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Nonsense-mediated mRNA decay
(NMD) in mammalian cells generally
degrades mRNAs that terminate
translation more than 50-55 nucleotides
upstream of a splicing-generated exon-
exon junction (reviewed in Maquat,
2004a; Nagy and Maquat, 1998).
Notably, dependence on exon-exon

junctions distinguishes NMD in
mammalian cells from NMD in all other
organisms that have been examined,
including Saccharomyces cerevisiae and
Drosophila melanogaster (reviewed in
Maquat, 2004b). NMD downregulates
spliced mRNAs that prematurely
terminate translation so 

production of the potentially toxic
truncated proteins that they encode.
NMD also downregulates naturally
occurring mRNAs, such as an estimated
one-third of alternatively spliced
mRNAs, certain selenoprotein mRNAs,
some mRNAs that have upstream open
reading frames, and some mRNAs that
contain an intron within the 3′
untranslated region (Hillman et al.,
2004; Mendell et al., 2004; Moriarty et
al., 1998). In fact, it is thought that
NMD has been maintained throughout

evolution not only because it degrades
transcripts that are the consequence of
routine abnormalities in gene expression
but also because it is widely used to
achieve proper levels of gene expression.
Although disease-associated mutations
that result in the premature termination
of translation led to the discovery of
NMD, it is not likely that this type
of mutation ever drove significant
evolutionary selection. Nevertheless,
some of these mutations nicely illustrate
the importance of NMD. For example,
nonsense mutations within the last exon
of the human β-globin gene do not elicit
NMD because there is no downstream
exon-exon junction. As a consequence,
the resulting truncated β-globin has
near-normal abundance, fails to properly
associate with α-globin and causes a
dominantly inherited form of what is
otherwise (e.g. for nonsense codons
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located within exons other than the last
exon) a recessively inherited thalassemia
(Thein, 2004). 

The importance of NMD is exemplified
by the findings that mouse embryos that
cannot perform NMD because they lack
a key NMD protein, Upf1, resorb shortly
after implantation (Medghalchi et al.,
2001). Furthermore, blastocysts that
have the same defect, isolated 3.5 days
post-coitum, undergo apoptosis in
culture after a brief growth period
(Medghalchi et al., 2001). The
inviability of NMD-deficient embryos
and cells probably reflects the combined
failure to regulate natural substrates
properly and eliminate transcripts that
were generated in error. Note that, Upf1
has been shown to function in other
pathways, as well as NMD (see below),
which may also contribute to the
observed inviability. 

NMD in mammalian cells is a
consequence of a pioneer round of
translation (Chiu et al., 2004; Ishigaki et
al., 2001; Lejeune et al., 2004). As
illustrated in the poster, precursor (pre)-
mRNA in the nucleus is bound to by the
major nuclear cap-binding protein (CBP)
CBP80-CBP20 heterodimer and, after 3′-
end formation, the major nuclear poly(A)-
binding protein (PABP) PABPN1 (Chiu
et al., 2004; Ishigaki et al., 2001). Pre-
mRNA splicing generates spliced mRNA
that is bound by CBP80, CBP20,
PABPN1 and the major cytoplasmic
PABPC (Chiu et al., 2004; Ishigaki et al.,
2001; Lejeune et al., 2004) as well as an
exon junction complex (EJC) of proteins
that is deposited, as a consequence of
splicing, ~20-24 nucleotides upstream of
each exon-exon junction (Le Hir et al.,
2000a; Le Hir et al., 2000b). Constituents
of EJCs include Y14, RNPS1, SRm160,
REF/Aly, UAP56, Magoh, Pnn/DRS,
eIF4AIII, PYM and Barentsz/MLN51
(Bono et al., 2004; Chan et al., 2004;
Custodio et al., 2004; Degot et al., 2004;
Ferraiuolo et al., 2004; Kataoka et al.,
2000; Kim et al., 2001; Le Hir et al.,
2001; Le Hir et al., 2000a; Le Hir et al.,
2000b; Lejeune et al., 2002; Li et al.,
2003; Luo et al., 2001; Palacios et al.,
2004; Shibuya et al., 2004). The EJC also
contains additional proteins, including the
NMD factors Upf3 (also called Upf3a) or
Upf3X (also called Upf3b), Upf2 and,
presumably transiently, Upf1 (Kim et al.,

2004; Lykke-Andersen et al., 2000;
Lykke-Andersen et al., 2001; Mendell et
al., 2000; Ohnishi et al., 2003; Serin et al.,
2001). Either Upf3 or Upf3X, each of
which is mostly nuclear but shuttles to the
cytoplasm and interacts with Upf2, is
thought to recruit Upf2, which
concentrates along the cytoplasmic side
of the nuclear envelope (Kadlec et al.,
2004; Lykke-Andersen et al., 2000; Serin
et al., 2001).

The resulting mRNP constitutes the
pioneer translation initiation complex
(Chiu et al., 2004; Ishigaki et al., 2001;
Lejeune et al., 2002; Lejeune et al.,
2004). This complex is thought to
undergo a ‘pioneer’ round of translation
either in association with nuclei, in the
case of mRNAs that are subject to
nucleus-associated NMD, or in the
cytoplasm, in the case of mRNAs that
are subject to cytoplasmic NMD. If
NMD occurs, it is the consequence of
nonsense codon (NC) recognition during
this pioneer round of translation (Chiu et
al., 2004; Ishigaki et al., 2001; Lejeune
et al., 2004). Upf1 may function as a
component of the translation termination
complex before it functions in NMD,
considering that NMD requires
translation termination and Upf1
associates with eukaryotic translation
release factors 1 (F. Lejeune and
L.E.M., unpublished) and 3 (G. Singh
and J. Lykke-Andersen, personal
communication). Upf1 might associate
with mRNA regardless of whether
termination occurs at a position that
elicits NMD. If translation terminates at
an NC that resides more than 50-55
nucleotides upstream of an exon-exon
junction, then Upf1 is thought to elicit
NMD by interacting with EJC-
associated Upf2 (Maquat, 2004a; Lykke-
Andersen et al., 2000; Mendell et al.,
2000; Serin et al., 2001). Consistent with
a role for EJCs in NMD is the
observation that NC-containing mRNAs
that derive from intronless genes fail to
undergo NMD (Brocke et al., 2002;
Maquat and Li, 2001).

Once the mRNA is remodeled so that
eukaryotic translation initiation factor
(eIF)4E replaces CBP80-CBP20 at the
mRNA cap, PABPC replaces PABPN1
at the poly(A) tail, and EJCs have been
removed from mRNA, the mRNA
becomes immune to NMD (Chiu et al.,

2004; Ishigaki et al., 2001; Lejeune et
al., 2002). Translation has been reported
to remove Y14 (Dostie and Dreyfuss,
2002), and it may remove other mRNA-
binding proteins as well. Although these
conclusions derive largely from studies
of mRNP structure, they are consistent
with kinetic analyses indicating that
NMD is restricted to newly synthesized
mRNA and does not detectably target
steady-state mRNA (Belgrader et al.,
1994; Cheng and Maquat, 1993; Lejeune
et al., 2003). 

Cell fractionation studies indicate that
most nonsense-containing mRNAs are
subject to nucleus-associated NMD
(reviewed in Maquat, 2004a). This
means that mRNA decay occurs prior to
the release of newly synthesized mRNAs
into the cytoplasm. Nucleus-associated
NMD has been proposed to occur within
the nucleoplasm, but it is generally
thought to take place during or after
mRNA transport across the nuclear pore
complex (Dahlberg et al., 2003; Maquat,
2002). A fraction of mRNAs is subject
to cytoplasmic NMD (e.g. Dreumont et
al., 2004; Moriarty et al., 1998). What
destines some mRNAs for nucleus-
associated NMD and others for
cytoplasmic NMD is currently unknown. 

NMD in mammalian cells occurs both 5′-
to-3′ and 3′-to-5′; it thus involves
decapping and 5′-to-3′ exonucleolytic
activities as well as deadenylating and 3′-
to-5′ exosomal activities (Lejeune et al.,
2003; Chen and Shyu, 2003). It remains
to be determined whether NMD occurs in
association with translating ribosomes or
so-called cytoplasmic foci, which appear
to be ribosome-free sites of general
mRNA decay (Cougot et al., 2004;
Ingelfinger et al., 2002). Notably, the
efficiency of NMD in mammalian cells
is generally not influenced by NC
position, indicating that a higher number
of downstream EJCs does not lead to
more efficient NMD. However, NMD
can be augmented by additional
mechanisms that are not well understood.
For example, replacing exons 2-4 and
flanking intron sequences of the
triosephosphate isomerase (TPI) gene
with the 383-bp VDJ exon and flanking
intron sequences of the T-cell receptor β
(TCR-β) gene, which generates mRNA
that is more efficiently targeted for NMD
than TPI mRNA, increases the efficiency
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with which TPI mRNA undergoes NMD
>15-fold (Gudikote and Wilkinson,
2002). The efficiency of NMD is
increased only when the TCR-β
sequence is located upstream of an NC.

An understanding of how various factors
function in NMD is far from complete.
Upf1 is an ATP-dependent group 1
RNA helicase and phosphoprotein
(Bhattacharya et al., 2000; Pal et al.,
2001; Sun et al., 1998) that, as described
above, presumably triggers NMD by
interacting with Upf2 at an EJC that
resides sufficiently far downstream of an
NC. Also, as noted above, Upf2 and
either Upf3 or Upf3X, which appear to
have distinct but overlapping functions
(Lykke-Andersen et al., 2000; Serin et al.,
2001; Gehring et al., 2003), are
components of the EJC. In fact, Upf3 and
Upf3X consist of multiple isoforms that
result from alternative pre-mRNA
splicing. Whether or not Upf2, Upf3
and Upf3X are involved in Upf1
dephosphorylation, as are their
orthologues in C. elegans (Page et al.,
1999), remains to be determined.
However, as in C. elegans (Grimson et
al., 2004; Page et al., 1999), Upf1
phosphorylation is mediated by the PIK-
related kinase SMG1 (Brumbaugh et al.,
2004; Denning et al., 2001; Yamashita et
al., 2001). Also as in C. elegans (Anders
et al., 2003; Page et al., 1999) and,
possibly, D. melanogaster (Gatfield et al.,
2003), Upf1 dephosphorylation is
mediated by SMG5 and, presumably,
SMG6 and SMG7 (Chiu et al., 2003;
Gatfield et al., 2003; Ohnishi et al., 2003). 

Interestingly, factors that function in
NMD have also been shown to function
in other pathways. For example, SMG1
is an ATM-related kinase that is also
involved in the recognition and/or repair
of damaged DNA (Brumbaugh et al.,
2004). SMG1 phosphorylates the tumor
suppressor checkpoint protein p53 in
response to UV and γ irradiation, and
cells in which SMG1 has been
downregulated accumulate spontaneous
DNA damage and are sensitized to
ionizing radiation (Brumbaugh et al.,
2004). Providing another example, Upf1
is the δ helicase that partially co-purifies
with DNA polymerase δ (Carastro et al.,
2002). Upf1 (unlike Upf2, the only other
NMD factor tested) also appears to
function in nonsense-mediated altered

splicing (NAS), a poorly understood
pathway by which NCs influence the
efficiency or accuracy of splicing
(Mendell et al., 2002; Wang et al., 2002).
In fact, Upf1 can be mutated so that it
functions in NAS but not NMD (Mendell
et al., 2002), indicating that the two
pathways are genetically separable.
Furthermore, Upf1 has recently been
found to function in a new pathway
called Staufen 1 (Stau1)-mediated
mRNA decay (SMD) (Kim et al., 2005).
In this pathway, the RNA-binding
protein Stau1 interacts directly with Upf1
to elicit mRNA decay when bound
sufficiently far downstream of an NC,
including the normal termination codon.
The results of microarray analyses
indicate that there are a number of natural
targets for SMD (Kim et al., 2005).
Finally, Upf1 interacts with PABPC and
forms distinct complexes of
approximately 1.3 MDa and 400-600
kDa that appear to differ in their content
(Schell et al., 2003). The functional
significance of all these findings remains
unknown. Multiple roles for NMD
factors are also evident in the case of
SMG5, SMG6 and SMG7, which are
identical to the Ever Shorter Telomere
(EST) proteins EST1B, EST1A and
EST1C, respectively (Reichenbach et al.,
2003; Snow et al., 2003). Each associates
with active telomerase and is involved in
telomere integrity (Reichenbach et al.,
2003; Snow et al., 2003).

As is evident from this short overview,
many mechanistic details of NMD still
require resolution. In the future, it will
also be important for us to understand
the extent to which NMD regulates the
level of proper mRNA production as
opposed to degrading mRNAs that
produce aberrant and, therefore,
potentially harmful proteins. How NMD
is mechanistically linked to other
cellular processes, some of which can
also be viewed as a type of quality
control, requires further study.
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