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Abstract. Let 8 be the von Neumann algebra crossed product determined
by a finite von Neumann algebra M and a trace preserving automorphism.
In this paper we investigate the invariant subspace structure of the subalge-
bra ß+ of ß consisting of those operators whose spectrum with respect to
the dual automorphism group on ß is nonnegative, and we determine
conditions under which ß+ is maximal among the a-weakly closed subalge-
bras of ß. Our main result asserts that the following statements are equiv-
alent: (1) Af is a factor; (2) ß+ is a maximal a-weakly closed subalgebra of
ß; and (3) a version of the Beurling, Lax, Halmos theorem is valid for ß + .
In addition, we prove that if 31 is a subdiagonal algebra in a von Neumann
algebra 33 and if a form of the Beurling, Lax, Halmos theorem holds for 31,
then 93 is isomorphic to a crossed product of the form S and 31 is isomorphic
toß + .

Introduction. Crossed products were introduced into operator theory by
Murray and von Neumann in their first paper [14]. The algebras which they
constructed as crossed products are now most commonly called group
measure algebras. Subsequently, their construction was abstracted, gener-
alized, and analyzed by numerous authors and it is fair to say that at present
crossed products are ubiquitous in the theory of operator algebras. Indeed,
Feldman and Moore [8] have recently shown that it is very likely that every
von Neumann algebra can be realized as a crossed product-perhaps of a
complicated nature. In this paper we consider von Neumann algebras which
are constructed as very simple crossed products and focus our attention on
certain nonselfadjoint subalgebras contained in them. Roughly speaking, the
subalgebras we study stand in the same relation to the crossed products as the
Hardy space 77°°(T), the space of boundary values of bounded analytic
functions on the unit disc, stands in relation to the Lebesgue space L^ÇT).
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More specifically, suppose M is a von Neumann algebra acting on a Hubert
space3 % and that « is a unitary operator on % such that uMu* = M. (Note
that u need not belong to Af.) Form the Hubert space L2 = l2(Z) <8> % and
consider the operators Lx, x G M, and Ls defined on L2 by the formulae

Lx = 7 ® x    and   Ls = S ® u
where 5 is the usual bilateral shift on /2(Z). Then the von Neumann algebra
crossed product determined by M and (the automorphism implemented by) u
is defined to be the von Neumann algebra S on L2 generated by {Lx\x G M}
and Ls while the subalgebra which we investigate and call a nonselfadjoint
crossed product is the ultraweakly closed (or, as we shall write, the a-weakly
closed) algebra S+ generated by {Lx\x G M) and the positive powers of Ls.
Observe that if % has dimension one so that u is trivial, then S is isomorphic
to L°°(T) and S+ is isomorphic to 77°°(T).

There are a variety of ways to define S and ß+ but up to isomorphism,
these algebras depend only upon the isomorphism class of M and on the
automorphism implemented by u [24]. Consequently for technical reasons we
have decided to assume that M is in standard form and to construct S as the
left von Neumann algebra associated with a certain Hilbert algebra; this
explains the notation. In addition, we assume that M is finite and that the
automorphism implemented by u preserves a faithful, normal, finite trace.
Under these assumptions S is finite and C+ is an example of what Arveson
[2] calls a finite, maximal, subdiagonal algebra. Our objective in this paper is
to investigate the lattice of subspaces invariant under ß+, Lat(ß+), and to
determine when 2+ is maximal among all the a-weakly closed subalgebras of
2. It turns out that invariant subspaces and questions of maximality are
intimately related.

In [11], Loebl and Muhly presented an abstract and very general frame-
work in which to investigate Lat(2+). Although very useful for some purpo-
ses, the parameters presented there are quite cumbersome and really do not
provide one with much insight into the structure of Lat(ß+). In this paper we
abandon the approach in [11] and take as our starting point the observations
that Ls is a bilateral shift, an operator whose invariant subspace structure is
well understood, and that the invariant subspaces of S+ are found among
those of Ls. It turns out that when M is a factor, then every subspace <Dïi in
Lat(S+) which contains no subspace reducing S+ is of the form 911 = T^H2
where 7?„ is a partial isometry in the commutant, 91, of ß and where H2 is the
subspace l2(Z+) <S> % of L2. Thus when M is a factor, a perfect analogue of
the Beurling, Lax, Halmos theorem (hereafter abbreviated the BLH theorem)

3To avoid pathology all of our Hilbert spaces will be assumed to be separable and, of course,
complex.
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is valid. This, by itself, is not altogether surprising nor is it difficult to prove.
However, it develops that a conditioned converse is true. That is, if every 91L
in Lat(ß+) of a particular kind may be expressed as 911 = T^H2 where Rv is a
unitary in Dr, then necessarily M is a factor. Still more is true. We show that if
91 is a finite, maximal, subdiagonal algebra in the sense of Arveson and if a
form of the BLH theorem is valid for 91, then the von Neumann algebra
generated by 91 is isomorphic to a crossed product of the form ß with 91
identified with ß+. Thus, in a sense, the most general context in which one
can expect the BLH theorem to hold is that of a nonselfadjoint crossed
product where the coefficient algebra is a factor.

While a subdiagonal algebra 91 in a von Neumann algebra 93 may be
maximal among the subdiagonal algebras in 93, it need not be maximal
among all the a-weakly closed subalgebras of 93. Indeed, most of the subdiago-
nal algebras studied by Arveson in [2] as well as most of those studied by
Loebl and Muhly in [11] are all maximal as subdiagonal algebras but are not
maximal among the a-weakly closed subalgebras. Initially we could only
identify a very small class of subdiagonal algebras which are maximal among
the a-weakly closed subalgebras of the von Neumann algebras they generate
and, therefore, it became interesting to determine whether this class is
exhaustive or are there more. There are more, and many can be found among
nonselfadjoint crossed products. Specifically, we prove that ß+ is a maximal
a-weakly closed subalgebra of ß if and only if M is a factor. Thus maximality
is tied to the validity of the BLH theorem. This may not be surprising in view
of the fact that on the disc, the maximality of 77°°(T) as a weak-* closed
subalgebra of L°°(T) is a trivial consequence of Beurling's theorem, but in the
present study, the matter is considerably more complicated.

Questions of maximality are more than idle curiosities, they reflect on
fundamental structural properties of the algebras considered. In the theory of
function algebras, where such questions are regarded as questions in abstract
approximation theory, this has been known for some time. In operator theory,
on the other hand, maximality plays a somewhat different role. Roughly
speaking, an algebra 91 is maximal in the von Neumann algebra 93 it generates
if and only if it is completely determined by its reducing subspaces-the
subspaces which determine 93-and any one of its nonreducing, invariant
subspaces. This phenomenon is particularly important in the present investi-
gation where we shall encounter it when we prove that a form of the BLH
theorem is valid for ß+ if and only if Af is a factor and when we prove that if
a form of the BLH theorem is valid for a subdiagonal algebra, then it must be
a nonselfadjoint crossed product.

The first two sections are concerned with preliminaries and somewhat
technical material. §1 is devoted to a discussion of subdiagonal algebras in
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general and to a result which on the disc is an easy consequence of Szegö's
theorem. Since, however, Szegö's theorem is not known to be valid in the
context of subdiagonal algebras, a somewhat artful extension of an argument
of Arveson is presented. The second section is concerned with crossed
products. Here we describe formally the algebras which we are investigating
and collect a number of known results for later use. We also prove a result
which asserts that if Af is a factor but ß is not, a definite possibility, then the
center of ß, 3(2), is normally *-isomorphic to L°°(T) in such a way that
3(2) n 2+ is carried onto 7L°°(T).

The main point of §3 is our version of the BLH theorem which is valid
when M is a factor. We consider also invariant subspaces contained in the
other abstract Lebesgue spaces associated with 2 in noncommutative integra-
tion theory. The point of this, ultimately, is to describe the a-weakly closed
ideals in 2+. In §4, we show the equivalence of the assertions that Af is a
factor, a version of the BLH theorem is valid, and 2+ is maximal among the
a-weakly closed subalgebras of 2. Some consequences of our invariant
subspace theorems are developed in §5. Finally, in §6, we prove that if a
version of the BLH theorem is valid in a subdiagonal algebra then it must be
a nonselfadjoint crossed product.

1. Preliminaries: subdiagonal algebras. In this paper we shall, for the most
part, consider only finite von Neumann algebras. Moreover, they will almost
always be in standard form. In order to emphasize the similarities between
the noncommutative theory we are investigating and the classical function
theory on the disc, we introduce the following notation. Some of it may seem
pedantic, but we have found it useful to help separate the variety of roles
played by the operators being considered. The reader is certainly aware of the
fact that functions on the disc frequently play different roles, but usually it is
not difficult to decide from context the interpretation intended. However, in
the theory we are developing the situation becomes considerably more
complicated primarily of course because the operators considered do not
generally commute.

All traces without exception will be assumed to be finite, faithful, normal
and normalized. If M is a von Neumann algebra and if <f> is a trace on Af,
then we shall denote the noncommutative Lebesgue spaces associated with M
and <¡> by LP(M, <f>) or simply Lp (see [6], [15], or [22]). As is customary, Af
will be identified with L°° while the ultraweak or a-weak topology on M will
be identified with the weak-* topology on L°° regarded as the dual of L1 (cf.
[7, p. 107]). The closure of a subset @ of V in the L^-norm, 1 < p < oo, will
be denoted by [@] ; [©]„, will denote the closure of @ in the weak-* topology
onL°°.

If x is in Af, we shall write Lx (resp. Rx) for the operator defined (on any
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L^-space) by the equation LJ = xf (resp. RJ = fx), f G Lp, and we let 2
(resp. 9Î) denote the algebra of all such operators. One may regard M as a
finite, achieved Hilbert algebra whose completion is L2, and when this is
done, 2 and 9Î are the left and right von Neumann algebras of Af and the
map x -» Lx (resp. x —» Rx) is a normal, *-isomorphism (resp. ^anti-isomor-
phism) of M onto 2 (resp. Dt). As a consequence, 2' = 51 and the identity 7 of
M is a cyclic and separating vector for 2 and 9x (cf. [7, Chapitre I, §5]).
Sometimes elements / in Lp will be regarded as (possibly) unbounded opera-
tors affiliated with 2 or 9Î. Finally, the canonical conjugate-linear, isometric
involution on L2 which extends the map x -» x* on Af will be denoted by /.

In [2], Arveson introduced the concept of a subdiagonal algebra for the
purpose of providing a unified approach to the analysis of a variety of rather
broad classes of nonselfadjoint operator algebras. These algebras are best
thought of as a noncommutative generalization of the weak-* Dirichlet
algebras of Srinivasan and Wang [23]. The most tractable are the finite
maximal ones, and these are the only kind considered here.

Definition. Let 93 be a von Neumann algebra with trace <(>, let 91 be a
a-weakly closed subalgebra of 93, and let <ï> be a faithful, normal expectation
from 93 onto % = 91 n 91* (91* = {x*\x G 91}). Then 91 is called a finite,
maximal, subdiagonal algebra in 93 with respect to i> and <j> in case the
following conditions are satisfied:

(1) 91 + 91* is a-weakly dense in 93;
(2) $(xy) = $(x)$( v), for all x and y in 91;
(3) 91 is maximal among those subalgebras of 93 satisfying (1) and (2); and
(4) <j> ° <ï> = <#>.
Concerning this definition we note that any subalgebra 91 of 93 satisfying

(1) and (2) can be imbedded in a unique algebra 91m which is maximal among
all algebras satisfying (1) and (2). In fact, 9Im = [x G 93|í>(rxa) = <&(axt) =
0, a G 91 and t E 91 such that <D(r) = 0} [2, Theorem 2.2.1]. In the presence of
condition (4), 9im = [x G 93|<D(xr) = 0, t G 91, $(/) = 0} [2, Corollary 2.2.4].
We wish to emphasize once more that while a subdiagonal algebra in a von
Neumann algebra 93 may be maximal as a subdiagonal algebra in 93, it need not
be maximal among the a-weakly closed subalgebras of 93.

For 1 < p < oo, the closure of 91 in L/,(93, r» is denoted by Hp(18, <¡>) or 77'
and the closure of ker($|9I) is denoted by Hp. We identify 91 with 77 °° in the
identification of 93 with L°° and ker(<D|9I) is identified with 770°°. Also, we
write 2+ and 9x+ for 2(91) and 9x(9I).

We present now some technical, but useful, facts about subdiagonal alge-
bras in general which will be called upon several times in the sequel. For
these, we fix for the remainder of this section a finite von Neumann algebra
93 with trace <j>, an expectation O on 93, and a finite, maximal, subdiagonal
algebra 91 (with respect to <i> and .</>) in 93.
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Proposition 1.1. The expectation $ may be extended to L2 and the extension
is the orthogonal projection of L2 onto [®]2. In addition, L2 may be decomposed
into the orthogonal direct sum L2 = 772 © JH¿ = #02 © [®]2 © /7702.

Proof. The first assertion is clear since <#> preserves O and so by definition,
7702 = [®]2 © 7702. The fact that 772 © JH¿ = L2 is proved on p. 583 in [2] in
the proof of Theorem 2.2.1.

A frequently used corollary to Szegö's theorem is the assertion that if A: is a
square-integrable function on the circle such that log|rc| is also integrable,
then there is an outer function/ in 772 such that |/| = |ac|. Although Szegö's
theorem and this corollary are valid in the context of weak-* Dirichlet
algebras [23], it is not known at this time if they have extensions to the
context of subdiagonal algebras. We have found, however, that the next
proposition is a very serviceable substitute for the corollary; it refines Theo-
rem 4.2.1 of [2]. The proof follows Arveson's arguments rather closely, but at
a number of points certain adjustments which are not altogether obvious are
required.

Proposition 1.2. If k is in L°° (=93) with (possibly unbounded) inverse
lying in L2, then there are unitary operators ux and u2 in L°° and operators ax
and a2 in 77°° (= 91) such that k = uxax = a2u2.

Proof. We prove that k = uxax; the other representation is verified in a
similar fashion. First note that k does not belong to [kH™]2 because if it did,
then k would be the limit, lim kan, for a suitable sequence {an}™=0 in H™.
But then, since <b(an) = $(<&(a„)) = 0,

1 = f>(7) = lim r>(7 - a„) = lim <t>(k~x(k - kan))

= lim(ri- kan, (k~x)*) = 0,

a contradiction. Write k = f + tj where n is the projection of k on [kH™]2.
Then f is orthogonal to [ÇH™]2; i.e., f is right wandering in the sense of
Arveson. Indeed, since n lies in [kH™]2, a subspace of L2 invariant under 91+,
we find that [f770°°]2 = [(k - t])H^}2 G [kH¿° + n770°°]2 = [kH¿°]2; and
since f is orthogonal to [A:770°°]2, it is also orthogonal to [$H™]2. By Lemma
4.2.2 of [2], there is a partial isometry u in L°° such that t/f lies in [5D]2, say
«f = f0; L*LU is the projection onto [fL°°]2; and LUL* is the projection onto
[S0L'X]2. We assert that « is unitary. Since L°° is a finite von Neumann
algebra, it suffices to prove that [£L°°]2 = L2. For this, Arveson [2, p. 603]
argues that it suffices to prove that f is a separating vector for 9Î. If
RXÇ = & = 0 for some x in L°°, x ¥= 0, then another argument on p. 603 of
[2] shows that fh = 0 for a nonzero h in ®. We may of course assume that
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h > 0. Now observe that kh = fh + i\h = n/i lies in [kH¿°]2. So, if {a„}£L0 is
a sequence in 770°° such that lim|]7c/i - ka„\\2 = 0, then since <t>(an) = </>(4>(an))
= 0, we find that

<t>(h) = hm <#.(/! - an) = lim(*~l(Jfc* - kan), I)

= lim((kh - kan), (k~x)*) = 0.

But h > 0 and <> is faithful, so h = 0-a contradiction. To complete the proof,
we need only show that uk lies in 77°°. By Proposition 1.1 and Corollary 2.2.4
of [2], it suffices to prove that for each v in H™, uky is orthogonal to [®]2.
Since, as we just showed, f is a cyclic and separating vector for 9Í, and since
f0 = uf with u unitary, f0 is also a cyclic and separating vector for 9t. But f0
belongs to [®]2 and 9Î(2))|[®]2 has 7 as a cyclic vector, therefore by Proposi-
tion 4 on p. 221 of [7] and the fact that 9Í(®) is finite, f0 is a cyclic vector for
9t(®)|[2)]2; i.e., [£0®l2 = [®L- Thus we need to see if uky is orthogonal to Ç0d
for all v in 770°° and d in ©. But this is easy:

(uky, S0d) = (ky, u* V) = (¿V, W)

= (Ay, 7U) = (Ra-ky, J) = (¿y¿*, 0 = 0

because v¿* G 770°°, kyd* E [kH0°°]2, and f is orthogonal to [fc7/0°°]2 by
definition. With this, the proof is complete.

Corollary 1.3. 7/911 is a closed subspace of Lp, 1 < p < oo, which is
invariant either under 2+ or 9Î + , r/ien 911 n L°° contains elements different
from zero.

Proof. As will be seen in the course of the proof, we may assume without
loss of generality thatp = 1. Also, we shall assume that St+'Dlt G 91L. Let £
be a nonzero element in 91L and consider its polar decomposition: £ = u||| =
f|£|1/2|£|1/2- Let/be the function on [0, oo) defined by the formula/(x) = 1,
0 < x < 1, f(x) = l/x, x > 1, and define k to be /(|£|1/2) through the
functional calculus. Then k is in L°°, A:"1 is in L2, and |£|1/2/c is in L°°. By the
preceding proposition we may choose a unitary u in L00 and an a in H °° such
that aw = A:. Then £a = £>|£|1/2|£|1/2A:m*, which shows clearly that £a is a
nonzero element in L2, and £a lies in 91L because 911 is 9t+ invariant. Thus
91L n L2 contains nonzero elements. But the argument may now be reapplied
to produce a b in 77°° such that £ab is a nonzero element in 911 n L°°.

Remark 1.4. It is attractive to conjecture that 9H is the closure of the space
of bounded elements it contains. This is of course true in the weak-* Dirichlet
algebra setting (cf. [10, § 1.6]) but the proofs that we know seem to use Szegö's
theorem in a fairly sophisticated way. We are able to prove the conjecture in
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the case of certain crossed products only after considerable preparation (see
Corollary 3.8).

Corollary 1.5. 7/6 is a proper a-weakly closed subalgebra of 93 containing
91, then [g]2 ^ L2.

Proof. Let 91L be the annihilator of 6 in L1. By hypothesis, 91L ¥= {0}.
Since 91 Ç 6, 9H is 9Î+ invariant. By the preceding corollary 911 contains
nonzero bounded elements and these, or more accurately their adjoints, are
orthogonal to [C£]2 in L2.

2. Crossed products. As noted in the Introduction, there are a variety of
ways to define crossed products. The most congenial way from our point of
view here is to define first a Hilbert algebra and then to take an associated
von Neumann algebra as the crossed product. To this end we fix for the
remainder of this paper a finite von Neumann algebra Af and a trace <f> on M.
We assume M is in standard form and identify it when convenient with either
the von Neumann algebra of left multiplications on L2 = L2(M, <J>), the von
Neumann algebra of right multiplications, or with L°° as we did in the
preceding section. Also, we fix once and for all a normal, *-automorphism a
of Af which preserves <>; i.e., <¡> ° a = <j>. The following proposition is easily
proved and so the proof will be omitted.

Proposition 2.1. Let L2, = {/: Z -» Af|/(n) = Ofor all but finitely many n).
Then with respect to pointwise addition and scalar multiplication and the
operations defined by equations (l)-(3), L2, is a Hilbert algebra with identity \p
defined by i//(0) = IM, and xp(n) = 0, n i- 0.

0)(/* g)(n) = ïk^f(k)ak(g(n - k)),
(2) (/*)(«) = [«"(/(-«))]*,
(3)(/,g) = 2*ez(/(£),g(£))LW).

It is helpful to think of L2, as the space of all "twisted", A/-valued
trigonometric polynomials. That is, if the powers of a were absent in 2.1, then
L2, would indeed consist of the set of all coefficients of Af-valued trigonomet-
ric polynomials and 2.1 would simply be ordinary convolution. Observe, too,
that the Hilbert space completion L2 of L2, is precisely

\f:Z^L2(M,<t>)\ 2  ||/(n)||i2 < oo )
I n£Z I

and may be identified with l2(Z) ® L2(Af, <¡>).
For / in L2,, we define operators Lf and 7L on L2 by the formulas

Ljg = f * g and Rfg = g * f, g G L2. Note that since the sums defining Lf
and Rf are finite and since f(ri) G M for all n, both Lf and Rf are well de-
fined, bounded operators on L2. As is customary, we set 2 = {Ly|/ G L2,}"
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and 9t = {Rj\f G L2,}" by definition. Also, we define L°° to be the achieved
Hilbert algebra of all bounded elements in L2. That is, L°° consists of those /
in L2 such that the map g —> f * g, g G L2,, extends to a bounded operator on
all of L2. For such an /, we write Lf and Rj for the operators it determines. It
is of course a basic fact from Hilbert algebra theory (cf. [7, Chapitre I, §5])
that since L2, and hence L°° has an identity, the map/-»L^ is a ^isomor-
phism from L°° onto2 while the map/-» Rf is a *-anti-isomorphism mapping
L°° onto 9Í. Moreover, 2 and 91 are commutants of one another. Since a
preserves <¡> on M, a extends to a unitary operator on L2(Af, <#>). Conse-
quently, the canonical antiunitary involution J on L2, extending the * opera-
tion on Lq, is given by the formula (2). Also, since L2, has an identity i//, 2 is a
finite von Neumann algebra and the functional t on 2 defined by r(Lf) =
(/> *P) = <K/(0)), / G L°°, is readily seen to be a finite, faithful, normal and
normalized trace (cf. [7, p.  85]). We abuse notation a little and write
T(Lf) =  T(Rf) =  T(f).

At this point it should be remarked that the notation we have introduced is
quite consistent with that presented in §1. That is, 2 is a finite von Neumann
algebra in standard form, L2 = L2(2, t), L°° = L°°(2, t), etc. We call L00 the
self adjoint or von Neumann algebra crossed product determined by Af, <¿>, and a
and refer to 2 and 9r as the left and right regular representations of it.

The original algebra Af is identified with the subalgebra {x\p\x G Af} of
L°°, and we abbreviate L^ and 7?^ by Lx and Rx. It is instructive to note that
Lx is the infinite ampliation (LJ)(ri) = xf(ri) while (RJ)(n) = f(n)a n(x),
f G L2. As before, we write 2(A/) = {Lx\x E M} and 9t(Af) = {Rx\x G M}.
The function 8, defined by the formula

8(n) = f 7"'      n = l
I 0,      n * 1,

plays a very important role. For, as a straightforward calculation reveals,
2 = (2(M), Ls}" and 9t = (9i(M), Rs)". It is also instructive to note that
when L2 is identified with l2(Z) 0 L2(M, </>), then Ls becomes S 0 u and Rs
becomes S 0 IM where S is the bilateral shift on L2(Z) and u is the unitary
operator on L2(M, <f) induced by a. It is now clear, of course, that the
algebras we are constructing are the same as those presented in the Introduc-
tion.

The automorphism group { /L},eR of 2 dual to a in the sense of Takesaki
[24] is implemented by the unitary representation of R, { W,}ieR, defined by
the formula (W,f)(ri) = e2™'f(n), f G L2; that is, ßt(L}) = W,LfWf, by defi-
nition. Similarly, we define ß,(Rf) = WtRfW*. It is easy to see that ß,(Lf) =
LWj for all / in L°° and similarly for Rf. Indeed, if g is in L2 and / is in L°°,
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-{/. W*g)(n) = e2™' 2  f(k)ak((Wfg)(n - k))

then

(ß,(Lf)g)(n) = (WtLsWtg)(n) = e2^'(L}Wfg)(ri)
_   Jlirint

\J '  "t SIV'J — c
ytez

= e2™' 2  f(k)e2"i(k-n)'ak(g(n - k))
tez

=  2 e2"*y(A:)a*U(n - *))
tez

= (W) * g)(n) = (LWJg)(n).

On account of this, we write Wt(f) = ß,(f) when/is in L°°.
It is elementary to check that the spectral resolution of {If,}ieR is given by

the formula
oo

W, =     2    e2*iMEn
n= — oo

where En is the projection on L2 defined by the formula

{   0,       k =£ n.
It is equally easy to check that the projection En can be calculated as the
(Bochner) integral

-2"ntWl(f)dt.

The restriction on En to L00 will be denoted by e„ and we shall write
e„(Lj) = L^fl and £„(7^) = R^(f) as well. Of course we may write

-2mntßt dt*n =   Í   *
but where the integral converges in the a-weak topology when applied to
operators. We note that the e„ are ultraweakly continuous, linear maps, and in
particular, the map e0 is a faithful, normal expectation, preserving t, from L°°
onto the space of functions / in L°° such that f(ri) = 0 when n ¥= 0. The
spectral subspaces of L°°, 2 and 91 associated with {/?,},eR as defined and
analyzed in [2], [11], or [16], are related to the e„'s by the prescription: If
S G Z, then the spectral subspace of L°° determined by S and {/i,},eR,
L£(S), is {/ G L°°|e„(/) = 0, n E Z\ S}. All these assertions are easy to
verify from the definitions but some verifications are tedious. In any event,
they appear in various places in the literature and so we shall not pause to
prove them here.

We define H2 = {/ G L2|/(«) = 0, n< 0}, we define H°° to be L°° n H2
are we refer to it as the nonselfadjoint crossed product determined by Af and
a. Alternatively, H°° = L£(Z+). Also, we set 2+ = [Lf\f G H00} and 9t+ =
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{Rf\f G H00}. These objects are the principal structures studied in this paper
and the following theorem summarizes their basic properties. For the proof,
see [11, §4.3] or [20, Theorem 2].

Theorem 2.2. The space H°° is a finite, maximal subdiagonal algebra in L°°
with respect to the expectation e0 and trace t. The diagonal of H°° consists of all
those f in L°° such that f(n) = 0, n ^ 0. In addition, the map f—>Lj (resp.
f—* Rf), f G H°°, is a a-weakly continuous, isometric isomorphism (resp. anti-
isomorphism) of H°° onto 2+ (resp. 91+), mapping the diagonal of H°° onto
2(Af) (resp. 9t(Af)), and 2+ (resp. 9î+) is the a-weakly closed algebra gener-
ated by Ls and 2(Af) (resp. Rs and 9t(Af)).

The von Neumann algebra L°° may or may not be a factor. This depends
on the action of a on M. When L°° is not a factor but M is, the next theorem
identifies the intersection 3(L°°) n H°°, where 3(L°°) is the center of L°°, with
the classical Hardy space /7°°(T). We actually prove a slightly more general
assertion.

Theorem 2.3. Suppose that L°° is not a factor but that 3(L°°) n Af = {C7}.
Then there is a normal "-isomorphism carrying 3(L°°) onto L°°(T) in such a
way that 3(L°°) n H00 is carried onto 77°°(T).

Proof. Observe that the fixed point algebra of {ß,}lfER is Af where Af is
regarded as the space of functions / in L°° such that f(n) = 0 when n =fc 0.
Thus, since 3(L°°) n Af = (C7), when {/L},eR is restricted to 3(L°°), it acts
ergodically. Since L2 is separable, 3(L°°) is normally *-isomorphic to L°°(X)
for a suitable standard Borel space X. Using this isomorphism, { /L},SR may
be identified with a group of *-automorphisms of Lca(X) which, by a theorem
of Mackey [12], is implemented by a measurable action of R on X. Thus we
may write [ ß,(<p)](x) = <p(x + t),tp G L°°(X), where x + t denotes the trans-
late of x in X by t in R. Since {ß,)ieR is ergodic and periodic, we may apply
a result on p. 236 of [18] to conclude that except for a null set, X consists of
one periodic orbit. This we may identify with the circle group T. When all the
identifications we have made are composed, we find that the restriction of r
to 3(L°°) is identified with Lebesgue measure, Q(L°°) is identified with L°°(T),
{/L},eR is identified with the usual action of R on T, and 3(L°°) D H°° is
identified with all those functions in L^ÇT) whose Fourier coefficients of
negative index vanish. This last space is, of course, 77 "(T).

We conclude this section with several examples which serve to illustrate the
notions we have introduced.

Example 2.4. Let M be an arbitrary finite von Neumann algebra but
suppose the automorphism a is inner, implemented, say, by a unitary u in Af.
Then since L*LS = Rs, so that Rs belongs to 2, it is easy to check that L°° is
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isomorphic to L°°(T) 0 M in such a way that H00 is carried to H °°(T) ® Af.
Thus, if we specialize further and assume that Af is the algebra M„ of all
complex n X n matrices, we find that the theory we are developing contains
(most of) the vectorial function theory developed by Helson and Lowdens-
lager, Masani and Wiener, and others for use in prediction theory and related
areas.

Example 2.5. Let B = (co0, to,, ..., «„_,} be a finite set, let Af = /°°(£2),
■ w, ->w„and let a be implemented by the cyclic permutation w0 ■

->w0. Using basic principles, it is easy to show that L°° is isomorphic to
LX(T) 0 M„. But more is true. Identify L°°(T) 0 M„ (resp. 77°°(T) 0 M„)
with the « X « matrices [ay] such that ay E L°°(T) (resp. atj G 77°°(T)) and
denote the characteristic function of the singleton {uk} in ß by xk. Then ¥,
defined on generators by the equations below, extends to be a *-isomorphism
of 2 onto L°°(T) 0 M„ carrying 2+ onto the matrices [ae] in 7i°°(T) 0 Mn
such that a0(0) = 0 if atJ is above the main diagonal.

*M =
o

0
HLX) =

1
0

* w = ,->*(L*.J =

*(L»)

0
0
1

0 1     0
A detailed analysis of this example and the two to follow is carried out by

the first author in [13].
Example 2.6. This example does not quite fall within the scope of this

investigation, but we feel that it is sufficiently close to the algebras analyzed
here that it warrants inclusion, particularly because it is so simple. Let
Af = /°°(Z) and let a be implemented by translation by 1 on Z. Note that
although M is finite, there is no finite normal a-invariant trace. This is why
the example does not quite belong here. Clearly L2 is /2(Z X Z) which we
identify with /2(Z) 0 l(Z). Straightforward calculations show that the map W,
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defined by the formula ( Wf)(n, m) = f(n — m, m), is a unitary operator on
/2(Z X Z) transforming 2 into {C7} 0 ß(/2(Z)) and ß+ into {C7} <8>
ß+(/2(Z)) where ß+(/2(Z)) is the subalgebra of all operators in ß(/2(Z)) which
have lower triangular matrices with respect to the usual basis for /2(Z).

Example 2.7. Suppose that (fi, m) is a nonatomic probability space, that
M = L°°(ñ), and that a is implemented by an ergodic, measure preserving
transformation T. Then ß is a finite factor of type Il-an instance of the
Murray-von Neumann group measure algebra-and ß+ is closely related to
algebras studied by Arveson in [3]. It turns out that his arguments show that
the isomorphism class of ß+ is a complete set of conjugacy invariants for T.

There are many more examples, evidently of marvelous complexity, and
each warranting special attention. We hope to investigate these in later
papers.

3. Invariant subspaces. In this section, we investigate the invariant subspace
structure of the nonselfadjoint crossed products defined above. Our ultimate
goal, Theorem 3.3, is to prove that when Af is a factor, a generalization of
Beurling's Theorem is valid. In the next section, we shall prove a qualified
converse of this result. Although the primary objects of study are the
invariant subspaces of L2, we are able to identify the invariant subspaces of
1/ (= Lp(ß, t)), 1 < p < oo, as well, at least when M is a factor. One
consequence of this is that when Af is a factor, every ultraweakly closed ideal
in H00 (left, right, or two-sided) is principal and is generated by a partial
isometry. This extends the analogy which exists between 77°°(T) and the
polynomial ring in one variable. That is, when Af is a factor, H°° is quite
properly thought of as an operator-theoretic generalization of a twisted
polynomial ring.

In this paper, we use the word "subspace" to refer to a closed linear
manifold in one of the spaces Lp; if the subspace is contained in L00, we shall
assume that it is ultraweakly closed.

Definition. Suppose that 93 is a finite von Neumann algebra with trace <f>,
that 91 is finite, maximal subdiagonal algebra in 93 with respect to <b and an
appropriate expectation, and that 91L is a subspace of Lp = Lp08, <j>). We
shall say that 9lt is: left- or (ß+-) invariant, if ß+91L G 911; left-reducing, if
S911 G 911; left-pure, if 9lt contains no left-reducing subspace; and left-full,
if the smallest left-reducing subspace containing 91t is all of Lp. The right-
hand versions of these concepts are defined similarly, and a subspace which is
both left and right invariant will be called two-sided invariant.

In order to shorten the writing, whenever we refer to a subspace as being
invariant, reducing, pure, or full without specifying otherwise, we intend that
it is left-invariant, left-reducing, etc. We issue this caveat, however, When we
refer to a two-sided invariant subspace as pure or full, we shall mean that it is
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left-pure or left-full. This does not mean that it is either right-pure or
right-full, although there are circumstances, which will be identified later,
when such an implication always holds.

For the remainder of this section, we will be investigating the right and left
invariant subspaces of the spaces If and we shall restrict our attention to the
nonreducing ones because, as was noted by the third author in [20], the
left-reducing subspaces of \P are of the form Relf for a suitable projection e
in L°° while the right-reducing subspaces have the form Lelf. The following
proposition shows that the analysis of the invariant subspace structure of ß+
may be reduced, in part, to known results about the invariant subspaces of
Ls. The proof is straightforward because ß+ is the a-weakly closed algebra
generated by ß(Af ) and Ls (Theorem 2.2) and so will be omitted.4

Proposition 3.1. Let 91t be an invariant subspace in L2. Then
(1) 91t reduces ß(M);
(2) 9lt reduces ß if and only if 91t reduces Ls;
(3) 91t is pure if and only if /\n>0 L5"91t = {0} (i.e., if and only i/L5|91t is

apure isometry); and
(4) 91t is full if and only if V„<0 LsnC^ = L2
Before approaching our invariant subspace theorems, it is helpful and

instructive to have a couple of thoughts in mind about the Beurling, Lax,
Halmos theorem which describes the invariant subspaces of a bilateral shift
of arbitrary multiplicity. Suppose U is a unitary operator on a Hilbert space
% and that S is a subspace of %. Then g is called a wandering subspace if
U"g and i/™5 are orthogonal when n i= m. If g is a wandering subspace and
if % = V„ez u"% = 2«ez © u"i$> then g is called complete; and if U has
a complete wandering subspace, then U is called a bilateral shift. Observe that
Ls is a bilateral shift because EqL2 is a complete wandering subspace. The
two principal facts about bilateral shifts, for the purpose of studying their
invariant subspaces, are these: (1) the dimensions of two complete wandering
subspaces are the same; and (2) the dimension of any wandering subspace is
dominated by that of any complete wandering subspace. To understand how
the BLH theorem is a consequence of (1) and (2), suppose g is some preferred
complete wandering subspace for U and that %+ is defined to be 2„>0 ©
i/"g. If 91t is any pure invariant subspace for U, then © = 91t © Í/9Í is a
wandering subspace and 91t = 2^=0 £/"©. Since dim © < dim g, there is a
partial isometry 0 on % with initial space in g and final space equal to ©.
Then, by defining 6 = 2„ez U"9U~", we obtain a partial isometry commut-
ing with U such that 9It = &%+. This, of course, is the BLH theorem.

4From now on, all results will be formulated in terms of left-invariant subspaces. We leave it to
the reader to rephrase them to obtain "right-handed" statements.
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Assertion (1) implies that in a sense the result is independent of the complete
wandering subspace chosen in advance; or, better, to put things in a com-
pletely invariant form, we may assert that the BLH theorem is tantamount to
this statement: If, for i = 1,2, 91t, is a pure invariant subspace for U, if P¡ is
the projection onto 91t,, and if g, is the associated wandering subspace, then
Px and P2 are unitarily equivalent, where the equivalence is implemented by a
unitary in the commutant of U, if and only if dim g, = dim g2.

In this paper we are interested in certain wandering subspaces for the
bilateral shift Ls ; namely, those subspaces g such that the projection p from
L2 onto g lies in the commutant of ß(Af). But now we are no longer
interested in the Hilbert space dimension of g, rather we must consider the
relative dimension of g or, more accurately, of p as an element of ß(Af )'.
Theorem 3.3 confirms that when Af is a factor, then necessarily two complete
wandering subspaces are equivalent in ß(Af)', every wandering subspace is
dominated, in the sense of comparison of projections in ß(Af )', by a complete
wandering subspace, and, of course, a version of the BLH theorem is true.
Significantly, however, when Af is not a factor, two complete wandering
subspaces for Ls (whose projections lie in ß(Af)') may not be equivalent in
ß(Af)'; indeed they may not even be comparable (see the proof of Theorem
4.1). This discovery raises the interesting and apparently very difficult prob-
lem for nonfactors of finding a minimal, comprehensive set of mutually
inequivalent, complete wandering subspaces for Ls such that every wandering
subspace for L$ whose projection belongs to ß(Af)' is dominated, in ß(Af)',
by one of the subspaces in the set. To say the same thing differently, we
would like to find a family {91t,},6/ of left-full, pure, invariant subspaces
such that for no two different 91t, and 9IL, is there a unitary 7^ in 9Î such that
91t, = 7?c91t, and such that every pure invariant subspace 9lt is of the form
91t = 7?„9lt, for a suitable i and partial isometry Rv in 9Î. When expressed
this way, the problem is seen to be identical (in spirit) with that encountered
in the study of invariant subspaces on Riemann surfaces (cf. [1]) and in the
study of invariant subspaces on compact groups with ordered duals (cf. [10]).
In the first study, the indexing set 7 is the space of certain equivalence classes
of unitary representations of the fundamental group of the surface, while in
the second, it is a certain cohomology group. We note that in [13], the first
author has completely solved this problem for the crossed products described
in Example 2.5 and has obtained significant partial results for the algebras
described in Examples 2.6 and 2.7.

Theorem 3.2. For i = 1, 2, let 91t, be a left-pure, invariant subspace in L2,
let q¡ be the projection of L2 onto 91t,, and let p¡ be the projection of L2 onto
91t,- 0 L691t,, i = 1, 2. Then eachPi lies in ß(Af)', andp2 < px in ß(A7)' if and
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only if there is a partial isometry Rv in 9t such that q2 = RvqiR^. In this event,
9Ü2 = 7?„91t,.

Proof. Each qi lies in ß(Af)' by Proposition 3.1; and since Ls normalizes
ß(Af), and therefore ß(Af)', it follows that p¡ = q¡ - Lsq¡L$ lies in 2(Af)'
also. If p2 =< px in 2(Af )', then there is a partial isometry w in 2(Af )' such that
p2 = ww* and w*w < px. Since LJfp¡L$k is orthogonal to L^p¡Lf for / =£ k
(i.e., the range of p, is a wandering subspace for Ls), it follows that the series
2„eZ LgwLg" converges in the strong operator topology to a partial isometry
7^ which, as a calculation shows, belongs to 2' = 9t. Since each 91t, is pure,

<?, =  2   LfrM",
k = 0

and

k^r: = { S ¿w)(f LkpxLf\( i l^w*lA
\n=-oo !\k = 0 /\m=-oo /

-       2        L£wLrLkpxLfL?>w*Lr.
k>0;m,nGZ

Since the range of p, is a wandering subspace and since the initial and final
spaces of w are related to the p¡ as indicated above, we see that this sum
collapses to

f   LÄV,W*L** =  f   Lfww*Lg" = 2   ¿&2¿í* = ?2-
k = 0 * = 0 *=0

Thus RvqxR¿ = q2 as asserted. The converse is trivial because Rv lies in
91 = 2' G 2(A/)' and

RjM = 7^,7** - RvLsqxLgRt = q2 - Lsq2L¿ = p2,
showing thatp2 < px in 2(Af)'.

Theorem 3.3. If M is a factor and if 91t is a left-pure, invariant subspace,
then there is a partial isometry 7?„ in 9t such that 91t = RJ12. Moreover, Rv is
unitary if and only if 91t is full.

Proof. Let p be the projection onto 91t © L59lt and note that the
projection of L2 onto H2 © L5H2 is E0. Since Af is a factor, so is 2(Af)'.
Therefore either p =< E0, in which case the result follows from Theorem 3.2,
or E0 < p. In the second case there is a partial isometry 7^ in 91 such that
H2 = 7?„9lt. But then, since Rv and L8 commute, we find that

7?„L2 D 7<J V  Lf<m) =  V  W^ =  V  La"H2 = L2;\«ez '      «ez nsz

that is, 7?„ is a coisometry. Since, however, 91 is finite, R^ must be a unitary
operator and we may consequently write 91t = R¿H2 as asserted. The last
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statement in the theorem is now clear and the proof is complete.
The question of uniqueness in Theorem 3.3 will be answered in Proposition

3.9 after the structure of invariant subspaces in 1/ is discussed. Although the
results are those one expects, the proofs are sufficiently complicated to
warrant inclusion here. For the remainder of this section, we will assume that
Af is a factor.

Lemma 3.4. If x G L2 is such that [H°°x]2 is a pure invariant subspace, then
x = au where a is in H2 and u is a partial isometry in [H°°x]2.

Proof. By Theorem 2.3, [H°°x]2 = 7?„H2 for some partial isometry Ru in 91.
Since x G [H°°;c]2, it follows that x = au, a G H2. On the other hand, since
7 G H2, we see that u is in [H°°x]2.

Lemma 3.5. Suppose 1 < p < 2 and set r = (1/p - 1/2)-1. If x El/ is
such that [H°°x]p is pure, then x = zy where y G [H00*]^ n U and z G H2.

Proof. Consider the right polar decomposition of x as x = \x*\v and
observe that since [H°°jcL, is pure, so is [H°°|x*|p/2]2. Indeed, if [H00|x*|',/2]2
contained L2e for some nonzero projection e in L°°, then the final space of e
would be contained in the initial space of |;c*|1-/,/2u so that [L2e|x*|1-;'/2t;]/,
would be a nonzero reducing subspace of [H^xL,, contrary to assumption.
Therefore, by Lemma 2.4, we may write |x*|,'//2 = zu where z is in H2 and u is
a partial isometry in [H°°|;c*|/'/2]2. Set_y = u\x*\x~p^2v. Then clearly y is in 1/
and of course x = zy. Finally, since u G [H°°|x*|/'//2]2, we see that y lies in
[H0O|x*|"/2]2|x*|1-'p/2ü ç [W°x]p as asserted.

Theorem 3.6. Let 91t be a left-pure, invariant subspace of I/, 1 < p < oo.
Then there is a partial isometry R^ in 91 such that 91t = TL^H^.

Proof. We consider separately the case when 1 < p < 2 and the case when
2 <p < oo. The second follows from the first by a duality argument. Of
course the case whenp = 2 is covered by Theorem 3.3. Suppose that 1 < p <
2, set r = (1/p - 1/2)"', and let 9t = 91t n L2. Then Corollary 1.3 shows
that 9t is nonzero. Clearly 9t is closed in L2, left-invariant, and a moment's
reflection reveals that it is pure. Consequently, by Theorem 3.3, there is a
partial isometry 7?,, in 91 such that 9t = T^H2; and from this we conclude
that T^H" G 91t. For the reverse inclusion, choose a nonzero x in 91t and
note that since 91t is pure, so is [H00*^. Apply Lemma 3.5 to decompose x as
x = zy with z in H2 and y in [H°°x]p n U. Since r > 2, we may conclude that

y g [Hxx]p n u g 91t n u = 9t n Lr = (H2v) n u

= (H2 n Lr)v = Hrv,

where the last equality follows from Proposition 2.7 of [21]. Thus x = zy lies
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in H2Wv G RVHP and 91t = T^H'. Suppose now that 2 <p < oo and set
q = (1 — 1/p)-1. Let e0 be the right support projection of 91t; i.e., e0 is the
smallest projection e such that xe = x. We define 91 to be {y G e0L?|r(>'x)
= 0 for all x G 91t} and we assert that 9t is a right-pure, right-invariant
subspace. Clearly, 91 is right-invariant. To see that it is right-pure, observe
that if e\? G 91, then e < e0 and 0 = r(eyx) = r(yxe) for all y in If and all
x in 91t. Since e < e0, it follows by definition of right support that e = 0. By
the first half of the proof, 9t = LCH* for a suitable partial isometry Lv in 2.
By the Hahn-Banach theorem, Proposition 2.5 of [21], and the easily verified
fact that e0 = w*, we may conclude that

91t = {x G lfe0\r(xy) = 0,y G 9t} = {x G l/e0\r(xvy) = 0, y G H"}

= [x G Lpe0\xv G Hg} = Hgu* = RV.RSW.

Since T^.Äg is a partial isomety in 9Î, the proof is complete.

Corollary 3.7. If % is an ultraweakly closed, left ideal in W, then there is a
partial isometry v in H°° such that ^ = H°°t5.

Proof. It suffices to note that ^ is an ultraweakly closed, left invariant
subspace of L°° which is pure because it is contained in H°°.

We shall see later that the two-sided, ultraweakly closed ideals in H°° are
precisely those that can be written both in the form uH°° and in the form
H°°t) where u and v are unitaries in H°° satisfying w*H°°w = H°° and uH°°ü*
= H°°. The next corollary was promised in Remark 1.4. It follows im-
mediately from Theorem 3.6 and the fact that W is the closure of H°° in I/.

Corollary 3.8. Every invariant subspace of lf is the closure in If of the
bounded elements it contains.

We conclude this section with the following proposition which establishes
the degree of uniqueness in Theorems 3.3 and 3.6. It is but a minor extension
of known results.

Proposition 3.9. If R^ and R^ are partial isometries in 91, then R^W =
RVHP if and only if Rv = Rv R^, where R^ is a partial isometry in 9t(M) whose
initial space is the initial space of R^ and whose final space is the initial space of

Proof. By the preceding results, it clearly suffices to assume p = 2. Since
Rv¡ and Rv are partial isometries commuting with Ls-a bilateral shift-it is
well known (cf. [9, p. 64]) that 7?^ H2 = 7^ H2 if and only if there is a partial
isometry W on L2, commuting with Ls, and satisfying these conditions: (a) W
and W* leave H2 invariant; (b) the initial space of W is the final space of Rv¡
while the final space of W is the initial space of 7?„2; and (c) TL^ = T^If.
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Conditions (b) and (c) imply that W = R*2RV¡ = Rv¡v. is a partial isometry in
91, while condition (a) implies that W lies in 9î+ n 91*. = 9î(Af ).

4. Maximality. Our main objective in this section is to prove the following
theorem which relates the invariant subspace structure of H°° to the maximal-
ity (or lack of it) of H°° simply as a a-weakly closed subalgebra of L°°. Recall
that Theorem 2.2 tells us that H°° is maximal as a subdiagonal algebra, but as
we have stated and now prove, H°° need not be maximal among the a-weakly
closed subalgebras of H°°.

The fact that 77°°(T) is a maximal weak-*-closed subalgebra of L°°(T), a
fact which we shall use, is a trivial consequence of Beurling's theorem.
However, close examination of the proof reveals that the principal ingredient
used is the fact that all partial isometries contained in H °°(T) are unitary or,
to put the same thing differently, the nonzero, invariant subspaces contained
in 772 are all full and pure. No such assertion is true in our setting of course,
and we have found the effort required to get around this considerable and
surprising.

Theorem 4.1. The following three statements are equivalent:
(1) M is a factor;
(2) H°° is a maximal a-weakly closed subalgebra o/L°°; and
(3) if 91t is a two-sided invariant subspace of L2 which does not reduce 2,

then 9lt may be expressed as L„H2 and as RJi2 where u and v are unitary
operators in L2.

Moreover, in (3), u and v necessarily normalize H°°; i.e., u*H°°u = H°° and
vH°°v* = H°°.

We first show that (1) and (2) are equivalent and then, using (2), we prove
the equivalence of (1) and (3). To prove that (1) implies (2), we require a
conditioned special case.

Lemma 4.2. 7/Af is a factor and //93 is a { ß,},eK- invariant, a-weakly closed
subalgebra of L00 containing H°°, then either 93 = L°° or 93 = H°°.

Proof. Since 93 is {/L},eR-invariant and a-weakly closed, e„(f) lies in 93
for all / in 93. So, if H00 Ç. 93, there is an / in 93 and an n < 0 such that
£„(/) =£ 0. For this/, we may write e„(Lf) = LXLS", for some x G M. But then,
since 2(Af) G 2+ G 2(93), we may write Q(M)LXQ(M)LS" =
ü(M)LxLgü(M) G 2(93). Since finite factors are algebraically simple [7, p.
257], 2(A/)Lx2(Af) = 2(Af), and so Ls" lies in 2(93). Finally, then, Ls~x =
LsnLs-("+X) belongs to 2(93) and, consequently, 93 = L°°.

Proof that (1) implies (2). Suppose Af is a factor and that 93 is a proper
ultraweakly closed subalgebra of L°° containing H°°. Form the two-sided
invariant subspace [93]2 and note that [93]2 ¥= L2 by Corollary 1.5. Note too
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that [93]2 does not reduce either 2+ or 91 + because it contains the cyclic and
separating vector 7. Finally observe that by Theorem 3.3 we need only prove
that [93]2 is left-full and left-pure. For if it is, then there is a unitary v in L00
such that [93]2 = T^H2. This in turn implies that

[93]2 = JRU*7?„[2(33)H2]2 = 7?*[7?„2(93)H2]2

= 7C[2(93)7?t;H2]2 = /^[2(93)[33]2] = 7?ü*[93]2 = H2

which means that 93 = H°°.
Since H2 G [93]2, [93]2 is obviously full. To show that it is pure, we begin by

replacing 93 by a potentially bigger algebra. We set 23 = [93]2 n L°° and we
prove that 93 is a proper, a-weakly closed subalgebra of L°° such that
®[53]2 £ fôh- It is easy t0 see that 93 is a subalgebra of L°° which is proper
because [93]2 is different from L2, and of course 93 G 93. Since L2 G L1, any
ultraweakly convergent net in 23 converges in the weak topology on L2, and
since [93]2 is weakly closed in L2, any such net has its limit in [23]2. Thus 23 is
ultraweakly closed. To see that 23[23]2 Ç [23]2, fix b in 93 and let 9lt = {* G
[93]2|¿¿ G [23]2}. Since b is in L°° and [23]2 is closed in L2, 91t is closed in L2.
But 23 G 91t because [93]2 is invariant under left and right multiplication by
elements in 93. Thus 9lt = [23]2 and our assertions are proved.

To show that [93]2 is pure, letp^, be the projection of L2 onto H n>u L?[i8]2.
Since [93]2 ¥= L2, pœ ^ I. Also, by Proposition 3.1, p^ lies in 2' = 9!. Since,
however, [93]2 is invariant under 9Î+, so is C\n>0 L?[%5]2. This implies thatp^,
commutes with 9î(Af) and that RgP^R* < Px- Since 91 is finite, we actually
have equality: R^p^Rg = px- Thus, regarding pM as an element of L°°, it
belongs to the center, 3(H°°). Finally, sincep^ = px~ I Ues in f|„>o ^"[^8]2
G [93]2, we may conclude thatp^ lies in 3(L°°) n 93. If L°° is a factor, then
since px ¥= 1, px must be zero and we are done. In the contrary case,
3(L°°) n 23 is a a-weakly closed subalgebra of 3(1.°°) containing 3(L°°) n
H°°. By Theorem 2.3 and the fact that 77°°(T) is a maximal weak-* closed
subalgebra of L°°(T), we find that either 3(L°°) n 23 = 3(L°°) n H°°, in
which casep«, = 0, or 3(L°°) n » = 3(L°°). But if 3(L°°) were contained in
23, then the a-weakly closed algebra © generated by H°° and 3(L°°) would be
a {/L},eR-invariant subalgebra of L°° satisfying the relations H00 G_ 6 G 23 Ç
L°°. Since this is not possible by Lemma 4.2, we conclude once more thatp^
must be zero, completing the proof that (1) implies (2).

Proof that (2) implies (1). Suppose the center of Af, 3(Af), is nontrivial
and consider two mutually exclusive and exhaustive cases.

Case 1. a does not act ergodically on 3(Af).
In this case, choose an a-invariant projection e in 3(Af) different from zero

and one, and let 23 be the a-weakly closed algebra generated by H°° and eL°°.
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Since e is an a-invariant projection in 3(M) it is in the center of L00, and it is
easy to see from this that 23 is proper and larger than H°°. Thus in this case,
H°° is not maximal among the a-weakly closed subalgebras of L°°.

Case 2. a acts ergocially on 3(Af ).
To prove that H°° is not maximal, it suffices to produce a nonreducing,

left-invariant subspace 91t of L2 and an element / in L°° \ H°° such that
Ly91t G 91t. To do this, choose a nonzero projection e in Q(M) such that e
and a ~ x(e) are orthogonal (we may do this by hypothesis) and set 91t = {g
G lf\Eng = 0, n < — 1, and eE_xg = E_xg). Then since e G 3(Af),
2(Af)9lt G 91t and of course La91t Ç 91t; thus, 2+91t G 9ît. Also, it is
clear that Ls* does not leave 9lt invariant, so that 91t does not reduce 2+.
However, by the condition on e, LeLg*, which is not in 2+, does map 9lt into
9lt. Thus, in this case too, H00 is not maximal among the a-weakly closed
subalgebras of L°°, and the proof that (2) implies (1) is complete.

Proof that (1) implies (3). By Theorem 3.3, we need only prove that each
two-sided invariant subspace which does not reduce 2+ is left-full and
left-pure. So let 91t be such a space and let px be the projection onto
n„>0^i^- Then, as in the proof that (1) implies (2)^^ is different from 7
and lies in the center of 2. But also, pM9lt Ç p^L2 = fl „>0 L6"91t G 9lt.
Hence, by (2),px belongs to 2+. Since 3(L°°) n H°° is isomorphic to 77 "(T)
by Theorem 2.3 andp^ ^ 7, we conslude thatp^ = 0; i.e., that 91t is pure.
To show that 91t is full, letp^ be the projection onto V„ez ^«"3^- Then,
as before, p _ x lies in the center 2, but this time p _ x is not zero. Also,
p_009It = 91t because 9lt Ç \/nSZLsn<iJl =p_O0L2. Thus, by maximality
once moTe,p_x lies in 3(L°°) G H00 and consequently, p _ x = 1. Thus 91t is
full and the proof that (1) implies (3) is complete.

Proof that (3) implies (2). This is actually contained in the proof that (1)
implies (2). Indeed, if 23 is a proper ultraweakly closed subalgebra of L00
containing H°°, then [93]2 is a nonreducing, two-sided invariant subspace of L2
which, by (3), must have the form T^H2 for some unitary v in L°°. But then
the argument in the first paragraph of the proof that (1) implies (2) shows that
23 = H00. Thus (3) implies (2).

For the last assertion of the theorem suppose that a two-sided invariant
subspace has the form L„H2 for a suitable unitary u in L°°. Then since
2+L„H2 G L„H2, we see that L*2+L„H2 G H2 so that L*2+L„ Ç 2+. If this
inclusion were proper, then 2+ would be properly contained in L„2+L*, a
proper ultraweakly closed subalgebra of 2, contrary to (2). Thus m*H°cm =
H00 and a similar argument proves that vH°°v* = H°°. This completes the
proof of Theorem 4.1.

There are several corollaries and modifications of Theorem 4.1 which are
worth developing. The first was actually proved in the third paragraph of the
proof that (1) implies (2) and so we omit the argument here.
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Corollary 4.3. If e is a projection in L°° such that Leh2 is invariant under
2+, then e lies in 3(L°°), so that Lelf reduces 2+.

There is a useful variation of conditon (3) in Theorem 4.1 ; it looks mildly
weaker, but in fact it is equivalent. We present it in

Proposition 4.4. The following statement is equivalent to (3) (and hence to
(I) and (2)) in Theorem 4.1.

(3') Every two-sided invariant subspace contained in H2 may be expressed in
the form LUH2 for a suitable unitary u in L°°.

Proof. Since H2 contains no nonzero reducing subspace, it is clear that (3)
implies (3'). To prove the reverse implication, it suffices to prove that H°° is a
maximal, a-weakly closed subalgebra of L00. So suppose 23 is a proper
a-weakly closed subalgebra of L°° containing H00. Then as in the proof of
Theorem 4.1, [23]2 is a proper, two-sided invariant subspace of L2 and it
suffices to prove that [93]2 = T^H2 for some unitary t> in L°°. Let % = If ©
[93]2. Then DC is a nonzero subspace of (H2)x = /H2, and so, by Proposition
l.l,J% is a two-sided invariant subspace of H2. By hypothesis, J% = LUH2
for some unitary u in L°° and consequently,

[23]2 = L2 © % = L2 © 7L„H2 = L2 © 7^/H2

= 7C(L2 © JH2) = TtfH2 = R¿RSH2.

Since RfRgissi unitary in 91, the proof is complete.
Theorems 3.3 and 4.1 may lead one to conjecture that a stronger form of

Theorem 4.4 is true; namely, if every pure invariant subspace 91t of L2 has
the form 91t = T^H2 for some partial isometry v in L°°, then Af is a factor.
This, however, is not the case. For if Q = {w„ w2} is a two-point space, if
M = L°°(ß), and if a is the trivial automorphism, then L°° is isomorphic to
L°°(ß X T), H°° is isomorphic to {/ G L°°(ß X T)|/(w,., •) G 77°°(T), i =
1,2}, and it is not difficult to see that each pure invariant subspace of L2 has
the desired form even though Af is not a factor. There are two things "wrong"
with this example. The first is that a leaves the center of Af elementwise
invariant. Although we have not pursued the details, it appears to be an
exercise in reduction theory to prove that every pure invariant subspace of L2
has the form T^H2 for some partial isometry v in L°° if and only if a fixes the
center of Af elementwise. The second thing "wrong" with the example is the
fact that 3(L°°) n H00 is not isomorphic to 77°°(T). In view of Theorem 2.3,
to say that 3(L°°) n H°° is isomorphic to 77 M(T) is to say that L00 is not a
factor and 3(L°°) n Af = {C7}. This explains the form of the hypotheses in
the following proposition which eliminates the second "defect".
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Proposition 4.5. 7/3(L°°) n Af = {C7} and if each invariant subspace 9lt
o/H2 has the form 91t = RvH2for some partial isometry v in L°°, then, in fact,
M is a factor.

Proof. We begin with an observation which is implicit in [19, Theorem 1].
Suppose U is a bilateral shift on a Hilbert space % and that %+ is a full,
pure invariant subspace of %. If 0 is a partial isometry on % commuting
with U such that ®%+ G %+, and if P is the initial projection of 0, then
P %+ G %+. An argument for this runs as follows. Rosenblum proves that if
Q is the initial projection of the restriction of 0 to %+, ®\%+, then Q
commutes with the restriction U\%+. But U\%+ is an isometry which has U
as its minimal unitary extension by hypothesis. So, by a well-known result,
there is a unique projection Q on % which commutes with U, leaves %+
invariant, and satisfies the equation Q = Ö|5C+. A moment's reflection
reveals that Q = P.

To prove the proposition, it suffices, by Proposition 4.4, to prove that if 9It
is a two-sided invariant subspace of H2, then 91t = T^H2 for some unitary v
in L°°. So let 91t be such a space. By hypothesis, 91t = P^H2 for a partial
isometry v in L°°. If e = v*v, then 7?,, = RVR*, and

7teL2 = T^L2 = Rv( V  L6"H2) = V  ^"(^H2) = V  Ls"91t
\n<0 ' n<0 n<0

is invariant under 91+. By Corollary 4.4, e lies in the center of L°°. Since L°° is
finite and e is central, w* = e also, i.e., Re is the initial projection of Rc.
Since R» commutes with the bilateral shift Ls and leaves invariant H2, a full,
pure invariant subspace for Ls, we may apply the initial observation of the
proof to conclude that T^H2 G H2. Since e is Hermitian, we conclude from
this that Re lies in 9t+ n 9t*_ = 9î(Af). Thus e lies in 3(L°°) n Af = {C7},
and since e ¥= 0, e is the identity operator. This proves that v is unitary as
promised.

The next result was promised after Corollary 3.7.

Proposition 4.6. If M is a factor, then each a-weakly closed, two-sided ideal
in H°° can be written as LUH°° and as TL^H00 for unitary operators u and v in
H°° satisfying u*Hxu = H00 and vHxv* = H00.

Proof. Let ^ be such an ideal. By Proposition 3.7, 3 = L„H°° for a partial
isometry u in H°°. On the other hand, [$i]2 = LUH2 is a two-sided invariant
subspace of H2 and so does not reduce 2+. By Theorem 4.1, then, [^]2 =
L^H2 where w is a unitary in L°° such that tvH>* = H°°. By Proposition 3.9,
there is a partial isometry Ls in 2(Af ) whose initial space is the initial space of
Lu and whose final space is the initial space of Lw such that Lu = LWLS. Since
2 is finite and L^ is unitary, Ls and, consequently, Lu must be unitary; also
uWu* = w5H°°j*w* = wW°w* = H00. This proves that u has the desired
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properties, and since a similar argument applies to v, the proof is complete.

5. Lattices of invariant subspaces and ideals. When studying an operator
algebra, it frequently is of interest to know explicitly the structure of the
lattices of its invariant subspaces and ideals. In particular, it is of especial
interest to know when these lattices are totally ordered. While it is clear that
the lattice of a-weakly closed left ideals, say, in H°° is never totally ordered,
even when Af is a factor, the following result shows that under suitable
hypotheses the lattices of two-sided invariant subspaces in L2 and of two-
sided a-weakly closed ideals are totally ordered.

Theorem 5.1. If M is a factor and if a" is outer for all n ¥= 0, then the lattice
of two-sided invariant subspaces in L2 is totally ordered, as is the lattice of
a-weakly closed, two-sided ideals in H°°.

Proof. We attend to the invariant subspaces since the statement about
ideals is proved similarly using Proposition 4.6. The hypothesis implies that
L00 is a factor [5, p. 586] and so by Corollary 4.3, no two-sided invariant
subspace reduces 2+. By Theorem 4.1, each such subspace is of the form
7?„H2 where t> is a unitary in L00 such that uH°°u* = H°°. Thus, to prove the
theorem, it suffices to prove that Rv = R^Rg for some integer n and unitary u
in M. For this, it suffices to show that R^(M)RV = 9i(Af) by Lemma 3.1 of
[5]. Since v normalizes H°°, we have

Rtm(M)Rv = Rt(m+n 91*.)RV
= (T^+TLJ n (RW*M = SR+ n 9Î*+ = 9Î(A/)

as required.
Finite factors Af with automorphisms a such that a " is outer for all n ^ 0

must be of type II. On the other hand, by Theorems 1 and 4 in [8], every
known finite type II factor has such an automorphism. For a concrete
example, assume that Af is hyperfinite and realized as the infinite tensor
product, indexed by the integers, of two-by-two matrix algebras. In this
instance one may take a to be that automorphism implemented by the shift
transformation on the indexing set.

It strikes us that the hypotheses of Theorem 5.1, and of the corollary to
follow, are too strong. We believe, but are unable to prove, that it suffices to
assume that Af and L°° are factors. Of course by Theorem 2.3 these assump-
tions are clearly necessary.

Factors are those von Neumann algebras 91 with the property that the von
Neumann algebra generated by 91 and 91' is the full algebra of operators on
the underlying Hilbert space. We now show that it is possible for 2+ and 9t+
to have a similar relationship vis-à-vis (block) triangular matrix algebras. We
find this rather surprising in view of the fact that 2+ seems to be unlike a
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triangular matrix algebra in so many ways.

Corollary 5.2. If M is a factor and if a" is outer for all n =£ 0, then the
weakly closed algebra 91 generated by 2+ and 91 + on L2 is the algebra %
consisting of all operators on L2 which leave invariant each of the spaces
2?_„ 7i,L2, n E Z

Proof. Since 2"_„ T^L2 = LS"H2 = RsnH2, n E Z, 91 is certainly contained
in St. On the other hand, by Theorem 5.1, the only subspaces left invariant by
91 are of the form 2£L„ Ek\}. To show, then that 91 = St, we may proceed in
two roughly equivalent ways. The crucial step in either is to prove that 91
contains {En)'neZ. Once this is done, trivial calculations prove that {En}'neZ
and Rs generate St. If one wants to avoid these calculations and follow an
alternate route, one need only note that [En)'neZ contains a m.a.s.a. in the
full algebra of operators on L2. Since the lattice of subspaces invariant under
91 is totally ordered, this and Theorem 9.24 in [17] imply that 91 = St.

We show that {En}'nlEZ = (2(M), 9î(Af)}" which in turn is contained in 91.
For this, we denote the operators in the left regular representation of Af on
L2(M, <b) by lx, x E M, and those in the right regular representation by rx. On
L2, which we identify with a direct sum of copies of L2(M, <b), the operators
Lx and Rx,xEM, have these matricial representations:

O
Lr =

and

Rr =

O

ra~'(x)

O

o
ra(x)

Any operator A in {2(Af), 9i(M)}' is in 2(Af)' and so has a matricial
representation A = [rx ] for suitable xnm in M. In order for A to commute
with 91(Af), it is necessary and sufficient that for each pair (n, m), the
equation a"(y)xnm = x„mam(y) hold for all y in Af. This, in turn, is
equivalent to the validity of the equation

ya-"(xnJ = a-"(x„im)am-"(y) (1)

for all y in M. If n = m, then equation (1) shows that xn„ lies in 3(Af). Since
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M is a factor, each xnn is a scalar (which may depend on tj). If, on the other
hand, n ^ m and if x„m i= 0, then a straightforward argument using the polar
decomposition of a~"(xnm) and equation (1) shows that am~" is inner,
contrary to hypothesis. (The details are on p. 203 of [25].) Thus we find that
(2(Af), m(M)}' G {En)"n&z so that {En}'nez G (2(A/), 9î(Af)}". Since the
reverse inclusion is clear, the proof is complete.

6. Which subdiagonal algebras are crossed products? We have seen that the
validity of the BLH theorem in crossed products has a number of surprising
and strong consequences. One might well ask, therefore, what the most
general setting is in which this theorem is valid. We believe that the following
result is the best one can hope for in a search for ultimate generality.

We fix once and for all a finite von Neumann algebra 93 with trace 4> and a
subalgebra 91 of 23 which is finite, maximal, subdiagonal algebra in 93 with
respect to <#> and expectation <I> mapping 23 onto 35 = 91 n 91*. We adopt the
notation of §1 and write L2 = L2(23, </>), 772 = [9I]2, etc.

Theorem 6.1. If every nonzero subspace 9lt o/772 which is invariant under
2+ and 91 + has the form 91t = RVH2 for some unitary v, then there is a normal
*-automorphism a of % preserving <b such that 23 is isomorphic to the crossed
product L°° determined by 35 and a in such a way that 91 becomes identified with
the corresponding space H°°.

This and Proposition 4.4 immediately yield

Corollary 6.2. 35 is a factor.

We break the proof of Theorem 6.1 up into a series of lemmas. The first
thing to observe is that T7,2, which is the closure in L2 of the kernel of 0
restricted to 91, is a two-sided invariant subspace of 772. By hypothesis, there
is a unitary v in 23 such that RVH2 = T7,2. What is required is a careful
analysis of v.

Lemma 6.3. If v is a unitary in 23 such that RVH2 = Hq, then for all n in Z,
R¿H2 = L„"7/2.

Proof. If /702 = RVH2, then by Proposition 1.1,

772 = L2 © JHl = L2 © /7?„772 = L2 © L*JH2 = L*(L2 © /772) = L*H2,
so that 7?„772 = 7702 = L„772. If n > 1 and if R¿H2 = L¿7í2, then

7?r "772 = ^(X"#2) = T^Ti2) = LV"(RVH2) = LV"(LVH2) = L„n+1772.

Thus LV"H2 = RTH2 for all n > 0. But if n < 0, then using Proposition 1.1
once more and the fact that

7?*"7702 = R?"-X)H2 = L?"-»H2 = L*nH^
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we find that
rv"h2 = /Xn772 = j{l;"(jh2)) = j(l:"(l2 © 772))

= J(L2 © L?H2) = J(L2 © 7^*"7702) = j{Rtn(JH2))

Lemma 6.4. 91 is a maximal, a-weakly closed subalgebra of 23.

Proof. Using Corollary 1.5, the proof requires only a notational change in
the proof of Proposition 4.4. Let 6 be a proper a-weakly closed subalgebra of
93 containing 91. Then % = L2 0 [6]2 is nonzero by Corollary 1.5 and J% is
a two-sided invariant subspace in 772. By hypothesis there is a unitary v in 93
such that J% = RVH2. It follows that [E]2 = L*7702. Since 7702 is itself of the
form L^H2 for a suitable unitary w, by hypothesis and Lemma 6.3, we
conclude that [©]2 = LUH2 where u = v*w is unitary. As in the proof that (1)
implies (2) in Theorem 4.1, it follows that E = 91.

Lemma 6.5. Let v be a unitary in 93 such that 7702 = R^H2. Then t;35u* = 35.

Proof. By Lemma 6.3, H¿ = LVH2 and since 2(35) G 2+, we find that

L*2(35)L„772 = L*2(35)772 G L^H2 = 772.
Thus 4*2(35)4, G 2+. Since 2(35) is selfadjoint, L*2(35)L„ G 2+ n 2* =
2(35). On the other hand,

4,2(35)4*7702 = L„2(35)772 G LVH2 = 772.
But 7702 is also invariant under 2+ and 91 is a maximal a-weakly closed
subalgebra of 93 by Lemma 6.4; consequently 4,2(35) L* G 2+ n 2*. = 2(35).
Thus 4,2(35)4* = 2(35); or equivalently, u35u* = 35 as was to be proved.

Proof of Theorem 6.1. Fix once and for all a unitary operator t; in 93 such
that 7^772 = 77q = L^Tf2 and consider the selfadjoint subalgebra 93 of 93
generated by 35 and v. (We are not closing 23 in any topology; it consists
merely of finite sums of finite products with terms in 35 u [v"}„ez.) It is
clear that when 23 is viewed as a Hilbert algebra, 23 is a sub-Hilbert algebra.
Let a be the automorphism of 35 implemented by v; i.e., a(d) = vdv*, d G 35.
Note that a preserves <j> and let L2, be the Hilbert algebra associated with 35,
a, and <¡> as in §2. For x — "2,k<=zdkvk in 93, we define wx = f in L2,, where
f(k) = dk, and we prove that W is well defined and isometric at the same
time. First note that since L1)'1[35]2 G Hq G [35]^ for all positive integers n,
[35]2 is a wandering subspace for the unitary operator Lv. Now the Hilbert
algebra norm of x = 2¿.ez dkvk in 93 is given by the formula ||jc||2 = <¡>(x*x)
which is the same as

2 ^{v*ldfdkvk) = 2 2*(»*-'«) = 2>(«) = 2 Kll2,
k      I k      I k k

the Hilbert algebra norm of Wx in L2,. Thus W is well defined and isometric

4"772.
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and it is a simple matter to check that W is a. Hilbert algebra isomorphism
from 93 onto L2,. To complete the proof, then, we need only show that
[23]2 = L2 and that

I  AT[n= 2   [»"35]2 = /72
/i = 0 « = 0

(cf. [7, Proposition 1 on p. 72]). This is tantamount to showing that [35]2 is a
complete wandering subspace for Lv. Consider first the space 91t = 772 ©
2~_0 4"[®]2- Since [35]2 = 772 © 772 = 7/2 © L„772, it is well known and
easy to show that 91t = D „>0 4"f^2- Thus 91t is right-invariant. On the
other hand, Lemma 6.3 shows that 9lt = D „>0 R"H2 so that 91t is left-in-
variant as well. Since 9lt is contained in 772, 9It does not reduce 2+ unless
91t = {0}. But if 91t ^ {0}, then by Lemma 6.4, 2+ = [Lx G 2|LJC91t Ç
9lt}. Since, however, L*91t = 91t, it follows that if 9lt ^ {0}, then L* lies in
2+. This and the fact that Lv is in 2 + would imply that t; is in 35, which it
clearly is not since [35]2 is a wandering subspace for Lv. Thus 9lt = 0 and
772 = 2"=0 4"[®l2- To finish the proof, note that

00 ooH2 = LVH2= 2   4"+1[®]2= 2   4n[®]2>
= 0 n = \

and so

JH2 = 2 R?[J®]2 =   2    K[®]2 =   2    4n[®]2-
n = \ n= — oo n=—oo

where the last equality is justified by Lemma 6.5. Thus, by Proposition 1.1,
oo -1

L2 = 772 © /772 =  2   4"[35]2 ©    2     AT[®]2

=   S   4f[®]2.
n= — oo

and the proof is complete.
Added in Proof. The conjecture made in Remark 1.4 is correct and is

proved in the forthcoming paper by the third author, entitled A note on
invariant subspaces for finite maximal subdiagonal algebras, which will appear
in the Proceedings of the American Mathematical Society.
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