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ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that degrades mRNAs containing nonsense codons, and
regulates the expression of naturally occurring transcripts. While NMD is not essential in yeast or nematodes, UPF1, a key NMD
effector, is essential in mice. Here we show that NMD components are required for cell proliferation in Drosophila. This raises
the question of whether NMD effectors diverged functionally during evolution. To address this question, we examined expres-
sion profiles in Drosophila cells depleted of all known metazoan NMD components. We show that UPF1, UPF2, UPF3, SMG1,
SMG5, and SMG6 regulate in concert the expression of a cohort of genes with functions in a wide range of cellular activities,
including cell cycle progression. Only a few transcripts were regulated exclusively by individual factors, suggesting that these
proteins act mainly in the NMD pathway and their role in mRNA decay has not diverged substantially. Finally, the vast majority
of NMD targets in Drosophila are not orthologs of targets previously identified in yeast or human cells. Thus phenotypic
differences observed across species following inhibition of NMD can be largely attributed to changes in the repertoire of
regulated genes.
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INTRODUCTION

The gene expression pathway involves a number of inter-

linked post-transcriptional steps that are subject to several

quality control mechanisms, to ensure that only fully pro-

cessed and error-free mRNAs are translated. Among these

mechanisms, the nonsense-mediated mRNA decay (NMD)

pathway recognizes and targets for degradation mRNAs

containing premature translation termination codons

(PTCs), which could give rise to truncated and potentially
harmful proteins (Holbrook et al. 2004; Conti and Izaur-

ralde 2005; Lejeune and Maquat 2005).

A key molecular component of the NMD pathway is

UPF1. Deletion or silencing of the upf1 gene results in the

stabilization of PTC-containing mRNAs in all organisms in

which NMD has been investigated (Conti and Izaurralde

2005; Lejeune and Maquat 2005). Two additional proteins,

UPF2 and UPF3, interact with UPF1 to form a complex
whose function in NMD is conserved in eukaryotes (Conti

and Izaurralde 2005; Lejeune and Maquat 2005). UPF1

activity is regulated by phosphorylation in multicellular

organisms, and this requires UPF2, UPF3, and four addi-

tional proteins that have no clear orthologs in yeast: SMG1,

SMG5, SMG6, and SMG7 (Pulak and Anderson 1993; Cali

et al. 1999; Page et al. 1999). SMG1 is a phosphoinositide-3-

kinase-related protein kinase required for UPF1 phosphor-
ylation (Denning et al. 2001; Pal et al. 2001; Yamashita et al.

2001; Grimson et al. 2004). SMG5, SMG6, and SMG7

recognize phosphorylated UPF1 and are thought to trigger

its dephosphorylation by recruiting protein phosphatase 2A

(Anders et al. 2003; Chiu et al. 2003; Ohnishi et al. 2003;

Fukuhara et al. 2005).

Despite conservation of the trans-acting factors required

for NMD, different species have evolved different mecha-
nisms to discriminate natural from premature translation

termination codons and to degrade transcripts that have

been identified as NMD substrates (Conti and Izaurralde

2005). In mammals, recognition of premature stop codons

results from a conjunction of terminating ribosomes and an

exon-exon boundary located at least 50 nucleotides down-

stream of the PTC (Lejeune and Maquat 2005). In contrast,

in both Drosophila and Saccharomyces cerevisiae PTC rec-
ognition occurs independently of exon–exon boundaries

(Conti and Izaurralde 2005).

Once a PTC is recognized by the NMD machinery,

enzymes involved in general mRNA decay are recruited
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and the aberrant transcript is rapidly degraded. In yeast and

human cells decay of PTC-containing mRNAs occurs by

exonucleolytic degradation at either end of the message

(Baker and Parker 2004). In Drosophila, degradation of

nonsense transcripts is initiated by endonucleolytic cleav-

age near the PTC. The resulting 50 decay intermediate is

degraded by the exosome, while the 30 fragment is degraded
by XRN1 (Gatfield and Izaurralde 2004).

The NMD pathway not only degrades aberrant mRNAs

containing PTCs as a result of mutations or errors during

transcription or RNA processing, but is also implicated in the

post-transcriptional regulation of wild-type transcripts (Hol-

brook et al. 2004; Lejeune and Maquat 2005). Nevertheless,

NMD components are not essential in yeast (Leeds et al.

1991). Similarly, inhibition of the NMD pathway in Caenor-

habditis elegans leads to viable worms with defects in the male

bursa and the hermaphrodite vulva (Hodgkin et al. 1989;

Pulak and Anderson 1993). In contrast, UPF1 null mice die

early in embryonic development and attempts to establish

homozygous UPF1�/� ES cells have failed, indicating that

UPF1 is required for cell viability in mice (Medghalchi et al.

2001). The simplest explanation for these phenotypic differ-

ences is that NMD factors regulate the expression of essential
transcripts in mice, but not in S. cerevisiae or C. elegans. Al-

ternative explanations for these differences include the pos-

sibility that NMD factors (e.g., UPF1) have acquired addi-

tional functions in higher eukaryotes.

Gene expression profiling of yeast strains lacking Upf1p,

Upf2p, or Upf3p indicates that these proteins act as obligate

partners to regulate the expression of a common set of

transcripts, representing �10% of the transcriptome (Leli-
velt and Culbertson, 1999; He et al. 2003). Similarly, in

human cells depleted of UPF1, about 10% of the transcrip-

tome shows differential expression (Mendell et al. 2004). A

subset of human UPF1 targets is also regulated by UPF2;

however, the additional human NMD effectors have not

been investigated. The lack of genome-wide information on

genes regulated by the additional components of the NMD

machinery in metazoa leaves open the question of func-
tional diversification.

To investigate whether NMD factors have additional

roles in mRNA turnover in multicellular organisms, and

to shed light on the physiological role of NMD across

species, we examined for the first time changes in gene

expression associated with the depletion of all known

metazoan NMD effectors in Drosophila cells (i.e., UPF1,

UPF2, UPF3, SMG1, SMG5, and SMG6; no SMG7 ortholog
has been identified in Drosophila) (Gatfield et al. 2003). Our

analysis identified a core set of transcripts regulated in

concert by all NMD factors. Among these we found smg5

and smg6 mRNAs, revealing the existence of a feedback

mechanism. We show further that, with a few exceptions,

orthologs of yeast or human NMD targets are not regulated

by NMD in Drosophila. Finally, very few transcripts are

regulated exclusively in the individual knockdowns, indi-

cating that NMD factors act in the same pathway and their

role in post-transcriptional mRNA regulation has not di-

verged substantially.

RESULTS

NMD is required for cell proliferation in Drosophila

To shed light on the physiological role of NMD in Dro-

sophila, we depleted all known NMD factors (i.e., UPF1,

UPF2, UPF3, SMG1, SMG5, and SMG6) from Schneider

cells (SL2 cells). The depletions were carried out by RNA

interference under conditions that lead to the stabilization

of NMD reporters (Gatfield et al. 2003). The efficiency of

the depletions was confirmed by RT-PCR (see Supplemen-
tary Fig. S1 at http://www-db.embl.de/jss/EmblGroupsHD/

g_127?sP=4.) and by the stabilization of the ornithine de-

carboxylase antizyme mRNA (oda), an endogenous tran-

script known to be regulated by NMD (see below, and

Gatfield and Izaurralde 2004). Depletion of NMD proteins

impaired cell proliferation (Fig. 1A).

To understand better the basis for this inhibition, we

analyzed DNA profiles using flow cytometry. Cells depleted
of UPF1 and UPF2 were arrested at the G2/M phase of the

cell cycle, when compared to cells treated with a dsRNA

targeting green fluorescence protein (GFP dsRNA) (Fig.

1B–D). An increase in the proportion of cells in the G2/M

phase was also observed following depletions of UPF3,

SMG5, and SMG6 (Supplementary Fig. S2). Depletion of

POLO kinase, a key regulator of mitotic onset as well as

progression through mitosis (Ohi and Gould 1999), resulted
in a cell cycle profile very similar to that of UPF1- or UPF2-

deficient cells (Fig. 1E). These results reveal an important

role for NMD in cell cycle progression in Drosophila.

Genome-wide identification of transcripts
regulated by the NMD pathway

To identify a comprehensive set of targets of the NMD
pathway, we analyzed RNA expression profiles of SL2 cells

depleted of UPF1, UPF2, UPF3, SMG1, SMG5, or SMG6,

using oligonucleotide microarrays. For each NMD compo-

nent we obtained RNA expression profiles from two inde-

pendent knockdowns. As a reference, RNA samples were

isolated from mock-treated cells. To exclude mRNAs non-

specifically regulated in response to the dsRNA treatment,

transcripts exhibiting altered expression in cells treated with
GFP dsRNA were not considered in further analysis (see

Materials and Methods). Detectable transcripts in all

experiments (5379 RNAs) were assigned to three classes

according to their relative expression levels in the two

independent profiles of each factor (Fig. 2). These include

mRNAs that were at least 1.5-fold underrepresented relative

to the control sample (blue), not substantially changed (less

than 1.5-fold different, yellow) or more than 1.5-fold over-
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represented (red; see Materials and Methods for an expla-
nation of the 1.5-fold cutoff).

In cells depleted of UPF1, 75.3% of detected mRNAs were

less than 1.5-fold different from the control samples, 14.3%

of mRNAs were at least 1.5-fold upregulated, and 10.4%

were underrepresented (Fig. 2). Although knockdowns of

UPF3, SMG1, and SMG5 all resulted in the stabilization of

the oda mRNA (Fig. 3) and impaired cell proliferation (Fig.

1A), overrepresented and underrepresented transcripts con-
stituted only a minor fraction of detectable mRNAs (Fig. 2).

An intermediate phenotype was observed in cells depleted of

UPF2 or SMG6 (Fig. 2). The differences in the number of

transcripts showing altered expression in the individual

knockdowns might be explained by differences in depletion

efficiencies and/or different levels of dependence on one or

more NMD factors by specific transcripts.

We confirmed the microarray results using Northern blot

to assay the expression levels of selected mRNAs (Fig. 3).

Transcripts that were over- or underrepresented relative to

the control samples in the microarray experiment showed

the same positive or negative trend when detected by
Northern blot. Differences in the extent of the regulation

of specific transcripts in the different depletions (e.g., tra

mRNA), were also confirmed when the transcript levels

were measured by Northern blot.

Depletion of NMD factors leads to
similar expression profiles

To ensure that the global changes of expression profiles

observed in cells depleted of NMD factors are caused by

the inhibition of NMD, rather than being a nonspecific

response to the depletion of essential proteins, we com-

FIGURE 1. Depletion of NMD factors impairs cell proliferation and
leads to G2/M-cell cycle arrest. (A) Drosophila SL2 cells were treated
with the indicated dsRNAs. Cell numbers were determined up to 7 d
after addition of dsRNAs. (B–E) FACS analysis of asynchronously
growing SL2 cells. Cells were treated with the indicated dsRNAs,
stained with propidium iodide and analyzed using a flow cytometer.
The table shows the proportion of cells in different phases of the cell
cycle as shown in (D).

FIGURE 2. Expression profiles of Drosophila cells depleted of NMD
factors. RNAs are represented as lines and colored relative to their
expression levels, as indicated. Average expression levels of two inde-
pendent profiles are shown. The experiment tree was calculated using
the distance option of the genespring software (Euclidian distance).
Although 5379 mRNAs were detected in the 12 profiles obtained for
the NMD factors, the top panel of this figure displays 4940 mRNAs,
which were detectable both in the 12 profiles obtained in NMD-
deficient cells and in the two profiles of THO-depleted cells. The
fractions of regulated transcripts in two independent profiles for
each factor are indicated underneath.
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pared these profiles to the profiles observed when proteins

involved in a different step of gene expression were depleted,
in particular when components of the THO complex were

depleted. The THO complex is involved in mRNP assembly

and export; its depletion impairs cell proliferation and leads

to an increase in the proportion of cells in the G2/M phase

similar to that observed in cells depleted of SMG5 or SMG6

(data not shown) (Rehwinkel et al. 2004). In addition, THO

depletion alters the expression of a similar fraction of the

transcriptome (Fig. 2; Rehwinkel et al. 2004). When com-
pared to the expression profiles observed in the THO knock-

down, the profiles displayed by cells depleted of NMD

factors were similar to each other and clustered to one

branch of the experimental tree (Fig. 2), suggesting that

these profiles represent a specific signature of the NMD
pathway.

To investigate further the similarity of the cellular

response to the depletion of NMD factors, we selected

mRNAs belonging to specific classes in the UPF1 and UPF3

knockdowns (at least 1.5-fold over- or 1.5-fold underrepre-

sented, respectively) and analyzed their levels in the other

knockdowns (Fig. 4A–D). A high degree of overlap was

observed between upregulated transcripts in the individual
knockdowns. This is consistent with the prediction that

direct targets of the pathway would be upregulated in

NMD-deficient cells. Indeed, of the 525 mRNAs that were

FIGURE 3. Validation of microarray results by Northern blot analysis. The identity of the selected transcripts is indicated on the right. The signals
from the Northern blot were normalized to 18S rRNA (not shown). These values were compared with the values measured by microarray (average
of two independent profiles). Values are given as fold changes relative to the values obtained in mock treated (cont.) cells (positive values,
overrepresented; negative values, underrepresented).
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at least 1.5-fold overrepresented in the UPF1 knockdown,

88.4% and 74.9% changed levels coordinately in UPF2 and

SMG6 depleted cells. Moreover, ca. 50% of these were 1.5-

fold upregulated in UPF3, SMG1, and SMG5 knockdowns

(Fig. 4A). Conversely, of the 185 mRNAs at least 1.5-fold

overrepresented in the UPF3 knockdown, >80% were upreg-

ulated in the other knockdowns (Fig. 4C).

Downregulated transcripts overlapped to a lesser extent. Of
the 383 mRNAs at least 1.5-fold underrepresented in the UPF1

knockdown, 66.6% and 45.5%were underrepresented inUPF2

and SMG6-depleted cells, respectively, and ca. 18% in the other

knockdowns (Fig. 4B). Finally, between 27% and 68%of the 63

transcripts downregulated in the UPF3 knockdown were also

underrepresented in the other knockdowns (Fig. 4D). Taken

together, these results demonstrate that depletion of NMD

proteins affects the expression of a common set of RNAs.

Identification of a core set of transcripts
regulated by the NMD pathway

To identify a core set of transcripts regulated by the

NMD pathway, we generated a list of 184 mRNAs that

were at least 1.5-fold upregulated in 10 out of 12 profiles

(six factors were depleted and two independent profiles

were obtained for each factor) (Fig. 4E; Supplementary

Table S1). We used this filtering criterion to avoid the

exclusion of mRNAs that were only weakly affected in a

specific depletion. As expected from the profiles shown

in Figure 4B and D, when the same filtering criterion was

applied to downregulated transcripts, only 20 mRNAs

were found to be at least 1.5-fold underrepresented in
10 out of 12 profiles (Fig. 4F; Supplementary Table S2).

These results are in agreement with those reported in

yeast (He et al. 2003) and show that the majority of

mRNAs commonly affected by the depletion of NMD

factors are upregulated.

Core transcripts represent 3.4% of detectable transcripts

and include oda mRNA, which is the only endogenous

NMD target that has been experimentally validated (Gat-
field and Izaurralde, 2004). Core transcripts also include

smg5 and smg6 mRNAs (Supplementary Table S1). Both

mRNAs were at least 1.5-fold overrepresented in depletions

of all other NMD factors (Fig. 3), indicating that smg5 and

smg6 mRNAs are targets of a feedback mechanism. In

contrast, upf1, upf2, and smg1 transcript levels remained

unchanged in cells depleted of other NMD factors, and upf3

FIGURE 4. NMD factors regulate a common set of transcripts. (A–D) Expression profiles of RNAs at least 1.5-fold over- and underrepresented,
respectively, in UPF1-depleted cells (A,B), or in UPF3-depleted cells (C,D) and detectable in all depletions. Average expression levels of two independent
profiles per protein are shown. (E) Core NMD targets corresponding to transcripts at least 1.5-fold upregulated in 10 out of 12 profiles of cells depleted of
NMD factors. (F) Transcripts at least 1.5-fold downregulated in 10 out of 12 profiles of cells depleted of NMD factors. RNAs are represented as lines and
colored relative to their expression levels, as indicated.Note that the lines arewider in (F). The number ofmRNAsdisplayedper panel is indicated in italics.
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mRNA levels were reduced as judged by RT-PCR (Supple-

mentary Fig. S1).

To assess the fraction of core transcripts that represent

authentic NMD targets, we selected eight mRNAs involved

in diverse cellular processes and analyzed whether 30-decay

intermediates could be observed in cells depleted of XRN1.

The rationale behind this experiment is that decay via the
NMD pathway is initiated by endonucleolytic cleavage in

Drosophila, and the resulting 30-fragment is degraded by

XRN1. Thus, for direct targets, 30-decay intermediates are

expected to accumulate in XRN1-depleted cells (Gatfield

and Izaurralde 2004).

We observed decay intermediates for all eight selected

mRNAs, including smg5 and smg6, and also for oda, which

served as a positive control (Fig. 5A–I). In contrast, no
decay intermediates were observed for two mRNAs (pgi,

CG30035) (Fig. 5J,K) that were not included in the list of

core targets, as the expression levels of these mRNAs

remained unchanged in cells depleted of SMG1, SMG5,

and SMG6, although these mRNAs were upregulated in

the UPF1 or UPF2 knockdowns (Fig. 3). These results

validate our filtering criteria and suggest that the majority

of core transcripts represent primary NMD targets.

Features of NMD targets

We next examined the chromosomal positions of genes

encoding core transcripts. In addition to the X and Y
chromosomes, there are two large autosomes (chromo-

somes 2 and 3), and a small fourth chromosome in Dro-

sophila. NMD targets exhibited an unbiased distribution

toward the arms of chromosomes 2 and 3 (designated 2L,

2R, 3L, and 3R), with core transcripts representing 1.39%–

1.64% of all transcripts derived from these chromosomes

arms (Fig. 6A). Remarkably, on the X chromosome, only

0.54% of transcripts were upregulated, although the frac-
tion of detectable transcripts derived from this chromo-

some was very similar to that of the autosomes (Fig. 6A).

The probability to obtain by chance an equally low or lower

number of regulated genes on the X chromosome is P

value = 2 3 10�5. A similar underrepresentation of poten-

tial endogenous NMD targets has been reported for the

FIGURE 5. Core transcripts represent authentic NMD targets. (A–K) RNA samples isolated from control cells (cont.) or cells depleted of XRN1
were analyzed by Northern blot using probes complementary to the mRNAs indicated below the panels. Asterisks indicate the positions of the
30-decay intermediates. No decay intermediates were detected for CG30035 or pgi. To detect the ago2, dcr-2, smg6 decay intermediates, poly(A)+

RNAs was isolated and analyzed on a 1.6% agarose gel. The position of RNA size markers is indicated on the left.
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human X chromosome (Xing and Lee 2004). On the short

chromosome 4, 7.5% of detectable transcripts were upreg-

ulated (Fig. 6A). The enrichment for NMD targets on this

chromosome is significant (P value = 5.5 3 10�3), despite

the small number of genes found on this chromosome

(Fig. 6A).
Previous studies in yeast have shown that mRNAs regu-

lated by the NMD pathway are enriched in low abundance

transcripts (He et al. 2003). Compared to the distribution

of abundance of detectable transcripts (Fig. 6B, yellow

bars), upregulated transcripts show a significant bias to-

ward low abundance in control cells (red bars), but the

usual distribution in UPF1-depleted cells (blue bars) indi-

cates that these transcripts are not intrinsically of low

abundance, but that their levels are downregulated by the

NMD pathway in wild-type cells.

Next, we analyzed core mRNAs with respect to the GC

content, the length of the transcript and of the coding

sequence, the number of introns, and the presence of
upstream open reading frames (uORFs). No apparent dif-

ference in GC content was observed (data not shown). The

lengths of 50 and 30 UTRs were very similar for core and all

detectable transcripts. However, core transcripts were on

average longer than detectable transcripts (average length

3494 nt for core RNAs versus 2386 nt for all detectable

transcripts, Fig. 6C). This increased length could be attrib-

FIGURE 6. Features of NMD targets. (A) Drosophila chromosomes are represented as vertical lines. Centromeres are located at the bottom of the
panel and are shown as dots. The scale bar on the left corresponds to the euchromatic sequence. Horizontal lines indicate the positions of core
transcripts shown in Figure 4E. The number of genes and of probe sets present in the array per chromosome is indicated below the panel. The
fractions of detectable and upregulated transcripts are given in percentages. (B) Signal intensities (averages of two independent experiments) after
normalization are shown in a histogram plot for all detectable transcripts in control cells (yellow bars) as well as for core transcripts in control
cells (red bars) or in UPF1-depleted cells (blue bars). (C) The distribution of transcript lengths is shown for detectable and core transcripts.
Numbers in brackets indicate the average length in nucleotides. (D) The distribution of intron counts per gene is shown for detectable and core
transcripts. Numbers in brackets indicate the average number of introns.
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uted to the coding sequences, which were skewed toward

long ORFs (2701 nt versus 1714 nt, respectively).

Intronless genes or genes having one or two introns were

underrepresented among core transcripts, while genes with

six or more introns were enriched (Fig. 6D). Nevertheless,

the density of introns per 500 nucleotides (nt) was 0.6 for

both core and detectable transcripts (data not shown).
These results suggest that long genes with a high number

of introns are more likely to generate aberrant mRNA iso-

forms as a result of alternative splicing events and/or splic-

ing errors. Consistent with this, the average number of

annotated splice isoforms per gene was 1.9 for core tran-

scripts and 1.5 for all detectable mRNAs. Transcripts with

uORFs are often regulated by NMD, as in these cases the

stop codon of the uORFs is interpreted as a PTC. We

detected uORFs (of at least 10 codons) in 46% of the core

transcripts, but only in 33% of detected mRNAs.

NMD targets are associated with a broad
range of cellular functions

Inspection of gene ontology (GO) terms associated with core
transcripts (Ashburner et al. 2000) revealed that NMD plays a

widespread role in diverse cellular processes by regulating the

expression of several transcripts associatedwith these processes

(Fig. 7A; Supplementary Table S1). These include 35 tran-

scripts involved in developmental processes, 28 transcripts

involved in signal transduction, 22 mRNAs involved in cyto-

skeleton organization and biogenesis, 16 transcripts asso-

ciated with transcription regulatory activity, eight transcripts

FIGURE 7. NMD regulates the expression of transcripts associated with diverse cellular processes. (A) Percentage of genes associated with the
functional categories shown on the left. Black bars: 5379 detectable RNAs; cyan bars: core transcripts (184 mRNAs); blue bars: upregulated
transcripts in eight out of 12 profiles obtained for NMD factors (360 mRNAs). Asterisks indicate functional categories for which the enrichment or
the underrepresentation among core transcripts is significant (two asterisks, P value < 1 3 10�2, one asterisk, P value < 5 3 10�2). (B,C)
Transcripts exclusively regulated in the individual knockdowns. Transcripts up- or downregulated in cells depleted of one or two NMD factors but
unaffected in the other depletions.
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involved in cell cycle, eight transcripts associated with cell

adhesion, and seven transcripts involved in DNA repair. The

role of NMD in regulating the expression of genes associated

with these cellular activities is also reflected by the overrepre-

sentation of the following descriptions of the molecular func-

tionontology: damagedDNAbinding (P value = 1.2 3 10�3),

protein–tyrosine kinase activity (P value = 3.7 3 10�2), and
protein–tyrosine phosphatase activity (P value = 1.3 3 10�2),

which were significantly enriched relative to their representa-

tion among detectable transcripts.

In human cells, UPF1 targets include genes involved in

amino acid metabolism and in the response to amino acid

starvation (Mendell et al. 2004). Transcripts associated with

amino acid homeostasis where present, although not

enriched amongst yeast NMD targets (He et al. 2003; Men-
dell et al. 2004). Based on these observations Mendell et al.

(2004) hypothesized that NMD has a conserved role in

regulating the expression of transcripts involved in the

response to amino acid deprivation.

The list of core transcripts includes only one transcript

associated with amino acid metabolism. Since the choice of

the filtering criterium for selecting NMD targets is rather

stringent (upregulation in 10 out of 12 profiles), it is pos-
sible that some authentic targets are overlooked. We there-

fore analyzed transcripts upregulated at least 1.5-fold in

eight out of 12 profiles (360 RNAs representing 6.7% of

the transcriptome, Supplementary Table S3). Overall, the

representation of functional categories associated with this

set of transcripts remained unchanged (Fig. 7A, blue bars).

This list includes only three additional transcripts involved

in amino acid metabolism, and in particular CG2107,
whose homolog YAT2/YER024w was also among yeast

NMD targets (He et al. 2003). Thus, transcripts involved

in amino acid metabolism are not overrepresented among

Drosophila NMD targets.

The response to starvation is complex, and involves genes

associated with a broad range of cellular activities (Zinke et

al. 2002; Harbison et al. 2005). We therefore analyzed

whether core NMD targets were enriched in transcripts
shown to be upregulated in response to starvation stress

in two independent studies (Zinke et al. 2002; Harbison et

al. 2005). We found 29 and 50 transcripts identified by

Zinke et al. (2002) and Harbison et al. (2005), respectively,

among core NMD targets. Of these, 13 transcripts were

identified in the two studies and include smg5 and smg6,

suggesting a potential link between NMD and the starvation

response. Validation of this link requires further studies
and, in particular, the investigation of the response to

amino acid deprivation in NMD-deficient cells.

NMD regulates the expression of heterologous
genes in different species

Targets of the NMD pathway have been identified in both

yeast and human cells (He et al. 2003; Mendell et al. 2004).

We therefore investigated whether Drosophila orthologs of

these targets were regulated in NMD-deficient SL2 cells.

Using the STRING database (von Mering et al. 2005),

which employs clusters of orthologous groups of proteins

(KOGs) (Tatusov et al. 1997), Drosophila, human, and yeast

NMD targets could be assigned to 159, 170, and 316 KOGs,

respectively (not shown). Remarkably, only two KOGs were
represented in all three organisms: ‘‘monocarboxylate

transporter’’ (KOG2504) and ‘‘nonsense-mediated mRNA

decay protein’’ (KOG2162; Table 1). The monocarboxylate

transporter group includes Drosophila CG8399, yeast

ESBP6, and human SLC16A3 and SLC16A6. The NMD

group includes Drosophila SMG5 and SMG6, human

SMG5, and yeast Ebs1p. Ebs1p is related to Est1p (which

was also among yeast NMD targets); both proteins are
partially redundant and are involved in telomere mainte-

nance (Zhou et al. 2000).

Eight additional KOGs were represented in the list of

Drosophila and yeast NMD targets, but not in the list of

transcripts regulated by human UPF1 (Table 1). Of these,

KOG0892 includes yeast Tel1 and Drosophila ATM

(CG6535). These proteins are involved in DNA repair

and maintenance of telomere ends (Pandita 2002). More-
over, homologs of nine yeast NMD targets were present

in the list of transcripts upregulated in eight out of 12

profiles (Supplementary Table S3). Two of the yeast tran-

scripts (YAT2/YER024W and HFM1/YGL251C) have

uORFs. In contrast, we could not detect uORFs in the

corresponding Drosophila homologs (CG2107 and

CG5205, respectively). These results indicate that even in

cases in which related genes are regulated by NMD in
diverse species, the features recognized by the NMD

machinery may not be conserved.

The comparison of human and Drosophila NMD targets

revealed 10 additional KOGs represented in both organ-

isms, but not in yeast. These include ‘‘RhoGTPase-activat-

ing proteins’’ (KOG4406), ‘‘protein tyrosine phosphatases’’

(KOG4228) and ‘‘tyrosine kinases’’ (KOG0197) (Table 1).

KOG4406 is represented by the RhoGTPase activating pro-
tein 1 (Rho GAP1) in human and by RhoGAP68F in Dro-

sophila. For the human RhoGAP1 gene an alternative

splicing event generates a PTC-containing isoform (Men-

dell et al. 2004). In Drosophila, there are no alternative

splice isoforms annotated, although the gene contains five

introns, and alternative splicing events cannot be ruled out.

Other KOGs represented among yeast and Drosophila or

human and Drosophila NMD targets were loosely defined
by protein domains (ankyrin repeat, Zinc-finger, RNA

recognition motif, PDZ domain) and may not reflect true

orthologous relationships (Table 1).

In summary, the KOG analysis reveals that the majority

of NMD targets in Drosophila are not orthologs of genes

regulated by NMD in yeast or human cells, indicating that

the repertoire of genes targeted by NMD has not been

conserved during evolution.
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A few transcripts are regulated exclusively
in the individual knockdowns

To investigate whether some NMD factors may have

acquired additional roles in mRNA turnover we asked

whether the expression levels of specific RNAs were regu-

lated only in depletions of one or two NMD factors (at least

1.5-fold), while remaining unaffected in depletions of the

other factors (i.e., less than 1.5-fold; Supplementary Table
S4). As shown in Figure 7B, we found 10 and two tran-

scripts exclusively upregulated in cells depleted of UPF1

and UPF2, respectively, and nine upregulated in the two

knockdowns. The possibility that these transcripts represent

authentic NMD targets that are only weakly affected in the

other knockdowns cannot be ruled out.

We were able to identify a small number of transcripts

exclusively upregulated in the UPF3, SMG1, SMG5, and
SMG6 knockdowns or commonly regulated by UPF1 and

SMG6 or by UPF2 and SMG5 (Fig. 7B; Supplementary

Table S4). The expression levels of these transcripts remained

unchanged in cells depleted of UPF1 and/or UPF2, and in

some cases showed inverse correlation in the other depletions

(i.e., transcripts regulated by UPF3), so it is unlikely that these

transcripts represent authentic NMD targets.

Similar filters were applied to identify transcripts uniquely
downregulated in one or more depletions and unchanged in

the other knockdowns (Supplementary Table S4). Again,

only a small number of transcripts were found to be exclu-

sively downregulated in specific depletions (Fig. 7C). We

therefore conclude that NMD factors function together,

and only a small fraction of transcripts depends on individ-

ual NMD components for optimal expression.

DISCUSSION

Eukaryotic cells have evolved elaborate mRNA quality
control mechanisms to ensure the fidelity of gene expres-

sion by detecting and degrading aberrant transcripts. The

NMD pathway is among the best characterized mRNA

TABLE 1. NMD regulates heterologous gene across species

KOG Drosophila Yeast Human

KOG2162 (nonsense-mediated mRNA decay protein) Smg5
Smg6

EBS1 SMG5

KOG2504 (monocarboxylate transporter) CG8389 ESBP6 SLC16A3
SLC16A6

KOG0504 (FOG: ankyrin repeat) cact AVO2
NOG08584 (nonsupervised orthologous group) CG3532 ADY3
KOG0892 (protein kinase ATM/Tel1, involved in telomere
length regulation and DNA repair)

CG6535 TEL1

KOG0255 (synaptic vesicle transporter SVOP and related
transporters [major facilitator superfamily])

CG4630 FLR1
QDR3
QDR1

KOG2283 (clathrin coat dissociation kinase GAK/PTEN/Auxilin
and related tyrosine phosphatases)

auxillin TEP1

KOG0867 (Glutathione S-transferase) GstE3 GTT2
KOG3022 (Predicted ATPase, nucleotide binding) CG3262 CFD1
KOG1721 (FOG: Zn-finger) CG10462

MTF-1
CG2199
CG1233
CG8092
Aef1

FZF1
RGM1
MIG3

KOG0118 (FOG: RRM domain) CG33070 HNRPA1
KOG3528 (FOG: PDZ domain) CG30023 PDZK3
KOG4228 (protein tyrosine phosphatase) Ptp69D PTPRF
KOG1812 (predicted E3 ubiquitin ligase) ari-2 TRIAD3
KOG4406 (CDC42 Rho GTPase-activating protein) RhoGAP68F ARHGAP1
KOG1218 (proteins containing Ca2+-binding EGF-like domains) CG8942 DKK1
KOG3520 (predicted guanine nucleotide exchange factor) RhoGEF2 P114-RHO-GEF

ARHGEF2
KOG0197 (tyrosine kinases) hop FYN
KOG2836 (protein tyrosine phosphatase IVA1) PRL-1 PTP4A2
KOG1716 (dual specificity phosphatase) CG14211 DUSP3

DUSP1
DUSP10

Yeast, Drosophila, and human NMD targets were sorted in clusters of orthologous groups of proteins (KOGs). Conserved KOGs are shown.
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surveillance mechanism. It eliminates mRNAs containing

nonsense mutations and regulates the expression of wild-

type transcripts having features interpreted as aberrant by

the NMD machinery. In this study we show that NMD

plays an important role in post-transcriptional regulation

of a broad range of biological activities, including cell

proliferation in Drosophila. By comparing NMD targets
identified in this study with those previously identified in

yeast and human cells (He et al. 2003; Mendell et al.

2004), we demonstrated that NMD regulates the expres-

sion of heterologous genes across species. Finally, we

provide evidence that the major role of UPF1, UPF2,

UPF3, SMG1, SMG5, and SMG6 in mRNA turnover is

to act as partners in the NMD pathway.

It has been reported that mutations in the smg1 gene do
not affect NMD in Drosophila embryos (Chen et al. 2005).

These observations led Chen et al. (2005) to conclude that

SMG1 is not required for NMD in Drosophila. Although it

is possible that UPF1 is phosphorylated by another redun-

dant kinase, in previous studies we showed that depletion of

SMG1 stabilizes different PTC-containing reporters in SL2

to a similar extent as UPF3 depletion (Gatfield et al. 2003).

The results shown in this study extend our previous obser-
vations and clearly demonstrate that depletion of SMG1

leads to similar changes in mRNA expression levels as the

depletion of UPF3 or SMG5. We therefore conclude that

SMG1 is a bona fide component of the NMD machinery in

Drosophila.

Features of endogenous transcripts regulated by NMD

There are only few common features associated with the

NMD targets identified in this study. First, these transcripts

are expressed at low levels in wild-type cells, but their

expression increases in NMD-deficient cells. This observa-

tion is consistent with the conclusion that these transcripts

are post-transcriptionally regulated by NMD. Second, these

transcripts are on average longer than the ensemble of

detectable transcripts. This is explained by an increase in
the average length of the ORFs rather than of the 50 or 30

UTRs. Finally, Drosophila NMD targets are underrepre-

sented on the X chromosome and overrepresented on

Chromosome IV.

Bioinformatic approaches have revealed that in human

cells a substantial fraction of alternatively spliced transcripts

contain PTCs, and represent potential NMD targets (Green

et al. 2003; Lewis et al. 2003). The overall PTC rate is about
threefold lower on the human X chromosome relative to

the autosomes (Xing and Lee 2004). It has been proposed

that negative selection pressure against aberrant PTC-con-

taining transcripts is stronger for genes expressed as a single

copy (Xing and Lee 2004). Although X chromosome inac-

tivation does not occur in Drosophila, we observed an

underrepresentation of NMD targets on this chromosome,

suggesting that haploidy alone in males is sufficient to

maintain negative selection pressure against the accumula-

tion of PTC-containing isoforms. It would be of interest to

determine whether the overrepresentation of NMD targets

on chromosome 4 correlates with the absence of recombi-

nation on this chromosome (Nachman 2002).

In yeast and human cells, several classes of wild-type

transcripts are regulated by NMD. These include: (1)
mRNAs with upstream open reading frames (uORFs) in

the 50 unstranslated region (UTRs); (2) mRNAs with non-

sense codons or frameshifts introduced by an alternative

splicing event; (3) mRNAs undergoing ‘‘leaky-scanning’’ for

translation initiation; (4) mRNAs regulated by program-

med frameshifting; (5) mRNAs with selenocysteine codons;

and (6) mRNAs regulated by stop codon readthrough ( Le-

livelt and Culbertson 1999; He et al. 2003; Mendell et al.
2004; for review, see Lejeune and Maquat 2005).

The specific features recognized by the Drosophila NMD

machinery are known for a few of the targets. For instance,

oda mRNA is regulated by programmed frameshifting and

the transformer (tra) gene generates two mRNA isoforms of

which one has a PTC (Boggs et al. 1987; Ivanov et al. 1998).

Moreover, four transcripts found in the extended list of

targets have been predicted to be regulated by stop codon
readthrough (zfh1, Ipp, Fs[2]Ket and capu) (Sato et al.

2003). Drosophila mRNAs undergoing NMD are cleaved

in the vicinity of the PTC (Gatfield and Izaurralde, 2004),

so the size of the 30-decay intermediate provides informa-

tion on the position of the aberrant translation termination

event. For smg6 mRNA for instance, the cleavage occurs in

the vicinity of the natural stop (Fig. 5; data not shown),

suggesting that this mRNA could be regulated by stop
codon read-through. These findings illustrate that NMD

targets are not unified by a single common feature, but

represent a heterogeneous group of mRNAs. Hence, de-

tailed studies are required to elucidate the mechanism by

which the individual targets are regulated.

NMD target-genes function in diverse
cellular processes

Analyses of the gene ontology terms associated with tran-

scripts regulated by NMD revealed that some fall into

functional categories that are overrepresented relative to

the genome (e.g., damaged DNA binding, protein–tyrosine

kinase activity, and protein–tyrosine phosphatase activity).

However, it is the diversity of functional categories that is

most striking, of which regulation of developmental pro-
cesses, signal transduction, and cytoskeletal biogenesis are

associated with the largest number of genes.

These functional categories are also represented among

NMD targets identified in yeast and human cells, but, with

a few exceptions, targets in different species do not repre-

sent orthologous genes. Indeed, analysis of orthologous

groups (KOGs) represented amongst yeast, Drosophila and

human NMD targets revealed that only two KOGs are
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conserved: ‘‘monocarboxylate transporter’’ and ‘‘nonsense-

mediated mRNA decay protein.’’ Monocarboxylate transport-

ers (MCTs) are involved in the transport of monocarboxy-

lates such as lactate and pyruvate, and thus in the regulation

of food intake and glucose homeostasis (Halestrap and Price

1999). This finding should, nevertheless, be interpreted with

caution, as Drosophila CG8389 has not been characterized
and might transport different monocarboxylates or unrelated

substrates (Halestrap and Price 1999).

The NMD KOG is represented by Drosophila SMG5 and

SMG6, human SMG5, and yeast Esb1p. Esb1p is related and

partially redundant with the telomerase-associated protein

Est1p (Zhou et al. 2000), and both are closely related to

SMG5–7 (Reichenbach et al. 2003). Est1p is also regulated

by NMD in yeast (He et al. 2003). In addition to EST1 and
ESB1, five genes involved in telomere maintenance are

regulated by NMD in yeast, including EST2, EST3, STN1,

YKu70, and TEL1 (Dahlseid et al. 2003; He et al. 2003). This

regulation has functional implications, as inhibition of

NMD in yeast leads to telomere shortening and derepres-

sion of silenced telomeric loci (Lew et al. 1998; Dahlseid et

al. 2003; He et al. 2003). Moreover, Tel1p belongs to a KOG

that includes Drosophila ATM, which is also an NMD
target; both proteins are involved in telomere length regu-

lation and DNA repair (Pandita 2002). These observations,

together with recent reports implicating human SMG5

and SMG6 in telomerase function (Reichenbach et al.

2003; Snow et al. 2003), suggest that the role of NMD in

regulating the expression of genes involved in telomere

maintenance is conserved.

Interestingly, smg5 and smg6 were also found to be
upregulated in response to starvation stress in two indepen-

dent studies performed in embryos and adult flies, respec-

tively (Zinke et al. 2002; Harbison et al. 2005). In addition

to smg5 and smg6, 11 transcripts commonly identified in

the two studies are present in the list of Drosophila NMD

targets. Thus it is possible that the NMD pathway has been

integrated into metabolic circuits activated in response to

nutrient deprivation, as suggested by Mendell et al. (2004).
Finally, mRNAs encoding AGO2 and Dicer-2 are up-

regulated in NMD-deficient cells. However, RNAi efficiency

in these cells is not apparently altered (Rehwinkel et al.

2005), suggesting that these proteins may not be limiting

in wild-type cells. In C. elegans, UPF1 (i.e., SMG-2), SMG5

and SMG6 are required for persistence of RNAi, but not for

the establishment of silencing, suggesting that these NMD

factors act downstream of RISC (Domeier et al. 2000; Kim
et al. 2005a). In contrast, UPF2, UPF3, and SMG-1, which

are also essential for NMD, are not required to maintain

silencing, and thus persistence of RNAi does not depend on

the NMD pathway per se (Domeier et al. 2000). Mainte-

nance of silencing involves the amplification of the RNA

trigger by a RNA-dependent RNA polymerase, a process

that does not occur in Drosophila (Roignant et al. 2003).

It would therefore be of interest to determine whether C.

elegans UPF1, SMG-5, and SMG-6 affect RNAi indirectly,

e.g., by altering the expression levels of genes encoding

components of the RNA silencing machinery or whether

these NMD factors have acquired a specialized role in RNAi

in this organism.

Evolutionary diversification of the
physiological role of NMD

The different phenotypes observed upon inhibition of the

NMD pathway across species could be explained by the

acquisition of novel functions by NMD components during

evolution. Along these lines, recent reports have implicated

a subset of NMD factors in other cellular processes includ-

ing telomere maintenance and DNA repair (Reichenbach et
al. 2003; Snow et al. 2003; Brumbaugh et al. 2004). These

additional functions may not result in changes in mRNA

expression levels and cannot be revealed by profiling experi-

ments. Therefore, we cannot rule out the possibility that

NMD factors have acquired specialized roles in cellular

processes distinct from mRNA decay. Furthermore, it has

been reported that human UPF1 can be recruited to the 30

UTR of specific transcripts via interactions with Staufen1
(Kim et al. 2005b). In this way, UPF1 elicits mRNA decay

by a mechanism not requiring UPF2 or UPF3 (Kim et al.

2005b).

In principle, recruitment of any of the core components

of the NMD machinery to a transcript by heterotypic inter-

actions could lead to mRNA decay, in a process that may

or may not require additional NMD components. Our ge-

nome-wide analysis shows, however, that only a few tran-
scripts are specifically regulated by individual NMD

components in Drosophila. For instance, transcripts exclu-

sively regulated by UPF3, SMG1, SMG5, or SMG6 are

unlikely to represent authentic NMD targets, and may be

regulated by a mechanism unrelated to NMD. Whether the

regulation of these transcripts reflects specialized functions

of these proteins, indirect effects of the depletion or of the

specific dsRNAs remain to be established.
Another mechanism that can lead to phenotypic dif-

ferences is changes in selected targets. Evidence already

exists that this is indeed the case. For instance, rear-

rangements of the immunoglobulin and T-cell receptor

genes in vertebrates result in frame-shifted genes at high

frequency (ca. 66% of the recombination events), and

transcripts from these genes are degraded by NMD

(Holbrook et al. 2004). In addition, differences in the
mechanism by which premature stop codons are recog-

nized across species are likely to contribute to changes in

selected targets. For instance, human transcripts contain-

ing introns in the 30 UTR are also targeted by NMD if

the intron is located at least 50 nt downstream of the

natural stop (Mendell et al. 2004). In this study we

provide evidence that NMD regulates heterologous genes

across species.

www.rnajournal.org 1541

NMD factors regulate common RNA targets in concert

http://www.rnajournal.org


In conclusion, although we cannot rule out that individ-

ual NMD factors regulate the expression of specific tran-

scripts or have acquired specialized functions that do not

affect steady-state mRNA levels, a conserved role of these

proteins is to regulate in concert the expression of a com-

mon set of genes. This set differs between species. In a given

organism, target-genes which are ubiquitously expressed
are expected to be regulated in all cell types; nevertheless,

some targets may have temporal and/or cell-specific expres-

sion patterns, so that the constellation of regulated genes

may vary in different developmental stages as well as in a

tissue specific manner. In this way, changes in the physio-

logical role of NMD are largely driven by target selection in

addition to a potential functional diversification of its

components.

MATERIALS AND METHODS

RNA interference and RNA isolation

RNA interference in cultured Drosophila Schneider cells was per-

formed essentially as described in Herold et al. (2001). dsRNAs

used in this study correspond to fragments encompassing about

700 nt of the coding sequences and have been described before

(Gatfield et al. 2003; Gatfield and Izaurralde 2004). All depletions

were analyzed on day 8 after a reknockdown on day 4, except for

POLO kinase, which was analyzed without reknockdown on day 4.

Total RNA was isolated using TRIzol Reagent (Life Technologies).

Flow cytometric analysis

Cells were washed once in PBS, fixed in 70% ethanol for 2 h at

4�C, washed again in PBS, and stained for 2 h at 37�C using 0.1

mg/mL propidium-iodide in PBS. The staining solution was sup-

plemented with 0.2 mg/mL RNaseA and 0.2% Triton X-100. Cells

were analyzed on a FACScan (Becton-Dickinson).

Northern blots and RT-PCR

RNA samples were analyzed by Northern blot as described in

Gatfield et al. (2003). Unless indicated otherwise, 1% agarose

gels were used. To detect 30-decay intermediates resulting from

endonucleolytic cleavage, probes corresponding to the following

nucleotide positions on the transcripts were used: oda-RA 168–

898, transformer-RA 1–594, CG13900-RA 2351–2840, pgi-RA

1900–2476, CG30035-RA 2672–3016, smg5-RA 3735–4229, smg

6-RA 2701–3202, eIF-5C-RE 1296–1697, and vsg-RA 1622–2198.

For dcr-2 and ago2, probes corresponding to the 30-end of the

coding sequences were used. In order to detect smg6, ago2, and

dcr-2 transcripts by Northern blot, total RNA was enriched for

poly(A)+ RNA using oligo-dT cellulose (Ambion, small-scale

mRNA purification kit). RT-PCR analysis was performed as de-

scribed in Herold et al. (2001). PCR-primers amplifying the region

targeted by the probe sets on the microarray were used to detect

upf1, upf2, smg1, smg5, and smg6. For upf3, primers correspond-

ing to positions 997 (sense) and 1515 (antisense) of the transcript

were used to avoid overlap with the dsRNA.

Genome-wide expression analysis

High-density oligonucleotide microarrays covering more than

13,500 genes from Drosophila were used in this study (Affyme-

trix-chip ‘‘DrosGenome1’’). The microarray results have been

submitted to the ArrayExpress database at EBI under accession

number E-MEXP-202. Biotinylated targets were prepared from 5

mg of total RNA according to standard Affymetrix procedures.

Standard Affymetrix protocols were used for hybridization, wash-

ing, and data acquisition (Fluidics station 400, GeneArray 2500

scanner, Affymetrix Microarray suite version 5.1). Control param-

eters were within recommended limits. Data were imported into

GeneSpring 6 (Silicon Genetics) (control sample = control chan-

nel, knockdown experiment = signal channel). All experiments

were normalized using an intensity-dependent normalization

scheme (Lowess). In a control experiment in which two indepen-

dent replicates were compared all spots after intensity-dependent

normalization had an average ratio of 1.03 6 0.33. We therefore

judged a change of at least 1.5-fold to be a meaningful cutoff.

To exclude mRNAs regulated unspecifically in response to the

treatment with dsRNAs, we compared mock-treated cells and cells

treated with GFP dsRNA. In two independent experiments, 87 and

83 mRNAs were consistently up- and downregulated, respectively,

in cells treated with GFP dsRNA. These mRNAs were excluded

from further analysis.

Characterization of NMD targets

Chromosomal positions of regulated transcripts were retrieved

using analysis tools provided by Affymetrix (www.affymetrix.

com). We analyzed transcript abundance using signal intensities

after normalization in GeneSpring. Transcript lengths and GC

content were analyzed using the BioMART tool available from

the EBI (http://www.ebi.ac.uk/biomart/index.html). Intron and

isoform counts, and 50 UTRs were obtained from Ensembl (dro-

sophila_melanogaster_core_30_3d, ftp.ensembl.org). For each

annotated gene, the length, number of introns, and number of

predicted isoforms were noted. To reduce the gene length bias,

intron counts were calculated as introns per 500 nt. Upstream

ORFs in each 50 UTR were detected using a set of perl scripts.

ORFs were defined as consecutive in-frame codons starting with

ATG and ending with a stop codon (TAA, TGA, or TAG). The gene

strand was used as the reference for the uORF strand. Clusters of

orthologous groups of proteins (KOGs) (Tatusov et al. 1997)

represented in the list of human, yeast, andDrosophilaNMD targets

were identified using the STRING database (von Mering et al.

2005).

Gene ontology analysis

The gene ontology (GO) nomenclature (Ashburner et al. 2000)

was used to characterize protein products of genes exhibiting

altered expression patterns. GO terms associated with regulated

genes were identified using the GO mining tool (www.affymetrix.

com) and exported to Excel. The over- or underrepresentation of

GO-terms among regulated genes was assessed by the probability

(P value) that an equally high or higher enrichment could be

obtained by chance given the frequency of the GO-terms among

detectable genes.
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SUPPLEMENTARY MATERIAL

Supplementary materials are available at http://www-db.embl.de/

jss/EmblGroupsHD/g_127?sP=4.
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