [13]: shapes are assumed to come from

a common probability distribution function (PDF), but the parameters of this distribution are not

known in advance. The prior over the shapes is defined by marginalizing over these unknown

parameters1. Intuitively, we are constraining the problem by simultaneously fitting the 3D shape

reconstructions to the data, fitting the shapes to a model, and fitting the model to the shapes.

This type of hierarchical prior is an extremely powerful tool for cases where the data come from

a common distribution that is not known in advance. Suprisingly, hierarchical priors have seen

very little use in computer vision.

In the next section, we introduce a simple prior model based on a linear subspace model of

1For convenience, we estimate values of some of these parameters instead of marginalizing.
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shape, and discuss why this model is unsatisfactory for NRSFM. We then describe a method

based on Probabilistic PCA that addresses these problems, followed by an extension that models

temporal dynamics in shapes. We then describe experimental evaluations on synthetic and real-

world data.

A. Linear subspace model

A common way to model non-rigid shapes is to represent them in a K-dimensional linear

subspace. In this model, each shape is described by a K-dimensional vector zt; the corresponding

3D shape is:

st
︸︷︷︸

3J×1

= s̄
︸︷︷︸

3J×1

+ V
︸︷︷︸

3J×K

zt
︸︷︷︸

K×1

+ mt
︸︷︷︸

3J×1

(3)

where mt represents a Gaussian noise vector. Each column of the matrix V is a basis vector, and

each entry of zt is a corresponding weight that determines the contributions of the basis vector to

the shape at each time t. We refer to the weights zt as latent coordinates. (Equivalently, the space

of possible shapes may be described by convex combinations of basis shapes, by selecting K+1

linearly independent points in the space.) The use of a linear model is inspired by the observation

that many high-dimensional data-sets can be efficiently represented by low-dimensional spaces;

this approach has been very successful in many applications (e.g., [4], [9], [31])

Maximum likelihood estimation entails minimizing the following least-squares objective with

respect to the unknowns:

LMLE = − ln p(p1:T |c1:T ,R1:T ,V1:K ,d1:T , z1:T ) (4)

=
1

2σ2

∑

j,t

||pj,t − ctRt(̄sj + Vjzt + dt)||
2 + JT ln(2πσ2) (5)

where Vj denotes the row of V corresponding to the j-th point.

a) Ambiguities and degeneracies.: Although the linear subspace model helps constrain the

reconstruction problem, many difficulties remain.

Suppose the linear subspace and motion (S̄,V,Gt,Dt) were known in advance, and that GtV

is not full-rank, at some time t. For any shape represented as zt, there is a linear subspace of

distinct 3D shapes zt + αw that project to the same 2D shape, where w lies in the nullspace

of GtV and α is an arbitrary constant. (Here we assume that V is full-rank; if not, redundant

columns should be removed). Since we do not know the shape basis in advance, the optimal
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solution may select GtV to be low-rank, and use the above ambiguity to obtain a better fit

to the data, at the expense of very unreliable depth estimates. In the extreme case of K = 2J ,

reconstruction becomes totally unconstrained, since V represents the full shape space rather than

a subspace. We can avoid the problem by reducing K, but we may need to make K artificially

small. In general, we cannot assume that small values of K are sufficient to represent the variation

of real-world shapes. These problems will become more significant for larger K. Ambiguities

will be come increasingly significant when point tracks are missing, an unavoidable occurance

with real tracking.

In general, we expect the linear subspace model to be sensitive to the choice of K. If K is

too large for the object being tracked, then the extra degrees-of-freedom will be unconstrained

by the data, and end up fitting noise. However, if K is too small, then important degrees of

variation will be lost. In practice, there may not be a clear “best” value of K that will capture

all variation while discarding all noise. Empirically, the eigenvalue spectrum obtained from PCA

on real-world 3D shapes tends to fall off smoothly rather than being bounded at a small value

of K. An example from facial motion capture data is shown in Figure 1.

An additional ambiguity occurs in the representation of the subspace; specifically, we can

apply an arbitrary affine transformation A to the subspace (replacing V with VA−1 and z with

Az). However, this does not change reconstruction error or the underlying subspace, so we do

not consider it to be a problem.

Although the subspace model can be made to work in simple situations, particularly with

limited noise and small values of K, the above ambiguities indicate that it will scale poorly to

larger problems, and become increasingly sensitive to manual parameter tuning. As the number of

basis shapes grows, the problem is more likely to become unconstrained, eventually approaching

the totally unconstrained case described in the previous section, where each frame may have an

entirely distinct 3D shape.

Most NRSFM methods make an additional assumption that the recovered shape and motion

can be obtained by transforming a low-rank factorization of the original point tracks [5], [6],

[7], [34]. The main appeal of these approaches is that they decompose the problem into much

simpler ones. However, this approach is only justified when measurement noise is negligible;
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with non-negligible noise, these methods give no guarantee of statistical optimality,2 and may

in practice be highly biased. We do not expect noise in real NRSFM problems to be negligible,

and the importance of noise modeling is borne out by our experiments.

B. Probabilistic PCA model

We propose using Probabilistic PCA (PPCA) [22], [25] to describe the distribution over shapes.

In PPCA, we place a Gaussian prior distribution on the weights zt, and define the rest of the

model as before:

zt ∼ N (0; I) (6)

st = s̄ + Vzt + mt (7)

pt = Gt(st + Dt) + nt (8)

where mt and nt are zero-mean Gaussian vectors. with variance σ2
m and σ2. Moreover, when

estimating unknowns in PPCA, the latent coordinates zt are marginalized out: we never explicitly

solve for zt. Because any linear transformation of a Gaussian variable is Gaussian, the distribution

over pt is Gaussian3. Combining Equations 6-8 gives:

pt ∼ N (Gt(̄s + Dt);Gt

(

VVT + σ2
mI

)

GT
t + σ2I) (10)

In this model, solving NRSFM — estimating motion while learning the deformation basis —

is a special form of estimating a Gaussian distribution. In particular, we simply maximize the

2NRSFM can be posed as a constrained least-squares problem: factor the data into the product of two matrices that minimize

reprojection error while satisfying certain constraints. Singular Value Decomposition (SVD) provides an optimal least-squares

factorization, but does not guarantee that any constraints are satisfied. One approach has been to find a subspace transformation

to the SVD solution to attempt to satisfy the constraints, but there is no guarantee that such a transformation exists. Hence,

such methods cannot guarantee both that the constraints are satisfied and that the solution is optimal. For example, Tomasi and

Kanade’s algorithm [26] guarantees optimal affine reconstructions but not optimal rigid reconstructions. In practice, it often finds

acceptable solutions. However, in the NRSFM case, the constraints are much more complex.

3This may also be derived by directly marginalizing out zt:

p(pt) =

∫

p(pt, zt)dzt =

∫

p(pt|zt)p(zt)dzt (9)

where p(pt|zt) is Gaussian (as given by Equations 7 and 8), and p(zt) = N (zt|0; I), assuming that we condition on fixed

values of s̄, V, Gt, Dt, σ2, and σ2

m. Simplifying the above expression gives Equation 10.
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Fig. 1. Left: 2D coordinates obtained by applying conventional PCA to aligned 3D face shapes. The best-fit Gaussian distribution

is illustrated by a gray ellipse. Right: Eigenvalue spectrum of the face data. (Details of the original data are given in Section

IV-B)

joint likelihood of the measurements p1:T , or, equivalently, the negative logarithm of the joint

likelihood:

L =
1

2

∑

t

(pt − (Gt(̄s + Dt))
T

(

Gt

(

VVT + σ2
mI

)

GT
t + σ2I

)

(pt − (Gt(̄s + Dt))
T

+
1

2

∑

t

ln
∣
∣
∣Gt

(

VVT + σ2
mI

)

GT
t + σ2I

∣
∣
∣ + JT ln(2π) (11)

We will describe an estimation algorithm in Section III-B.

Intuitively, the NRSFM problem can be stated as solving for shape and motion such that the

reconstructed 3D shapes are as “similar” to each other as possible. In this model, shapes arise

from a Gaussian distribution with mean s̄ and covariance VVT + σ2
mI. Maximizing the likeli-

hood of the data simultaneously optimizes the 3D shapes according to both the measurements

and the Gaussian prior over shapes, while adjusting the Gaussian prior to fit the individual

shapes. An alternative approach would be to explicitly learn a 3J × 3J covariance matrix.

However, this involves many more parameters than necessary, whereas PPCA provides a reduced-

dimensionality representation of a Gaussian. This model provides several advantages over the

linear subspace model. First, the Gaussian prior on zt represents an explicit assumption that

the latent coordinates zt for each pose will be similar to each other; i.e., the zt coordinates are

not unconstrained. Empirically, we find this assumption to be justified. For example, Figure 1

shows 2D coordinates for 3D shapes taken from a facial motion capture sequence, computed

by conventional PCA. These coordinates do not vary arbitrarily, but remain confined to a small

region of space. In general, we find this observation consistent when applying PCA to many

different types of datasets. This Gaussian prior resolves the important ambiguities described
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in the previous section. Depth and scaling ambiguities are resolved by preferring shapes with

smaller magnitudes of zt. The model is robust to large or mis-specified values of K, since

very small variances will be learned for extraneous dimensions. A rotational ambiguity remains:

replacing V and z with VAT and Az (for any orthonormal matrix A) does not change the

likelihood. However, this ambiguity has no impact on the resulting distribution over 3D shapes

and can be ignored.

Second, this model accounts for uncertainty in the latent coordinates zt. These coordinates

are often underconstrained in some axes, and cannot necessarily be reliably estimated, especially

during the early stages of optimization. Moreover, a concern with large K is the large number of

unknowns in the problem, including K elements of zt for each time t. Marginalizing over these

coordinates removes these variables from estimation. Removing these unknowns also makes it

possible to learn all model parameters — including the prior and noise terms — simultaneously

without overfitting. This means that regularization terms need not be set manually for each

problem, and can thus be much more sophisticated and have many more parameters than

otherwise. In practice, we find that this leads to significantly improved reconstructions over

user-specified shape PDFs. It might seem that, since the parameters of the PDF are not known

a priori, the algorithm could estimate wildly varying shapes, and then learn a correspondingly

spread-out PDF. However, such a spread-out PDF would assign very low likelihood to the solution

and thus be suboptimal; this is a typical case of Bayesian inference automatically employing

“Occam’s Razor” [19]: data-fitting is automatically balanced against the model simplicity. One

way to see this is to consider the terms of the log probability in Equation 11: the first term

is a data-fitting term, and the second term is a regularization term that penalizes spread-out

Gaussians. Hence, the optimal solution trades-off between (a) fitting the data, (b) regularizing

by penalizing distance between shapes and the shape PDF, and (c) minimizing the variance of

the shape PDF as much as possible. The algorithm simultaneously regularizes and learns the

regularization.

b) Regularized linear subspace model: An alternative approach to resolving ambiguities is

to introduce regularization terms that penalize large deformations. For example, if we solve

for latent coordinates zt in the above model rather than marginalizing them out, then the
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corresponding objective function becomes:

LMAP = − ln p(p1:T |R1:T ,V1:K ,d1:T , z1:T ) (12)

=
1

2σ2

∑

j,t

||pj,t − ctRt(̄sj + Vjzt + dt)||
2

+
1

2σ2
z

∑

t

||zt||
2 +

JT

2
ln(2πσ2) +

TK

2
ln(2πσ2

z) (13)

which is the same objective function as in Equation 5 with the addition of a quadratic regularizer

on zt. However, this objective function is degenerate. To see this, consider an estimate of the

basis V̂ and latent coordinates ẑ1:T . If we scale all of these terms as

V̂ ← 2V̂, ẑt ←
1

2
ẑt (14)

then the objective function must decrease. Consequently, this objective function is optimized by

infinitesimal latent coordinates, but without any improvement to the reconstructed 3D shapes.

Previous work in this area has used various combinations of regularization terms [5], [29].

Designing appropriate regularization terms and choosing their weights is generally not easy; we

could place a prior on the basis (e.g., penalize the Frobenius norm of V), but it is not clear

how to balance the weights of the different regularization terms; for example, the scale of the

V weight will surely depend on the scale of the specific problem being addressed. One could

require the basis to be orthonormal, but this leads to an isotropic Gaussian distribution, unless

separate variances were specified for every latent dimension. One could also attempt to learn

the weights together with the model, but this would almost certainly be underconstrained with

so many more unknown parameters than measurements. In constrast, our PPCA-based approach

avoids these difficulties without requiring any additional assumptions or regularization.

C. Linear Dynamics model

In many cases, point tracking data comes from sequential frames of a video sequence. In this

case, there is additional temporal structure in the data that can be modeled in the distribution

over shapes. For example, 3D human facial motion shown in 2D PCA coordinates in Figure 1

shows distinct temporal structure: the coordinates move smoothly through the space, rather than

appearing as random, IID samples from a Gaussian.
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Here we model temporal structure with a linear dynamical model of shape:

z1 ∼ N (0; I) (15)

zt = Φzt−1 + vt, vt ∼ N (0;Q) (16)

In this model, the latent coordinates zt at each time step are produced by a linear function of

the previous time step, based on the K × K transition matrix Φ, plus additive Gaussian noise

with covariance Q. Shapes and observations are generated as before:

st = s̄ + Vzt + mt (17)

pt = Gt(st + Dt) + nt (18)

As before, we solve for all unknowns except for the latent coordinates z1:T , which are marginal-

ized out. The algorithm is described in Section III-C. This algorithm learns 3D shape with

temporal smoothing, while simultaneously learning the smoothness terms.

III. ALGORITHMS

A. Least-squares NRSFM with a linear subspace model

As a baseline algorithm, we introduce a technique that optimizes the least-squares objective

function (Equation 5) with block coordinate descent. This method, which we refer to as BCD-

LS, was originally presented in [29]. No prior assumption is made about the distribution of the

latent coordinates, and so the weak-perspective scaling factor ct can be folded into the latent

coordinates, by representing the shape basis as:

Ṽ ≡ [̄s,V], z̃c
t ≡ ct[1, z

T
t ]T (19)

We then optimize directly for these unknowns. Additionally, since the depth component of rigid

translation is unconstrained, we estimate 2D translations Tt ≡ GtDt = [ctRtdt, ..., ctRtdt] ≡

[tt, ..., tt]. The variance terms are irrelevant in this formulation and can be dropped from Equation

5, yielding the following two equivalent forms:

LMLE =
∑

j,t

||pj,t − RtṼj z̃
c
t − tt||

2 (20)

=
∑

t

||pt − HtṼz̃c
t − Tt||

2 (21)

where Ht is a 2J × 3J matrix containing J copies of Rt across the diagonal.
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This objective is optimized by coordinate descent iterations applied to subsets of the unknowns.

Each of these steps finds the global optimum of the objective function with respect to a specific

block of the parameters, while holding the others fixed. Except for the rotation parameters,

each update can be solved in closed-form. For example, the update to tt is derived by solving

∂LMLE/∂tt = −2
∑

j(pj,t − RtṼj z̃
c
t − tt) = 0. The updates are as follows:

vec(Ṽj) ← M+(pj,1:T − Tt) (22)

z̃c
t ← (HtṼ)+(pt − Tt) (23)

tt ←
1

J

∑

j

(pj,t − RtṼj z̃
c
t) (24)

where pj,1:T = [pT
j,1, ...,p

T
j,T ]T , M = [z̃c

1⊗RT
1 , ..., z̃c

T ⊗RT
T ]T , ⊗ denotes Kronecker product, and

the vec operator stacks the entries of a matrix into a vector4. The shape basis update is derived

by rewriting the objective as:

LMLE ∝
∑

j

||pj,1:T − Mvec(Ṽj) − Tt||
2 (25)

and by solving ∂LMLE/∂vec(Ṽj) = 0.

The camera matrix Rt is subject to a nonlinear orthonormality constraint, and cannot be

updated in closed-form. Instead, we perform a single Gauss-Newton step. First, we parameterize

the current estimate of the motion with a 3 × 3 rotation matrix Qt, so that Rt = ΠQt, where

Π =

⎡

⎢
⎣

1 0 0

0 1 0

⎤

⎥
⎦. We define the updated rotation relative to the previous estimate as: Qnew

t =

∆Qt
Qt. The incremental rotation ∆Qt

is parameterized in exponential map coordinates by a

three-dimensional vector ξt = [ωx
t , ωy

t , ω
z
t ]

T :

∆Qt
= eξ̂t = I + ξ̂t + ξ̂2

t /2! + ... (26)

where ξ̂t denotes the skew-symmetric matrix:

ξ̂t =

⎡

⎢
⎢
⎢
⎢
⎣

0 −ωz
t ωy

t

ωz
t 0 −ωx

t

−ωy
t ωx

t 0

⎤

⎥
⎥
⎥
⎥
⎦

(27)

4For example, vec

([

a0 a2

a1 a3

])

= [a0, a1, a2, a3]
T
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Dropping nonlinear terms gives the updated value as Qnew

t = (I+ ξ̂t)Qt. Substituting Qnew

t into

Equation 20 gives:

LMLE ∝
∑

j,t

||pj,t − Π(I + ξ̂t)QtṼj z̃
c
t − tt||

2 (28)

∝
∑

j,t

||Πξ̂taj,t − bj,t||
2 (29)

where aj,t = QtṼj z̃
c
t and bj,t = (pj,t−RtṼj z̃

c
t−tt). Let aj,t = [ax

j,t, a
y
j,t, a

z
j,t]

T . Note that we can

write the matrix product Πξ̂taj,t directly in terms of the unknown twist vector ξt = [ωx
t , ωy

t , ω
z
t ]

T :

Πξ̂taj,t =

⎡

⎢
⎣

0 −ωz
t ωy

t

ωz
t 0 −ωx

t

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

ax
j,t

ay
j,t

az
j,t

⎤

⎥
⎥
⎥
⎥
⎦

(30)

=

⎡

⎢
⎣

0 az
j,t ay

j,t

−az
j,t 0 ax

j,t

⎤

⎥
⎦ ξt. (31)

We use this identity to solve for the twist vector ξt minimizing Equation 29:

ξt =

⎛

⎝
∑

j

CT
j,tCj,t

⎞

⎠

−1 ⎛

⎝
∑

j

CT
j,tbj,t

⎞

⎠ (32)

where

Cj,t =

⎡

⎢
⎣

0 az
j,t ay

j,t

−az
j,t 0 ax

j,t

⎤

⎥
⎦ (33)

We finally compute the updated rotation as Qnew

t ← eξ̂tQt, which is guaranteed to satisfy the

orthonormality constraint.

Note that, since each of the parameter updates involves the solution of an overconstrained

linear system, BCD-LS can be used even when some of the point tracks are missing. In such

event, the optimization is carried out over the available data.

The rigid motion is initialized by the Tomasi-Kanade [26] algorithm; the latent coordinates

are initialized randomly.

B. NRSFM with PPCA

We now describe an EM algorithm to estimate the PPCA model from point tracks. The EM

algorithm is a standard optimization algorithm for latent variable problems [12]; our derivation
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follows closely those for PPCA [22], [25] and factor analysis [14]. Given tracking data p1:T , we

seek to estimate the unknowns G1:T , T1:T , s̄, V, and σ2 (as before, we estimate 2D translations

T, due to the depth ambiguity). To simplify the model, we remove one source of noise by

assuming σ2
m = 0. The data likelihood is given by:

p(p1:T |G1:T ,T1:T , s̄,V, σ2) =
∏

t

p(pt|Gt,Tt, s̄,V, σ2) (34)

where the per-frame distribution is Gaussian (Equation 8). Additionally, if there are any missing

point tracks, these will also be estimated. The EM algorithm alternates between two steps: in

the E-step, a distribution over the latent coordinates zt is computed; in the M-step, the other

variables are updated5.

c) E-step.: In the E-step, we compute the posterior distribution over the latent coordinates

zt given the current parameter estimates, for each time t. Defining q(zt) to be this distribution,

we have:

q(zt) = p(zt|pt,Gt,Tt, s̄,V, σ2) (35)

= N (zt|β(pt − Gts̄ − Tt)); I − βGtV) (36)

β = VTGT
t (GtVVTGT

t + σ2I)−1 (37)

The computation of β may be accelerated by the Matrix Inversion Lemma:

β = σ−2I − GtV(I + σ−2VTGT
t GtV)−1VTGT

t σ−4 (38)

Given this distribution, we also define the following expectations:

µt ≡ E[zt] = β(pt − Gts̄ − Tt) (39)

φt ≡ E[ztz
T
t ] = I − βGtV + µtµ

T
t (40)

where the expectation is taken with respect to q(zt).

5Technically, our algorithm is an instance of the Generalized EM algorithm, since our M-step does not compute a global

optimum of the expected log-likelihood.
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d) M-step.: In the M-step, we update the motion parameters by minimizing the expected

negative log-likelihood:

Q ≡ E[− log p(p1:T |G1:T ,T1:T , s̄,V, σ2)] (41)

=
1

2σ2

∑

t

E[||pt − (Gt(̄s + Vzt) − Tt)||
2] + JT log(2πσ2) (42)

This function cannot be minimized in closed-form, but closed-form updates can be computed

for each of the individual parameters (except than the camera parameters, discussed below). To

make the updates more compact, we define the following additional variables:

Ṽ ≡ [̄s,V], z̃t ≡ [1, zT
t ]T (43)

µ̃t ≡ [1, µT
t ]T , φ̃t ≡

⎡

⎢
⎣

1 µT
t

µt φt

⎤

⎥
⎦ (44)

The unknowns are then updated as follows; derivations are given in the Appendix.

vec(Ṽ) ←

(
∑

t

(φ̃T
t ⊗ (GT

t Gt))

)
−1

vec

(
∑

t

GT
t (pt − Tt)µ̃

T
t

)

(45)

σ2 ←
1

2JT

∑

t

(

||pt − Tt||
2 − 2(pt − Tt)

TGtṼµ̃t+ (46)

tr
(

ṼTGT
t GtṼφ̃t

))

(47)

ct ←
∑

j

µ̃T
t ṼT

j RT
t (pj,t − tt)/

∑

j

tr
(

ṼT
j RT

t RT
t Ṽjφ̃t

)

(48)

tt ←
1

J

∑

j

(

pj,t − ctRtṼjµ̃t

)

(49)

The system of equations for the shape basis update is large and sparse, so we compute the

shape update using conjugate gradient.

The camera matrix Rt is subject to a nonlinear orthonormality constraint, and cannot be

updated in closed-form. Instead, we perform a single Gauss-Newton step. First, we parameterize

the current estimate of the motion with a 3 × 3 rotation matrix Qt, so that Rt = ΠQt, where

Π =

⎡

⎢
⎣

1 0 0

0 1 0

⎤

⎥
⎦. The update is then:

vec(ξ) ← A+B (50)

Rt ← ΠeξQt (51)

where A and B are given in Equations 70 and 71.
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If the input data is incomplete, the missing tracks are filled in during the M-step of the

algorithm. Let point pj′,t′ be one of the missing entries in the 2D tracks. Optimizing the expected

log-likelihood with respect to the unobserved point yields the update rule:

pj′,t′ ← ct′Rt′Ṽj′µ̃t′ + tt′ (52)

Once the model is learned, the maximum likelihood 3D shape for frame t is given by s̄+Vµt; in

camera coordinates, it is ctQt(̄s+Vµt+Dt). (The depth component of Dt cannot be determined,

and thus is set to zero).

e) Initialization: The rigid motion is initialized by the Tomasi-Kanade [26] algorithm. The

first component of the shape basis V is initialized by fitting the residual, using separate shapes

St at each time-step (holding the rigid motion fixed), and then applying PCA to these shapes.

This process is iterated (i.e., the second component is fit based on the remaining residual, etc.)

to produce an initial estimate of the entire basis. We found the algorithm to be likely to converge

to a good minimum when σ2 is forced to remain large in the initial steps of the optimization. For

this purpose we scale σ2 with an annealing parameter that decreases linearly with the iteration

count and finishes at 1.

C. NRSFM with Linear Dynamics

The linear dynamical model introduced in Section II-C for NRSFM is a special form of

a general Linear Dynamical System (LDS). Shumway and Stoffer [15], [23] describe an EM

algorithm for this case, which can be directly adapted to our problem. The sufficient statistics

µt, φt, and E[ztz
T
t−1] can be computed with Shumway and Stoffer’s E-step algorithm, which

performs a linear-time Forward-Backward algorithm; the forward step is equivalent to Kalman

filtering. In the M-step, we perform the same shape update steps as above; moreover, we update

the Φ and Q matrices using Shumway and Stoffer’s update equations.

IV. EXPERIMENTS

We now describe quantitative experiments comparing NRSFM algorithms on both synthetic

and real datasets. Here we compare the following models and algorithms:6

6We are grateful to Brand and to Xiao et al. for providing the source code for their algorithms.
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• BCD-LS: The least-squares algorithm described in Section III-A.

• EM-PPCA: The PPCA model, using the EM algorithm described in Section III-B.

• EM-LDS: The LDS model, using the EM algorithm described in Section III-C.

• XCK: The closed-form method of Xiao et al. [34].

• B05: Brand’s “direct” method [6].

We do not consider here the original algorithm of Bregler et al. [7], since we and others have

found it to give inferior results to all subsequent methods; we also omit Brand’s factorization

method [5] from consideration.

To evaluate results, we compare the sum of squared differences between estimated 3D shapes

to ground truth depth: ||ŝC
1:T − sC

1:T ||F , measured in the camera coordinate system (i.e., applying

the camera rotation, translation, and scale). In order to avoid an absolute depth ambiguity, we

subtract out the centroid of each shape before comparing. In order to account for a reflection

ambiguity, we repeat the test with the sign of depth inverted (−Z instead of Z) for each instant,

and take the smaller error. In the experiments involving noise added to the input data, we

perturbed the 2D tracks with additive Gaussian noise. The noise level is plotted as the ratio of

the noise variance to the norm of the 2D tracks, i.e., JTσ2/||p1:T ||F . Errors are averaged over

20 runs.

A. Synthetic data

We performed experiments using two synthetic datasets. The first is a dataset created by Xiao

et al. [34], containing six rigid points (arranged in the shape of a cube) and three linearly-

deforming points, without noise. As reported previously, the XCK and B05 algorithms yield the

exact shape with zero error in the absence of measurement noise. In contrast, the other methods

(EM-PPCA, EM-LDS) have some error; this is to be expected, since the use of a prior model or

regularizer can add bias into estimation. Additionally, we found that EM-PPCA and EM-LDS

did not obtain good results in this case unless initialized by XCK. For this particular dataset, the

methods of XCK and B05 are clearly superior; this is the only dataset on which Xiao et al. [34]

perform quantitative comparisons between methods. However, this dataset is rather artificial, due

to the absence of noise and the simplicity of the data. If we introduce measurement noise (Figure

2), EM-PPCA and EM-LDS give the best results for small amounts of noise, when initialized

with XCK (this is the only example in this paper in which we used XCK for initialization).
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Fig. 2. Reconstruction error as a function of measurement noise for the cube-and-points data of [34].

Our second synthetic dataset is a 3D animation of a shark, consisting of 3D points. The

object undergoes rigid motion and deformation corresponding to K = 2 basis shapes; no noise

is added. Reconstruction results are shown in Figure 3, and errors plotted in Figure 4, the

iterative methods (BCD-LS, EM-PPCA, and EM-LDS) perform significantly better than B05 and

XCK. The ground-truth shape basis is degenerate (i.e., individual elements of the deformation

are not full rank when viewed as J × 3 matrices), a case that Xiao et al. [34] point to as being

problematic (we have not tested their solution to this problem). Performance for BCD-LS gets

significantly worse as superfluous degrees of freedom are added (K > 2), whereas EM-PPCA

and EM-LDS are relatively robust to choice of K; this suggests that BCD-LS is more sensitive to

overfitting with large K. EM-LDS performs slightly better than EM-PPCA, most likely because

the very simple deformations of the shark are well-modeled by linear dynamics.

In order to test the ability of EM-PPCA and EM-LDS to estimate noise variance (σ2), we

compare the actual with estimated variances in Figure 5. The estimation is generally very

accurate, and error variance across the multiple runs is very small (generally less than 0.04). This

illustrates an advantage of these methods: they can automatically learn many of the parameters

that would otherwise need to be set “by hand.”
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Fig. 3. Reconstructions of the shark sequence using the five algorithms. Each algorithm was given 2D tracks as

inputs; reconstructions are shown here from a different viewpoint than the inputs to the algorithm. Ground-truth

features are shown as green circles; reconstructions are blue dots.

B. Motion capture data

We performed experiments with two motion capture sequences. The first sequence was ob-

tained with a Vicon optical motion capture system, with 40 markers attached to the subject’s

face (Figure 6). The motion capture systems tracks the markers and triangulates to estimate the

3D position of all markers. We subsampled the data to 15 Hz, yielding a sequence 316 frames

long. The subject performed a range of facial expressions and dialogue. Test data is generated
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Fig. 4. Reconstruction error as a function of the number of basis shapes (K), for the synthetic shark data. The ground truth

shape has K = 2. The plot on the left compares all methods discussed here, and the plot on the right compares only our

methods.
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are not shown because the sample variance is very small.
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Fig. 6. Left: The facial motion capture session, which provided test data for this paper. Right: The full-body motion capture

session (from the CMU mocap database) used in this paper.

by orthographic projection.

Reconstruction results are shown in Figure 7, and reconstruction error plotted in Figure 8. As

is visible in the figure, the XCK and B05 algorithms both yield unsatisfactory reconstructions,7

regardless of the choice of K, whereas the iterative methods (BCD-LS, EM-PPCA, EM-LDS)

perform significantly better. EM-PPCA yields the best results on the original data. The

performance of BCD-LS degrades as K increases, suggesting an overfitting effect, whereas

EM-PPCA only improves with larger K. We also performed this test with EM-PPCA using a

pure orthographic projection model (ct ≡ 1), and the error curve was very similar to that of

scaled orthographic projection.

We tested a MAP version of the algorithm that optimizes LMAP (Equation 13) plus a penalty on

the Frobenius norm of V by block coordinate descent. We found this method to give worse results

than the least-squares optimization (i.e., optimizing LMLE by BCD-LS), for all regularization

weights that we tested. This suggests that selecting appropriate regularization is not trivial.

We also performed experiments with noise added to the data, and with random tracks removed.

The missing data case is important to test, because 3D points will necessarily become occluded

in real image sequences, and may also “disappear” for other reasons, such as dropped tracks

or specularities. We simulate missing data by omitting each measurement uniformly at random

with a fixed probability. (In real situations, occlusions typically occur in a much more structured

manner [8]). Figure 9 demonstrates the sensitivity of the different iterative estimation methods

to missing data; these figures suggest that EM-PPCA and EM-LDS are more robust to missing

7One possible explanation would be that this data suffers from degenerate bases; however, this did not appear to be the case,

as we determined by testing the PCA bases of the aligned ground truth data.
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Fig. 7. Reconstruction of the facial motion capture data. The top row shows selected frames from the input data.

The remaining rows show reconstruction results (blue dots), together with ground truth (green circles), viewed from

below.

data, whereas BCD-LS degrades much faster. These results are computed by averaging over 30

random runs. Again, EM-LDS performs best as the amount of missing data increases. We did

not test XCK and B05 on these datasets, as these methods assume that no data is missing, and

will therefore depend on how this missing data is imputed in the initial factorization step.

In order to visualize the model learned by EM-PPCA, Figure 10 shows the mean shape and

the modes of deformation learned with K = 2.

We additionally tested the algorithms’ sensitivity to the size of the data set (Figure 11). Tests

were conducted by sampling the face sequence at different temporal rates. (Due to local minima
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Fig. 8. Reconstruction error for the face motion capture data, varying the number of basis shapes (K) used in the reconstruction.

issues with BCD-LS, we performed 30 multiple restarts for each BCD-LS test.) We found that

dataset size did not have a significant effect on the performance of the algorithm; surprisingly,

reconstruction error increased somewhat with larger datasets. We suspect that this reflects non-

stationarity in the data, e.g., some frames having significantly greater variations than others,

or non-Gaussian behavior. We also performed the same experiment on synthetic data randomly

generated from a linear-subspace model, and found the behavior to be much more as predicted,

with error monotonically decreasing as the data set grew, and then levelling off.

In some applications of NRSFM, there may be significant structure in the deformations

that are not represented in the model, or not known in advance. In order to explore this

case, we performed experiments on full-body human motion capture data of a person walking.

This human body can be approximately modeled as an articulated, rigid-body system. The

articulation is not modeled by the NRSFM methods considered here, and we cannot expect

perfect results from this data. However, if the simple NRSFM models work well in this case,

they may provide useful initialization for an algorithm that attemps to determine the articulation

structure or the kinematics. We chose walking data that includes turning (Figure 6),8 in order

to ensure adequate rotation of the body; as in rigid SFM, without rotation, there is inadequate

8We used sequence 16-18 from the CMU motion capture database (http://mocap.cs.cmu.edu). The sequence was subsampled

by discarding every other frame, and most of the markers. The resulting data has 260 frames and 55 points per frame.
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Fig. 9. Reconstruction error for the face motion capture data. The left plot shows the dependence on added measurement noise,

the right plot shows increasing amounts of missing data. Note that “0%” noise corresponds to zero noise added to the data, in

addition to any noise already present in the measurements.
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Fig. 10. 3D mean shape and modes recovered by EM-PPCA with K = 2. Shape modes are generated by adding

each deformation vector (scaled) to the mean shape. The lines are not part of the model; they are shown for

visualization purposes only.
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Fig. 11. Dependence on data set size for the face data. We suspect that the odd behavior of the plots is due to non-stationarity

of the facial motion data; some frames are fit much better by the model than others.

information to estimate shape. The input to the algorithm is orthographic projection of 3D

marker measurements. Reconstructions are shown in Figure 12. As plotted in Figure 13, all of

the algorithms exhibit non-trivial reconstruction error. However, EM-PPCA gives the best results,

with BCD-LS somewhat worse; XCK and B05 both yield very large errors. Additionally, B05

exhibits significant sensitivity to the choice of the number of basis shapes (K), and, as before,

the reconstruction from BCD-LS degrades slowly as K grows, whereas EM-PPCA is very robust

to the choice of K.

V. DISCUSSION AND FUTURE WORK

In this work, we have introduced non-rigid structure-from-motion (NRSFM). Due to the

inevitable presence of measurement noise, missing data and high-dimensional spaces, we argue

that NRSFM is best posed as a statistical estimation problem. This allows us to build explicit

generative models of shape, to marginalize out hidden parameters and to use prior knowledge

effectively. As shown by our experiments, closed-form methods — while obtaining perfect results

on noiseless synthetic data — yield much higher errors on noisy data and real measurements. The

superiority of EM-PPCA to BCD-LS in all of our tests illustrates the importance of marginalizing

out latent coordinates. The superiority of EM-LDS over EM-PPCA for highly noisy real data

illustrates the value of the use of a motion model, although a first-order linear dynamical model
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Fig. 12. Reconstruction of the walking motion capture data. The top row shows selected frames from the input data. The

remaining rows show reconstruction results (blue dots), together with ground truth (green circles), viewed from below.

was too weak for our datasets.

We did find that, on synthetic, noiseless data, our methods had issues with local minima,

whereas the closed-form methods performed very well on these cases. This indicates that testing

on pure synthetic data, while informative, cannot replace quantitative testing on real data, and

may in fact give opposite results from real data. The cube-and-points dataset is one for which

our prior distribution may not be appropriate.

Linear models provide only a limited representation of shape and motion, and there is sig-

nificant work to be done in determining more effective models. For example, nonlinear time-
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series models (e.g., [21], [33]) can represent temporal dependencies more effectively; perspective

projection is a more realistic camera model for many image sequences. However, we believe

that, whatever the model, the basic principles of statistical estimation should be applied. For

example, NRSFM for articulated rigid-body models will likely benefit from marginalizing over

joint angles. We do not address the selection of K in this paper, although our results suggest that

the methods are not extremely sensitive to this choice. Alternatively, methods such as Variational

PCA [3] could be adapted in order to estimate K or integrate it out.

Another important direction is the integration of NRSFM with image data. An advantage

of the statistical estimation framework is that it can be directly tied to an appearance model

[27], whereas other methods must somehow extract reliable tracks without the benefit of 3D

reconstruction.

Although we have chosen to use the EM algorithm for estimation, it is possible that other

numerical optimization methods will give better results. For example, conjugate gradient could

be applied directly to the log-posterior.
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Fig. 13. Reconstruction error as a function of basis shapes (K) for full-body motion capture data. This noise is added in

addition to any noise already present in the measurements.
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APPENDIX

We now derive the M-step step updates used in Section III-B. The expected negative log-

likelihood is:

Q =
1

2σ2

∑

t

E[||pt − (GtṼz̃ + Tt)||
2] + JT log(2πσ2) (53)

To derive updates, we solve for the minimizing value of Q with respect to each of the unknowns,

holding the others fixed. Closed-form updates exist for each of the individual unknowns, aside

from the rotation matrices.

To derive the shape basis Ṽ update, we solve for the stationary point:

∂Q

∂Ṽ
= −

1

2σ2

∑

t

E[GT
t (pt − (GtṼz̃ + Tt))z̃

T ] (54)

= −
1

2σ2

∑

t

GT
t (pt − Tt)µ̃

T
t +

1

2σ2

∑

t

GT
t GtṼφ̃t (55)

Applying the vec operator to both sides, and using the identities vec(ABC) = (CT ⊗A)vec(B)

and vec ∂Q

∂Ṽ
= ∂Q

∂vec(Ṽ)
gives:

∂Q

∂vec(Ṽ)
= −

1

2σ2
vec

(
∑

t

GT
t (pt − Tt)µ̃

T
t

)

(56)

+
1

2σ2

∑

t

(φ̃T
t ⊗ (GT

t Gt))vec(Ṽ) (57)

Solving ∂Q

∂vec(Ṽ)
= 0 yields the shape basis update (Equation 45).

To solve for the variance update, we can solve ∂Q/∂σ2 = 0 and then simplify

σ2 =
1

2JT

∑

t

E[||pt − (GtṼz̃t + Tt)||
2] (58)

=
1

2JT

∑

t

(

||pt − Tt||
2 − 2(pt − Tt)

TGtṼµ̃t (59)

+ E[z̃T
t ṼTGT

t GtṼz̃t]
)

(60)

The final term in this expression is a scalar, and so we can apply a trace, and, using the identity

tr(AB) = tr(BA), get: E[z̃T
t ṼTGT

t GtṼz̃t] = tr(ṼTGT
t GtṼE[z̃tz̃

T
t ]) = tr(ṼTGT

t GtṼφ̃t).

To solve for the camera updates, we first rewrite the objective function using Equation 1 and,

for brevity, drop the dependence on σ2:

Q =
∑

j,t

E[||pj,t − (ctRtṼj z̃t + tt)||
2] (61)
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where Ṽj are the rows of Ṽ corresponding to the j-th point (i.e., rows 3j − 2 through 3j), and

tt are the x and y components of the translation in image space. The partial for translation is:

∂Q

∂tt

= −
∑

j,t

2E[(pj,t − (ctRtṼj z̃t + tt))] (62)

= −2
∑

j

(pj,t − ctRtṼjµ̃t) + 2Jtt (63)

The update to ct is derived as follows:

∂Q

∂ct

=
∑

j

E[−2z̃T
t ṼT

j RT
t (pj,t − (ctRtṼj z̃t + tt))] (64)

= −2
∑

j

µ̃T
t ṼT

j RT
t (pj,t − tt) + 2ct

∑

j

tr
(

ṼT
j RT

t RT
t Ṽjφ̃t

)

(65)

The camera rotation is subject to a orthonormality constraint, for which we cannot derive a

closed-form update. Instead, we derive the following approximate update. First, we differentiate

Equation 61:
∂Q

∂Rt

= Rtc
2
t

∑

j

Ṽjφ̃tṼ
T
j − ct

∑

j

(pj,t − tt)µ̃
T
t ṼT

j (66)

Since we cannot obtain a closed-form solution to ∂Q/∂Rt = 0, we linearize the rotation. We

parameterize the current rotation as a 3 × 3 rotation matrix, such that Rt = ΠQt, parameterize

the updated rotation relative to the previous estimate: Qnew

t = ∆QQt. The incremental rotation

∆Q is parameterized by an exponential map with twist matrix ξ:

∆Q = eξ = I + ξ + ξ2/2! + ... (67)

Dropping nonlinear terms gives the updated value as Qnew

t = (I + ξ)Qt. Substituting Qnew

t into

Eq. 66 gives:
∂Q

∂Rt

≈ Π(I + ξ)Qtc
2
t

∑

j

Ṽjφ̃tṼ
T
j − ct

∑

j

(pj,t − tt)µ̃
T
t ṼT

j (68)

Applying the vec operator gives:

vec
∂Q

∂Rt

≈ Avec(ξ) + B (69)

A =

⎛

⎝c2
t

∑

j

Ṽjφ̃tṼ
T
j QT

t

⎞

⎠ ⊗ Π (70)

B = c2
t ΠQt

∑

j

Ṽjφ̃tṼ
T
j − ct

∑

j

(pj,t − tt)µ̃
T
t ṼT

j (71)

We minimize ||Avec(ξ) + B||F with respect to ξ for the update, giving vec(ξ) ← A+B.
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