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Abstract. This paper extends Voiculescu's theorem on approximate equivalence to
the case of nonseparable representations of nonseparable C*-algebras. The main
result states that two representations / and g are approximately equivalent if and
only if rank/(.x) = rank g{x) for every x. For representations of separable C*-alge-
bras a multiplicity theory is developed that characterizes approximate equivalence.
Thus for a separable C*-algebra, the space of representations modulo approximate
equivalence can be identified with a class of cardinal-valued functions on the
primitive ideal space of the algebra. Nonseparable extensions of Voiculescu's
reflexivity theorem for subalgebras of the Calkin algebra are also obtained.

1. Introduction. In [V, Theorem 1.5] D. Voiculescu proved a remarkable theorem
concerning approximate equivalence of separable unital representations of separa-
ble C*-algebras. For a beautiful account of Voiculescu's theorem and many of its
applications see the paper of W. Arveson [Ar 1]. This paper proves a version of
Voiculescu's theorem for arbitrary unital representations of arbitrary C*-algebras.
Very often nonseparable extensions of theorems tend to be mired in cardinal
arithmetic, but in this case the cardinal arithmetic is not too complicated. Of
course, the main ingredient of this extension is Voiculescu's theorem itself. Al-
though there have already been many applications of Voiculescu's theorem, the full
impact of the theorem is probably yet to come. It is hoped that the results of this
paper will aid in future applications of Voiculescu's theorem.

In addition many of the applications of Voiculescu's theorem carry over to
nonseparable cases. In particular, Voiculescu's reflexivity theorem [V, Theorem 1.8]
for unital, norm closed, separable subalgebras of the Calkin algebra is extended to
"analogous" quotients for nonseparable Hubert spaces. Also the results in [H 4] on
direct integrals are extended to some nonseparable situations; these extensions are
used to improve some results of F. J. Thayer [Th] on quasidiagonal C*-algebras.
Voiculescu's theorem is also extended to approximate subrepresentations.

Throughout, ZZ denotes a complex Hilbert space and B(H) denotes the set of
(bounded linear) operators on H. The dimension of H, denoted by dim H, is the
cardinality of an orthonormal basis for H. If M c H, then \JM denotes the span
of M, i.e., the smallest (closed) subspace containing M.
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204 D. W. HADWTN

There are several common operator topologies on B(H): the norm, strong, weak,
and *-strong operator topologies. Of these, the reader may not be familiar with the
♦-strong operator topology. A net {T„} in B(H) converges »-strongly to an
operator T if and only if Tn —* T strongly and T* ^> T* strongly.

If T G B(H), then the rank of T, denoted by rank T, is the dimension of the
closure of the range of T. The range of an arbitrary function F is denoted by
ran F; the kernel of a homomorphism G is denoted by ker G.

Since the mapping T —> rank T is central to this paper, a few remarks are in
order. The most important property of this mapping concerns lower semicontinu-
ity. If H is separable, then the mapping T —» rank T is weakly lower semicontinu-
ous [PRH 1, Appendix]; equivalently, if H is separable and m is a cardinal, then
(T G B(H): rank T < m} is weakly closed. If m is finite and H is nonseparable,
then (T G B(H): rank T < m} is still weakly closed; however, {TE
B(H): rank T is finite) is »-strongly dense in B(H). On the other hand, if m and H
are arbitrary, then {T G B(H): rank T < m} is always closed under limits of
weakly convergent sequences. (Proof: Tn —» T weakly implies ran T c
V {ran T„: n = 1, 2, . . . }.) Thus {T G B(H): rank T < m} is norm closed.
Therefore, the mapping T —> rank T is always lower semicontinuous in the norm
operator topology.

If m is an infinite cardinal, let %m denote the class of all operators that are norm
limits of operators with rank less than m, and let %m(H) denote %m n B(H). In
the case when m = H0 we shall usually use %(H) instead of %„(H) to denote the
set of compact operators on ZZ. It is a part of the folklore of operator theory that
{%m(H): m an infinite cardinal} is the set of nonzero, norm closed, two-sided
ideals in B(H). The fundamental properties of these ideals vary greatly with the
choice of the infinite cardinal m. Since {TE B(H): rank T < m}~ is determined
by limits of sequences, it is not too surprising that one of the most marked
differences occurs in the ideals %m(H) depending on whether or not m can be
approximated by sequences of smaller cardinals (see §4). Call an infinite cardinal m
countably cofinal if there are countably many cardinals mx, m2, . . . , each less than
m, such that sup¿ mk = m. (In [EEL] the less suggestive term "N0-irregular" is used
instead of countably cofinal.)

Suppose A' is a nonempty set and F, G: X -> B(H) are functions. The functions
F and G are unitarily equivalent, denoted by F ss G, if there is a unitary operator U
such that U*F(x) U = G(x) for every x in X.

The functions F and G are approximately equivalent, denoted by F ~a G, if there
is a net { U„) of unitary operators for which || U*F(x)U„ — G(x)\\ —> 0 for every x
inJf.

If m is an infinite cardinal, we write F —a G(%m) to denote the existence of a net
{U„} of unitary operators such that U*F(x)Un — G(x) E %m for each x and each
n, and || U*F(x)U„ — G(x)\\ -» 0 for every x. If all of the action takes place on a
Hilbert space H, we may write F ~a G(%m(H)).

Throughout, 3Í denotes a C*-algebra. A »-homomorphism tt: St -» B(H„) for
some Hilbert space H„ is a representation. If M = f) {ker ir(a): a E 9Í}, then M
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reduces ran tt, and tt followed by restriction to M is called the zero part of tt;
similarly, tt followed by restriction toM1 is the nonzero part of tt. If M = 0, then tt
is nondegenerate. We shall always assume that 91 has an identity, 1, and thus every
nondegenerate representation it of 21 is unital; i.e., tt(1) = LA unital representation
tt is irreducible if no nontrivial subspace of ZZ reduces ran tt. Let Rep(9i) denote the
class of unital representations of 91, and let Irr(9I) denote the subclass of irreducible
representations of 9Í. Also let Rep(9i, H) denote the unital representations from 91
into B(H) and let Irr(9t, H) denote Irr(9l) n Rep(9t, ZZ). There are two natural
topologies on Rep(9I, H), the point-norm topology (i.e., the topology of pointwise
norm convergence) and the point-weak topology (i.e., the topology of pointwise
weak convergence). We could also define the point-strong and the point-*-strong
topologies on Rep(9l, ZZ), but these coincide with the point-weak topology. (The
heart of the proof is that if Tn -> T weakly and 7? Tn -► T* T weakly, then Tn^>T
strongly.) For more general mappings, point-weak and point-strong convergence do
not coincide. We define dim tt as dim H„.IT

If tt, p G Rep(9l), then it is a subrepresentation of p, denoted tt < p, if tt is a
summand of p.

If m is a cardinal, then H(m) denotes a direct sum of m copies of H, and if
T G B(H), then T(m) denotes a direct sum of m copies of T acting on Him). Also if
F: X -h> B(H), then Fim): X -> B(H(my) is defined by F(m\x) = F(x)im\ We often
use the symbol oo instead of N0, e.g., T(oc) = T © T © • • • .

In §2 we discuss Voiculescu's theorem (Theorem 2.1) and present an elegant
reformulation of this theorem (Theorem 2.5) that is extended to nonseparable cases
in §3 (Theorem 3.14). Also §3 contains a characterization of approximate equiva-
lence of representations of separable C*-algebras that is based on a notion of
"approximate multiplicity", which is an extension to representations of the notion
of "approximate nullity" used by G. Edgar, J. Ernest and S. G. Lee [EEL].

In §4 we consider quotients of the form B(H)/%m(H) where m is an infinite
cardinal, m < dim H. We investigate the striking difference in the situations when
m is, or is not, countably cofinal. We extend some of the compactness results [V,
Theorem 1.5] related to approximate equivalence in the case when the dimension of
the approximately equivalent representations is countably cofinal (Theorem 4.6).
Also Voiculescu's reflexivity theorem is extended to separable subalgebras of
B(H)/%m(H) in the case when m is countably cofinal (Theorem 4.8). It is also
shown that certain lifting problems in the quotient B(H)/%m(H) with m an
uncountable cardinal depend only on whether m is, or is not, countably cofinal
(Theorem 4.13). §5 contains an analogue of Voiculescu's theorem for approximate
subrepresentations.

§6 contains a result on direct integrals of representations that extends the results
in [H 4]. Direct integrals of representations are analogues of multiplications by
L°°-functions on L2-spaces. The problem with the analogy is that the ¿"-functions
(direct integrals) are not generally point-norm limits of "simple" functions, or even
functions with countable range (such functions correspond to direct sums). The
main result (Theorem 6.2) is that direct integrals are approximately equivalent to
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functions with countable range (i.e., if we are willing to leave the measure-theoretic
structure, then we can approximate direct integrals by functions with countable
range).

The final section (§7) contains a comparison between approximate equivalence
and unitary equivalence from the point of view of spectral multiplicity theory.

Various examples are sprinkled throughout the paper illustrating the limits on
further extending these results. The results in §2 were announced in [H 3], and the
results in §§3, 4 were announced in [H 6]. This paper is part of a preprint of the
author entitled Approximate equivalence and completely positive maps.

2. Voiculescu's theorem. The aim of this section is to state and reformulate
Voiculescu's theorem. The reformulation has the advantage of being easier to state,
understand, apply, and remember. The most important advantage is that the
reformulation remains true in all of the nonseparable cases. We begin with a
statement of Voiculescu's theorem.

Theorem 2.1 (Voiculescu [V, Theorem 1.5]). Suppose H is separable, 91 is
separable, and tt, p E Rep(9t, H). The following are equivalent:

(1)t~,P,
(2) TT ~a P(%(H)),
(3) ker tt = ker p, tt~x(%(H)) = p~x(%(H)), and the nonzero parts of tt,

o\tt~x(%(H)) are unitarily equivalent.

Our reformulation replaces (2) and (3) by the condition: rank ir(a) = rank p(a)
for every a in 91.

We first need a few facts concerning representations of C*-algebras of compact
operators. The following lemma is a summary of some of the results in [Ar 2].
Essentially the following lemma is a restatement of the facts that a C*-algebra of
compact operators is isomorphic to a direct sum of elementary C*-algebras, that
every representation of such an algebra is a direct sum of irreducible representa-
tions, and that every nonzero irreducible representation is unitarily equivalent to a
subrepresentation of the identity representation. Note that $- and H need not be
separable.

Lemma 2.2. Suppose % is a C*-subalgebra of %(H). Then the identity representa-
tion is unitarily equivalent to w0 © 2®=/ tf™ relative to the decomposition H = H0®
Z^, Hf*> suck that

(1) n¡ is a positive integer for each i in I,
(2) TT0 = 0,
(3) TTj is irreducible for each i in I,
(4)f = {T E %(H): T = 0 © 2®e/ T}*'},
(5) TTj « TTj => i = j,
(6) // p is a representation of f, then there are cardinals m¡, i G Z, such that

p m Po © 2® / TTJ^ where p0 = 0.

Note that if w: f -» B(H) is a representation of a C*-algebra $•, then tt and the
identity representation on ran tt have the same reducing subspaces. Therefore the
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preceding lemma could be restated in terms of representations into %(H) (see
Proposition 2.10).

The following lemma is the main ingredient of our reformulation of Voiculescu's
theorem. Note that f and H need not be separable.

Lemma 2.3. Suppose fy is a C*-algebra and it, p: fy -* %(H) are representations.
Then

(1) the nonzero parts of tt and p are unitarily equivalent if and only if rank tr(a) =
rank p(a)for each a in fy;

(2) the nonzero part of tt is unitarily equivalent to a subrepresentaton of p if and
only if rank tt(o) < rank p(a) for each a in fy.

Proof. (1). The "only if part is obvious. Suppose that rank ir(a) = rank p(a) for
each a in fy. Then ker tt = ker p (because ker it = {a E fy: rank ir(a) = 0)). Thus
(by considering w($-)) we can assume that fy E %(H) and tt is the identity
representation on fy. Suppose that we have decomposed it, H, and p as in Lemma
2.2. We need show only that n¡ = m¡ for each i in Z. If i E I, then it follows from
Lemma 2.2(4) that there is an a in fy such that rank it ¡(a) = 1 and rank irj(a) = 0
for every j in I with / ¥= i; whence «, = rank ir(a) = rank p(a) = m¡. This com-
pletes the proof of (1).

(2). The proof follows in a fashion similar to that of (1), e.g., it is necessary to
show only that m¡ > n, for every i in I.

The following lemma is used to extend results on approximate equivalence from
separable C*-algebras to nonseparable C*-algebras. The proof, which is omitted, is
obtained by considering nets that are indexed by the finite subsets of X.

Lemma 2.4. Suppose X is a nonempty set and F, G: X -> B(H). Then F~a G if
and only if F\Y —a G \ Y for every finite subset Y of X.

We are now ready to prove our reformulation of Voiculescu's theorem (Theorem
2.1). Note that the separability assumption on 91 is dropped. We shall later prove
(Theorem 3.14) that the separability assumption on H can also be dropped. Our
reformulation of Voiculescu's theorem should give the reader an inkling of the
depth and power of Voiculescu's theorem; i.e., it is a purely algebraic characteriza-
tion of approximate equivalence, which is very geometric.

Theorem 2.5. Suppose H is separable and tt, p E Rep(9l, H). Then it ~a p if and
only if rank(a) = rank p(a) for each a in 91.

Proof. The "only if" part follows from the lower semicontinuity of the function
rank( ) on B(H). To prove the "if" part suppose that rank Tr(a) = rank p(a) for
each a in 91. We can assume, by Lemma 2.4, that 91 is separable. Since ker it =
{a: rank Tr(a) = 0}, it follows that ker tt = ker p. Furthermore, it follows from
Lemma 2.2(4) that every compact operator in ran tt (resp. ran p) is a norm limit of
finite rank operators in ran tt (resp. ran p). Hence tr~x(%(H)) = p~x(%(H)). It
follows from Lemma 2.3(1) that the nonzero parts of tt, p\tr~x(%(H)) are unitarily
equivalent. It now follows from Theorem 2.1 that tt ~a p.
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Corollary 2.6. Suppose H is separable and tt, p E Rep(9t, H). Then tt —a p if
and only if there are nets {Un}, {Vk} of unitary operators such that U* ir(a) i/n —► p(a)
weakly and V£p(a) Vk -» Tr(a) weakly for each a in 91.

The preceding corollary was discovered independently by W. Arveson [Ar 1,
Theorem 5] and the author [H 1, Theorem 4.1] in the case when 91 is separable.
Note that there is no need for the t/„'s and Vks in the preceding corollary to be
unitary; in fact, tt ~a p if and only if, for each a in 91, there are nets {A„}, {B„},
{Ck}, {Dk} of operators (depending on a) such that AnTr(a)Bn -» p(a) weakly and
CkP(a)Dk -* *•(«) weakly.

Note also that Theorem 2.5 implies the equivalence of (1) and (3) in Theorem 2.1
when 91 is not separable. If 91 is not separable, then the implication (1)=»(2) in
Theorem 2.1 no longer holds (Proposition 2.7). If H is not separable and 91 is
separable, then the implications (1) => (2) and (3) => (1) are no longer true (Proposi-
tion 2.8); also, in this case, Corollary 2.6 is no longer true.

The next proposition shows why it is necessary to use nets rather than sequences
when defining approximate equivalence for nonseparable C*-algebras.

Proposition 2.7. Suppose {ex, e2, . . . } is an orthonormal basis for H, let 91 be the
C*-algebra of all operators on H that are diagonal with respect to (e„ e2, . . . }, and
let t: 91 -» C be a scalar-valued unital representation that annihilates 91 n %(H). If
tt is the identity representation on 91 and p = tt © t © t © . . . , then

(i)T~ap;
(2) there is no sequence {Un} of unitary operators such that U*ir(a)Un -^ p(a)

weakly for every a in 91;
(3) there is no unitary operator U such that U*Tr(a)U — p(a) is compact for every a

in 91.

Proof. (1) follows from Theorem 2.5. (2) and (3) will both follow once we have
proved the following fact: there is no sequence {/„} of unit vectors such that/„ -» 0
weakly and (Afn,fn) —> t(A) for every A in 91. Assume via contradiction that {/„} is
such a sequence. Since /„-»0 weakly, we can find a subsequence {/^} and an
increasing sequence {mk} of positive integers, and an orthonormal sequence {gk}
such that ||/^ — gk\\ -»0 and such that gk E V {ef- mk *« J < mk + \) f°r ^ =
1,2,.... It follows that (Agk, gk) —» r(A) for every A in 91. However, if P is a
projection in 91 such that Pgk = gk if k is even and Pgk = 0 if k is odd, then
(Pgk, gk) •** t(P); this is the desired contradiction. A moment's reflection shows
that the existence of a sequence {Un} of unitary operators such that U*Ti(a)Un —>
p(a) weakly for every a in 91 or the existence of a unitary operator U such that
U*Tr(a)U — p(a) is compact for every a in 91 would imply the existence of a
sequence {f„} of unit vectors such that/, —» 0 weakly and (Afn,fn) —> r(A) for every
A in 91. This proves (2) and (3).

Proposition 2.8. Suppose H is not separable and let P, Q be projections in B(H)
such that rank P = N0 and rank Q = rank(l - Q) = dim H. Let 91 = C*(P), let tt
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be the identity representation on 91, and let p: C*(P) —» C*(Q) be the unital represen-
tation with tt(P) = Q. Then:

(i)*r/>sp;
(2) ker tt = ker p, tt~x(%(H)) = p~x(%(H)), and the nonzero parts of

tt, p\tt~x(%(H)) are unitarily equivalent;
(3) there are nets {Un}, {V„} of unitary operators such that U*Tr(a)Un^> p(a)

weakly and V*p(a) Vn -» Tr(d) weakly for every a in 91.

Proof. (1) This follows from Theorem 2.5; i.e., rank tt(P) ¥= rank p(P). (2)
Clearly ker tt = ker p = ir-x(%(H)) = p~\%(H)) = 0. (3) Order the finite subsets
of ZZ by inclusion. For each finite subset E of H choose unitary operators UE and
VE so that UlPUEe = Qe and V£QVEe = Pe for each e in E. It is clear that {UE},
{VE} are the required nets.

It should be noted that the equivalence of (2) and (3) in the preceding proposi-
tion is true for arbitrary representations. It should also be noted that Theorem 2.5
is false for nonunital representations. To see this suppose dim H = H0 and P, Q are
projections such that rank P = rank Q = rank(l — Q) = N0 and rank(l — P) = 1.
Let fy = {XP: X E C}, let tt be the identity representation on fy, and let p be the
representation on fy with p(P) = Q. Then rank Tr(a) = rank p(a) for every a in fy,
but tt ^a p (because rank(l — P) ^ rank(l — Q)).

There is another way of viewing Voiculescu's theorem that will prove useful in
the next section. It was proved by R. Gellar and L. Page [GP] that two normal
operators on a separable Hilbert space are approximately equivalent if and only if
they have the same spectrum and their isolated eigenvalues have the same multi-
plicities. In [H 1] the author proved an analogue of this result for arbitrary
operators on a separable Hilbert space. We will show how the analogy can be
extended to representations. The key ideas are based on Lemma 2.2 and the
following lemma (which is contained in [Ar 2]).

Lemma 2.9. Suppose 91 is a C*-algebra, fy is a closed *-ideal in 91, and tt E
Rep(9i, H). Let M = V {ran ir(a): a E fy}. Then:

(1) M reduces tt;
(2) a subspace of M reduces tt if and only if it reduces ir\fy;
(3) if Mx, M2 are subspaces of M that reduce tt, and if U: Mx —► M2 is a unitary

operator such that U*(Tr(a)\M2)U = tt(o)\Mx for every a in fy, then /7*(7t(íi)|A/2)(7
= ir(a)\Mx for every a in 91.

The following proposition is easily obtained from Lemma 2.2 and the preceding
lemma; it appears in the author's Ph.D. thesis in the case when 91 is separable (see
also [H 1, Proposition 2.5]).

Proposition 2.10. Suppose tt E Rep(9í, H) and let fy = 7r"'(3C(ZZ)). Then we can
write T3ff0® 2fe/ vf** relative to H = H0® 2®/ZZ1(n,) where:

(1) «, is a positive integer for each i in I;

(2)TT0\fy=0;
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(3) v (fy) = %(H,)for each i in I;
(4) ir, is irreducible for each i in I;
(5) tt¡ = ttj => i = j;
(6) if p is an irreducible representation of 91 such that ker tt E ker p and fy (J ker p,

then p » tt¡ for some i in I.

Corollary 2.11. If 91 and H are separable, tt E Rep(9t, H), and p is an
irreducible representation of 91 such that ker it E ker p, then either p is unitarily
equivalent to a sub représentât ion of tt or it ~a tt © p.

If tt E Rep(9I, H), then Arveson [Ar 3] calls the subrepresentation of tr that is
complementary to tt0 in the preceding proposition the essential part of tt. It follows
from Lemmas 2.2 and 2.9 that the essential parts of two approximately equivalent
representations are unitarily equivalent. Voiculescu's theorem says that if H is
separable, then the converse holds; i.e., if the essential parts of two representations
are unitarily equivalent and if the representations have the same kernel, then the
representations are approximately equivalent (see [Ar 3, Theorem 5]).

To get a clearer picture of these ideas let 31 = C(X) where A' is a nonempty
compact subset of the plane, and let 6 be the element of C(X) defined by 9(z) = z.
A representation tt in Rep(9l, H) is completely determined by T = tt(9); the only
necessary conditions on T are that T be normal and o(T) E X. Subrepresentations
of tt correspond to direct summands of T, and irreducible subrepresentations of tt
correspond to eigenvalues of T. The subrepresentations tt¡, i E I, in Proposition
2.10 correspond to the isolated eigenvalues of T that have finite multiplicity; the
multiplicity of the eigenvalue corresponding to each w, is the integer n¡. If p G
Rep(9I, H) and p(#) = S, then ker p = ker tt precisely when S and T have the
same spectrum.

Hence we can view the irreducible subrepresentations of a representation it in
Rep(91, H) as eigenvalues; let us temporarily use the term eigen-representation, and
let us call the representations tt¡ in Proposition 2.10 the isolated eigen-representations
of finite multiplicity, and call n¡ the multiplicity of tt¡ for each / in Z. (There is a
natural C*-algebraic setting in which "isolated" has a topological meaning, and, for
well-behaved C*-algebras, the meaning of "isolated" corresponds to its use above.
For a brief discussion of these ideas see the last section of [H 1].)

Proposition 2.12. Suppose tt, p E Rep(9í, H). Then:
(1) if tt ~a p, then ker tt = ker p and tt, p have the same isolated eigen-representa-

tions of finite multiplicity with the same multiplicities;
(2) if H is separable and ker tt = ker p and it, p have the same isolated eigen-repre-

sentations of finite multiplicity with the same multiplicities, then tt —a p.

3. Nonseparable cases. The main purpose of this section is to extend Theorem 2.5
to the case when H is not separable. We first give a characterization of approxi-
mate equivalence when 91 is separable and H is nonseparable that is more in the
spirit of Proposition 2.12; the prime ingredient in this characterization is the notion
of "approximate multiplicity", which is an analogue for representations of the
notion of "approximate nullity" of operators studied in [EEL].
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The key idea in Voiculescu's proof of Theorem 2.1 is the following lemma. It is
clear that this lemma follows from Theorem 2.1 (see Theorem 2.5).

Lemma 3.1 (Voiculescu [V, Theorem 1.3]). Suppose 91 is separable, H„, Hp are
separable Hilbert spaces, it E Rep(9t,Hj), p G Rep(9I, Hp), and suppose
p\ir-\%(Hv)) = 0. Then tt ~a ir © p.

Our first task is to extend Lemma 3.1.

Lemma 3.2. Suppose 91 is separable, H„, Hp are infinite-dimensional Hilbert spaces,
tt E Rep(9I, HJ, p E Rep(9(, ZZp), and m = dim Hp. If p\TT-x(%m(HJ) = 0, then
TT —a TT © p.

Proof. Since p(l) = 1 ¥= 0, it follows that dim Hw = rank tt(1) > m = dim Hp.
In view of Lemma 3.1 we can assume that dim Hv is uncountable. We are going to
write Hn as a direct sum of subspaces {Ma: a is an ordinal, a < dim H} so that for
each a:

(1) Ma reduces tt,
(2) \\TT(a)\Ma\\ = |Ka)|(2f<a Mß)^\\ for every a in 91,
(3) if a E 91 and Tr(a)\Ma is compact, then Tr(a)\(2®<a MB)X is compact.
We begin by constructing M0. Since 91 is separable, it follows that tt is a direct

sum of separable representations. It therefore follows that for each a in 91 there is a
separable subspace Na of Hm such that Na reduces tt and ||ff(a)|ZV0|| = ||w(a)||- Let
{ax, a2, . . . } be dense in 91 and let M = V {^: k = 1,2, . . .}. Then M is
separable, M reduces tt, and ||7r(a)|M|| = ||w(a)|| for every a in 91.

Consider the representation t: 7r(9f)|Af-» w(91) defined by T(7r(a)|Af) = ir(a) for
every a in 91. Clearly t is an isomorphism. (We just proved that t is isometric!) It
follows from Lemma 2.1 that there are cardinals mx, m2, . . . and irreducible
representations t,, t2, . . . such that the nonzero part of t|(7t(91)|M) n %(M) is
unitarily equivalent to T\m,) © r2m^ © • • • . It follows from Lemma 2.9 that we can
choose a separable subspace M0 of H such that M E Mq, M0 reduces tt, and the
nonzero part of the representation on (ir(9i)|M) n %(M) that maps Tr(a) onto
ir(a)\M0 is unitarily equivalent to t^"1* ®2"¿ © • • • , where nk = min(mk, Nq) for
k = 1,2,_It follows that  ||7r(a)|A/0|| = ||7r(a)||  for every a in 91 and that
(tt(U)\M0) n %(M0) = [7r(91) n %(HJ]\M0. Thus M0 has the required properties.

Next suppose that a0 is an ordinal less than dim Hv and that the orthogonal
subspaces {Ma: a < a0} have been constructed so that (l)-(3) hold for each
a < a0. To construct MUq we just replace ZZW by (2®<a<) Ma)x and follow the
procedure used to construct M0. Thus all of the A/a's can be constructed by
transfinite induction.

To insure that Hv is the direct sum of the Ma's, we can select an orthonormal
basis {ea: a < dim Hn) and require in our inductive construction that ea G
2®<a Mß for each a < dim H^. We can also insist that each Ma be infinite
dimensional.

Write tt = 2®K: a < dim Hw} relative to Hw = 2®{Ma: a < dim H„). We
can also write p as a direct sum of separable representations: {pa: a is an ordinal
less than dim Hp = m).
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First suppose m = N0. Then p\tt0x(%(M0)) = p\ir x(%(HJi) = 0. Thus tt0~î tt0
© p;, whence tt ~a tt © p.

Next suppose m is uncountable. Then if a E 91, a < m, and TTa(a) is compact,
then, since 2®>cr ^(a) is compact, it follows that rank ir(a) < m. Thus
p\TT~x(<%(Ma)) = 0 for each a < m. It follows from Lemma 3.1 that Tra ~a w„ © pa
for each a < m, whence tt ~a tt © p.

Recall that Irr(9t) denotes the class of irreducible representations in Rep(9l), and
Irr(91, H) = Irr(9l) n Rep(9t, ZZ).

Lemma 3.3. If 91 is separable and H is separable, then Rep(9I, ZZ) is separable and
metrizable in the point-weak topology.

Proof. Let D be the closed unit disk in the plane. Choose a (norm) dense
sequence {an} in the unit ball of 91 and a (norm) dense sequence {/„} in the unit
ball of H. For each pair (m, ri) of positive integers let D(m, n) = D, and let Y be
the cartesian product l\m¡n) D(m, ri) with the product topology. Define a map
d>: Rep(9t, H)-> Y by ®(<rr)(m, ri) = (Ti(an)fm, fm). It is easily shown that $ is an
embedding (with the point-weak topology on Rep(9l, H)) and that Y is separable
and metrizable. Hence Rep(91, H) is separable and metrizable in the point-weak
topology.

Corollary 3.4. If 91 and H are separable, then every subset of Irr(91, H) is
Lindelóf in the point-weak topology.

We are now ready to extend the analogy between eigenvalues of normal
operators and irreducible subrepresentations of a representation. Suppose 91 is
separable and it E Rep(91). For each t in Irr(9I) we define the approximate
multiplicity of t as a subrepresentation of it, denoted by Ap-mult(i-, tt), as the
supremum of the cardinals m > 0 for which T(m) is a subrepresentation of a
representation that is approximately equivalent to tt. The next proposition contains
some of the properties of approximate multiplicity. In particular, the supremum in
the definition is shown to actually be a maximum. A more algebraic characteriza-
tion of approximate multiplicity is given in Lemma 3.13.

Proposition 3.5. Suppose 91 is separable, tt, p G Rep(9I, H), and t G Irr(9í).
Then:

(1) 0 < Ap-mult(T, tt) if and only »/ker tt E ker t;
(2) Ap-mult(r, tt) is infinite if and only if t\tt~x(%(H)) = 0;
(3) Ap-mult(T, tt) is a positive integer m if and only if t is an isolated eigen-repre-

sentation of tt with multiplicity m;
(4) if m = Ap-mult(r, tt) is infinite, then tt ~a tt © T(m);
(5) if tt ~a p and t —a o, then Ap-mult(r, tt) = Ap-mult(o, p).

Proof. (1) The "only if" part is obvious. Suppose ker tt E ker t. If t\tt~x(%(H))
7e 0, then, by Proposition 2.10, t is unitarily equivalent to a subrepresentation of it.
If t\tt'x(%(H)) = 0, then it follows from Lemma 3.2 that tt ~a tt © t. In either
case Ap-mult(T, tt) > 0.
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(3) The "if" part follows from Proposition 2.12. Suppose t is not an isolated
eigen-representation of tt with finite multiplicity. It follows from Proposition 2.10
(6) that either ker tt <J ker t or t\tt~x(%(H)) = 0. In the first case, Ap-mult(r, tt) =
0, and in the second, Ap-mult(T, tt) is infinite (by Lemma 3.2).

(2) This follows from (1) and (3).
(4) Suppose m = Ap-mult(T, tt) is infinite. Suppose a E 91 and rank Tr(a) < m.

Then there is a cardinal k such that rank Tr(a) < k < m and tw is a subrepresenta-
tion of a representation that is approximately equivalent to it. Thus k • rank r(d) =
rank T(k)(a) < rank tr(a) < k, whence r(a) = 0. It follows from Lemma 3.2 that
TT ~a TT © T(m).

(5) This is obvious.

Lemma 3.6. Suppose 91 and H are separable and it E Rep(9t). Then the mapping
t —* Ap-mult(r, tt) on Irr(9I, ZZ) is upper semicontinuous in the point-weak topology.

Proof. Suppose am is a cardinal. We must show that S = {t G Irr(9I, H):
Ap-mult(T, tt) > m} is point-weak closed. If m = 0, then S = Irr(9í, ZZ). Suppose
m is infinite, {t„} is a sequence in S and t„ —» t in the point-weak topology. Since
t„ G S for each n, we have (by Proposition 3.5(4)) that {a: rank w(a) < m} E
ker t„ for n = 1, 2, ... . Thus {a: rank ir(a) < m} Q ker t. It follows from Lemma
3.2 that tt ~a tt © T(m), whence t G S. Finally suppose that m is a positive integer.
If we have that infinitely many of the t„'s are unitarily equivalent, then ker t„ c
ker t for some n. Thus

Ap-mult(r, tt) > Ap-mult(r, t„) • Ap-mult(T„, tt) > 1 • m = m.

Hence we can assume that t, m r. only when /' = j. We can also assume that
Ap-mult(T„, it) is finite for n = 1, 2, ... . It follows from Proposition 2.10 that
(t, © t2 © • • • )(m) is unitarily equivalent to a subrepresentation of tt. Also, since
r„ -> t in the point-weak topology, it follows that ker(r, © t2 © • • • ) Ç ker t.
Thus Ap-mult(T, t, ffi t2 ©•••)> 1, which implies that Ap-mult(T, it) > m.

The next two propositions are perhaps surprising and very fundamental to the
main results of this section. They involve some topology and some cardinal
arithmetic.

If 91 is separable and tt E Rep(9i), we define the multiplicity set of tt, denoted by
91t(w),to be {Ap-mult(r, tt): t G Irr(9í)}. Also let ^„(tt) denote the set of infinite
cardinals in 9H(7r).

Proposition 3.7. If 91 is separable and tt E Rep(9l), then ?S\1(tt) is countable.

Proof. Since 91 is separable, we know that each t in Irr(91) is separable. It
follows that we need only show that 9H(w, ZZ) = {Ap-mult(T, tt): t G Irr(9t, H)} is
countable for every separable Hilbert space; clearly we need check one Hilbert
space of each countable dimension. Suppose ZZ is separable, and assume, via
contradiction, that 9H(7r, H) is uncountable. Hence there is a subset 91L of
?nt(7r, H) consisting only of infinite cardinals such that 91L is order-isomorphic to
the first uncountable ordinal fí. Write "D1L = {ma: a < ß} so that a < ß implies
ma < mß. For each a < ß define 6a = {t G Irr(9t, H): mult(T, tt) < ma}, and let
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0 be the union of the 0a's (a < ß). It follows from Lemma 3.6 that each 0a is
point-weakly open, and it follows from Corollary 3.4 that © is point-weakly
Lindelöf. However, the 0a's form an open cover with no countable subcover; this
is the required contradiction.

Proposition 3.8. Suppose 91 is separable, it E Rep(91), and m is an infinite
cardinal. If {t,: i E 1} E Iit(9í), Ap-mult(T„ tt) < m for each i in I, and 2®=7 t, is
unitarily equivalent to a subrepresentation of tt, then Card I < m.

Proof. Assume via contradiction that Card I > m, and let k be the smallest
cardinal greater than m. Choose a sequence {an} that is dense in {a G
91: rank tt(o) < m}. For each positive integer n, we have

rank ¿.  T¡(a„) < rank ir(a„) < m,
IS/

which implies that there is a subset Z„ of I such that Card I„ < m and T,(a„) = 0 for
i G Z„. Let J be the union of the Z„'s. Clearly, card/ < m, whence I — J ¥= 0.
Choose i G I - J. Then

TT~x(%k(H)) = {a E 91: rank tt(o) < m) E ker t,.

Thus, by Lemma 3.2, tt —a tt © t/*\ which implies Ap-mult(T„ it) > m. This is the
desired contradiction.

We are now only one lemma away from one of the two main theorems of this
section.

Lemma 3.9. Suppose tt, ttx, tt2, . . . GRep(9I) and tt —a tt © tt„ for n = 1, 2, . . . .
Then tt —a tt © ttx © tt2 © . . . .

Proof. It follows from Lemma 2.4 that we can assume that 91 is finitely
generated. For notational convenience, we give the proof only in the case when 91
is singly generated; i.e., 91 = C*(a). Let T = Tr(a), and let Tn = irn(a) for n =
1, 2, ... . We can assume that each of the operators T,, T2,. . . appears in the
sequence infinitely often. Suppose e > 0 and suppose T E B(H). We will construct
a sequence {Mn} of orthogonal subspaces of ZZ and a sequence {S„} of operators
such that for n = 1, 2, . . . we have:

(1) Mx, M2,...,Mn each reduces T + Sx + ■ ■ ■ + S„;
(2) Mk reduces Sn and S„\Mk = 0 for 1 < k < n;
(3) (T + Sx + • ■ ■ + Sn)\Mk s Tk for 1 < k < n;
(4)(T+ 5, + • • • +Sn)\(Mx + ■ ■ ■ +Mn)x « T;
(5)||SJ|<e/4".

Since T~a T © T,, it follows that there is an operator Sx and a subspace M, so
that (l)-(5) hold when n = 1. Suppose N isa positive integer and Mx, M2, . . . , MN
and Sx, S2, . . ., SN have been chosen so that (l)-(5) hold when n = N.lt follows
from (4) and the fact that T ~a T © TN+X that there is an operator SN+X and a
subspace MN+X such that MN+X is orthogonal to M„ M2, . . ., MN and such that
(l)-(5) hold when n = N + 1. Thus, by mathematical induction, we can choose
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the Mn's and the S„'s so that (l)-(5) hold for each positive integer n. Let S = Sx
+ S2+ .... Then \\S\\ < e/2 and T + S is reduced by A/„ Af2, ... ; moreover,
(T + S)\Mn s T„ for n = 1, 2,_Thus T, © T2 © . . . is unitarily equivalent to
a summand of T + S. Since each of the operators Tx, T2, . . . appears infinitely
often in the sequence {Tn}, it follows that

(T, © T2 © . . . )(2) « T, © T2 © . . . ,
whence

T + S s (T + S) © T, © T2 © • • • = (T © T, © • • • ) + (S © 0 © • • • ).

Thus there is an operator S' with ||S"||.< e such that T + S' m T © T, © T2
ffi • • ■ . Since e > 0 was arbitrary, there is a sequence {£/„} of unitary operators
such that || U* TU„ - (T © T, © • • • )|| -> 0. Since the set of operators A in Zi(ZZ)
for which {U*A U„} is norm convergent is a C*-algebra, it follows that

|| U*TT(a) Un - (tt(o) © ttx(o) © 7r2(a) © • • • )|| -» 0

for every a in 91, whence tt ~a tt © ttx © ir2 © • • • .
We are now ready to prove the first main theorem of this section.

Theorem 3.10. Suppose 91 is separable and tt, p E Rep(9t, H). Then tt ~a p if and
only if Ap-mult(T, tt) = Ap-mult(T, p) for every t in Irr(9l).

Proof. The "only if" part is obvious. Suppose Ap-mult(r, tt) = Ap-mult(r, p) for
every t in Irr(91). Let M„ = V {ran Tr(a): a E tt-x(%(H))} and Mp =
V {ran p(a): a E p'x(%(H))}. Write tt = tt0® tt' relative to H = M„ ® Mnx and
write p = p0® p' relative to ZZ = A/p © Mx. It follows from Proposition 3.5(3)
that the isolated eigen-representations of tt and p of finite multiplicity have the
same multiplicities, and it follows from Proposition 2.10 that tt0 as p0.

Since 91 is separable, tt' and p' can be written as direct sums of separable
representations and, by [V, Corollary 1.6], these separable summands are ap-
proximately equivalent to direct sums of irreducible representations. Thus v and p'
are approximately equivalent to direct sums of irreducible representations, and
there is no loss in assuming that tt' and p' are actually equal to such direct sums.
Since tyL^Ti) = <Dlta,(p), and, by Proposition 3.7, <DlLQ0(7r) is countable, we can
write (DlL00(ir) = <Ü\tOB(p) = {mx, m2, . . . }. For each positive integer k let irk (resp.
pk) be the direct sum of those irreducible subrepresentations of tt' (resp. p') whose
approximate multiplicity is mk. Then tt' = ttx ® tt2 ® • ■ • and p' = px® p2
ffi • • • . For each positive integer k, it follows from Proposition 3.8 that dim mk <
mk and dim pk < mk, and it follows from Proposition 3.5(4) that irk\p~x(%mk(H)) =
0 and pk¡TT~x(%mk(H)) = 0. Thus, by Lemma 3.2, we have tt—a it ® pk and
p ~a p © TTk for k = 1, 2, . . . . Hence, by Lemma 3.9, w —a it ® p, © p2 ffi • • •
and p —a p ffi 7T, © tt2 © • • • . However, tt ffi p, ffi p2 ffi • • • and p ffi ttx ffi 7r2
© • • •   are unitarily equivalent (to tt0 ffi ttx ffi p, © 7r2 ffi p2 ffi • • • ). Thus w —a p.

Corollary 3.11. Suppose 91 ú separable and tt E Rep(9i, ZZ). 77iert there is a
sequence {rk} if irreducible representations and a sequence {mk} of cardinals such
that tt ~a 2® i£*>.
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Proof. As in the proof of Theorem 3.10 let ir0 denote the direct sum of the
irreducible subrepresentations of tt that have finite approximate multiplicity, and
write "DH^w) = {mx, m2, . . . }. For each positive integer k, we can choose a
sequence rkx, rk2, ... in Irr(9l) so that Ap-mult(Ttn, tt) = mk for n = 1, 2, . . . and
so that every r in Irr(9I) with Ap-mult(r, tt) = mk is unitarily equivalent to a
point-weak limit of representations in {rkX, rk2, . . . }. (This can be done using
Lemma 3.3.) Let tt, = 2® 2® t$*\ and let p = tt0 ffi irx. It follows from Proposi-
tion 3.5(4) that tt ~a tt ffi t^) for all positive integers j, k. It follows from Lemma
3.9 that tt ~a tt ffi ttx. Since p < tt ffi ttx, it follows that Ap-mult(T, p) <
Ap-mult(r, tt) for every t in Irr(9t); the reverse inequalities follow from the choice
of the t^'s and Lemma 3.6. It follows from Theorem 3.10 that tt ~a p.

Corollary 3.12. If 91 is separable and tt E Rep(9I, H), then ^„(tt) =
{rank <rr(a): a E tt-\%(H))}.

To extend Theorem 2.5 to the case when H is not separable we need the
following (algebraic) characterization of Ap-mult(T, tt).

Lemma 3.13. Suppose 91 is separable, tt E Rep(9l, H), and t E Irr(91). Then
Ap-mult(r, tt) = min{rank tt(o): r(a) ¥= 0).

Proof. It is clear that Ap-mult(T, tt) < min{rank tr(a): r(a) ¥= 0}. If
Ap-mult(T, tt) is finite, then it follows from Lemma 2.2(4) and Proposition 2.10(3)
that there is an a in 91 such that rank r(a) = 1 and rank Tr(a) = Ap-mult(T, tt).
Thus we can assume that Ap-mult(T, tt) is infinite. It follows from Lemma 3.2 that
there is an a in 91 such that r(a) ¥= 0 and rank ir(a) = Ap-mult(T, it). Thus
Ap-mult(r, tt) = rank ir(a).

We are now ready to extend Theorem 2.5. Note that there are no separability
assumptions on either 91 or H. This theorem had been previously conjectured by
the author.

Theorem 3.14. Suppose tt, p E Rep(9l, H). Then tt ~a p if and only if rank tt(o)
= rank p(a) for every a in 91.

Proof. The "only if part follows from the (norm) lower semicontinuity of
rank( ). Suppose rank ir(a) = rank p(a) for every a in 91. It follows from Lemma
2.4 that we can assume that 91 is separable. It follows from Lemma 3.13 and
Theorem 3.10 that tt ~a p.

4. Operator ideals. So far in our nonseparable extensions of Voiculescu's theorem
we have ignored the equivalence of (1) and (2) in Theorem 2.1; i.e., if 91 and ZZ are
separable, tt, p E Rep(91, H), and tt ~a p, then tt ~a p(%(H)). Voiculescu [V]
viewed this part of his theorem as an extension of the Weyl-von Neumann
theorem, which says that every Hermitian operator on a separable Hilbert space is
the sum of a diagonal operator and a compact operator. Voiculescu's theorem
implies that every representation of a separable C*-algebra is approximately
equivalent to a direct sum of irreducible representations. This result easily includes
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the extensions of the Weyl-von Neumann theorem to normal operators by I. D.
Berg [B] and W. Sikonia [Si], and to «-normal operators by C. Pearcy and N.
Salinas [PS].

The Weyl-von Neumann theorem is not true in nonseparable Hilbert spaces;
however, G. Edgar, J. Ernest and S. G. Lee [EEL] have generalized the Weyl-von
Neumann theorem to nonseparable Hilbert spaces by replacing the ideal of
compact operators by the ideal %m(H) where m = dim H. Even with this replace-
ment, the extension of the Weyl-von Neumann theorem in [EEL] works only in the
cases when dim H is countably cofinal. One of the main results of this section
extends the nonseparable Weyl-von Neumann theorem in [EEL] to representations:
if 91 is separable, m = dim H is countably cofinal, tt, p E Rep(9t, ZZ), and tt —a p,
then tt ~a p(%m(H)).

Another consequence of Voiculescu's theorem is the theorem (also due to
Voiculescu [V, Theorem 1.8]) that if dim ZZ = N0, then every norm closed, separa-
ble, unital subalgebra of B(H)/%(H) is reflexive. We extend this result to
quotients of the form B(H)/%m(H) where H is nonseparable and N0 < m <
dim H; again the extension is true precisely when m is countably cofinal.

In this section we also examine the quotients of the form B(H)/%m(H) and
study various lifting problems for these quotients.

The following lemma appears in [EEL, Lemma 5.8] (and practically every other
paper dealing with these ideals). The proof is included here mainly to give the
reader the flavor of the ideas used in proofs involving %m(H) when m is not
countably cofinal.

Lemma 4.1. Suppose H0 < m < dim H. Then m is not countably cofinal if and only
if %m(H) = {T E B(H): rank T < m}.

Proof. Suppose m is countably cofinal. Choose a sequence {mk} of cardinals so
that mx < m2 < • • • < m and m = sup¿ mk = mx + m2 + • ■ ■ . Hence we can
write H = H0 ffi ZZ, ffi • • • with dim Hk = mk for k = 1, 2, ... , and relative to
this decomposition we can define an operator Tk = 0 ® I ® • ■ ■ ®l/k ffi 0 ffi 0
ffi • ■ •   for k = 1, 2,_Clearly, rank Tk <m for k = 1,2,. . .,   but {Tk} is
norm convergent to an operator whose rank equals m.

Conversely, suppose m is not countably cofinal and suppose S E %m(H). Then
there is a sequence {Sk} in B(H) such that rank Sk < m for k = 1, 2, . . . and
\\$k ~ -S" 11 —> 0. Thus rank 5 < sup¿ rank Sk < m (since m is not countably cofi-
nal).

We now turn to some of the results of the preceding section.

Proposition 4.2. Suppose {tt¡: i G I}, {p¡: i G 1} are collections of separable
representations of a separable C*-algebra 91 such that card I = m is countably
cofinal. If it = 2®=/ ttí and p = 2®=7 p, and tri —a p,. for each i in I, then tt
~ap(5Cm(ZZ)).

Proof. Let ax, a2, . . . be dense in 91. Since m is countably cofinal, we can write
I as a disjoint union of subsets Z„ Z2, . . .  each with cardinality less than m. For
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each positive integer n we can choose unitary operators Uin, i E I, so that
|| UfrrfaWm - PÂaj)\\ < M*» whenever k = 1, 2, . . ., i E Ik, 1 < j < k + n.
Let Un = 2® 7 Uin for n = 1, 2,_Then

l|C£*ty)tf. - P(aj)\\ < l/n    for 1< / < « < oo.

Hence || U*Tr(aj)U„ - p(o,)|| -> 0 for y = 1, 2, ... . Since {a,, a2, . . . } is dense in
91, it follows that \\U*ir(à)U„ - p(a)\\ ->0 for every a in 91. It is also clear that
U*Tr(aj)Un - p(aj) is in %m(H) foxj = 1,2, ... , and since {ax, a2, . . . } is dense
in 91, it follows that U*Tr(a)Un - p(a) E %m(H) for every a in 91. Thus tt
~a P(%m(H)).

Corollary 4.3. If m = dim H is countably cofinal, 91 is separable, and tt E
Rep(9t, H), then there is a p in Rep(91, H) such that p is a direct sum of irreducible
representations and tt ~a p(%m(H)).

Proof. Since 91 is separable, we know that tt can be written as a direct sum of
separable representations, and each of these is approximately equivalent to a direct
sum of irreducible representations (Corollary 3.11). Now apply Proposition 4.2.

Corollary 4.4. Suppose 91 is separable, Hn and Hp are infinite-dimensional
Hilbert spaces, tt E Rep(9l, Hw), p G Rep(9I, Hp). Suppose m > dim Hp and
p\TT-x(%m(Hn)) = 0.Ifm is countably cofinal, then tt ~a w ffi p(%m).

Proof. Review the proof of Lemma 3.2 and apply Proposition 4.2 at the
appropriate point.

The preceding corollary is an analogue of Lemma 3.2. The proof of the following
lemma is a simple adaptation of Lemma 3.9 and it is omitted.

Lemma 4.5. Suppose 91 is separable, tt, ttx, tt2, . . . GRep(9l), and m is an infinite
cardinal. If tt ~a tt ffi TTn(%m) for n = 1, 2, ... , then tt ~a tt ffi ttx ffi tt2
ffi • • • (%J.

We are now ready to prove the analogue (1) <=> (2) in Theorem 2.1 for nonsepara-
ble representations.

Theorem 4.6. Suppose 91 is separable, m = dim ZZ is infinite and countably cofinal,
and tt, p E Rep(9i, H). If tt ~a p, then tt ~a p(%m(H)).

Proof. It follows from Corollary 4.3 that we can assume that tt, p are direct
sums of irreducible representations. Let tt0 (resp. p0) be the direct sum of the
irreducible subrepresentations of tt (resp. p) having finite approximate multiplicity.
It follows from Lemma 3.5(4) and Proposition 2.12 that tt0 » p0. Write <Ü\La0(iT) =
9^-00(p) = {'",, m2, . . . }, and, for each positive integer A:, let irk (resp. pk) be the
direct sum of all of the irreducible subrepresentations of tt (resp. p) having
approximate multiplicity mk. It follows from Proposition 3.8 that dim Trk < mk and
dim pk < mk for k = 1, 2, .... It follows from Corollary 4.4 that it —a tt ffi pk(%m)
and p ~-a p ffi TTk(%m) for k = 1,2,.... Hence, by Lemma 4.6, we have tt —a tt ffi
p, ffi p2 ffi • • • (%m) and p ~a p ffi ttx ffi tt2 ffi • • • (%m). Since tt © p, ffi p2
© • • •   is unitarily equivalent to p ffi ttx ffi tt2 ffi • • • , it follows that it —a p(5Cm).
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In contrast to the preceding theorem, the case when dim H is not countably
cofinal is much different.

Proposition 4.7. Suppose 91 is separable, tt, p E Rep(9t, H), and m = dim H is
not countably cofinal. Then tt at p(%m) if and only if there are representations
ttx, p,, t such that tt = ttx ® t, p = p, ffi t, dim ttx < m, and dim p, < m.

Proof. The "if" part is obvious. Suppose tt s p(%m). We can assume that
Tr(a) — p(a) E %m(H) for every a  in 91.  Since 91 is separable, we can write
tt = 2,®=/ 7T, and p = 2®=7 p, relative to H = 2®= ¡ H¡, where each ZZ, is separable.
Let (ax, a2, . . . } be dense in 91, and, for each positive integer k, let Ik = {/ G
Z: TT¡(ak) — Pj(ak) ^ 0}. Let Z0 = Z, u Z2 . . . , and let J = I — Z0. Since m is not
countably cofinal, it follows that card Z0 < m. Thus

© © ©
ttx =  2   "#>   Pi =  2   Pi   and   t = 2  t,

/e/0 ie/0 ¡e/

are the desired representations.
It is clear that the preceding theorem implies that Theorem 4.6 is not true when

dim ZZ is not countably cofinal (e.g., let it be a representation with no irreducible
subrepresentations, and let p be a direct sum of irreducible representations such
that m ~a p).

We now turn our attention to quotients of the form B(H)/%m(H). If N0 < m <
dim H, let Gm(H) denote B(H)/%m(H), and let vm: B(H)^> 6m(H) be the
quotient map. If S E Qm(H), let Latm(S) be the set of all projections/» in &m(H)
such that (1 - p)sp = 0 for every s in S. The set S is reflexive in ßm(H) if

§ = {a E Gm(H): (I - p)ap = 0 for every/; in Latm(S)}.
It is clear that a necessary condition for the reflexivity of S is that S be a unital,
norm closed algebra. The following theorem is an analogue of Arveson's distance
formula [Ar 1, Corollary 2] for subalgebras of the Calkin algebra, and the
corollaries are analogues of results of Voiculescu [V, Theorem 1.8, Corollary 1.9].
The proof of this theorem is only a slight modification of Arveson's proof of
Corollary 2 in [Ar 1]. Note that we do not assume that m = dim H.

Theorem 4.8. Suppose m is an infinite, countably cofinal cardinal, m <
dim H, and S is a separable, unital, norm closed subalgebra of Qm(H). Then for each
t in Qm(H) there is a q in Latm(S ) such that

||(1 - q)tq\\ = sup{||(l - p)tp\\:p E Latm(S)} = dist(f, S).
Proof. Fix f and choose a separable, unital C*-subalgebra 91 of B(H) so that

vm(%) is the C*-algebra generated by f and S. Choose T in 91 so that vm(T) = f.
According to Arveson's proof of [Ar 1, Corollary 2] there is a separable representa-
tion t: 91 -> B(HT) such that %m(H) E ker t and such that there is a t(?„,'(§))-
invariant projection P in B(HT) such that ||(1 - P)t(T)P\\ > dist(f, S). Let tt be
the identity representation on 91 and let p = tt ffi r(m). It follows from Corollary 4.4
that tt —a p(%m(H)). Thus there is a unitary operator U such that

A - U*p(A)U= tt(A) - U*p(A)U E %m(H)
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for every A in 91. Let q = vm( U*(0 ffi Pimy) U). Then q G LatjS ) and

||(1 - q)tq\\ > ||(1 - P)t(T)P\\ > dist(f, S).

On the other hand, ||(1 - q)tq\\ = ||(1 - q\t - s)q\\ < ||i - i|| for every j in S.
Thus ||(1 - <7)f<7|| = dist(f, S).

Corollary 4.9. Suppose m is an infinite, countably cofinal cardinal, m < dim H,
and S is a unital, separable C*-subalgebra of Qm(H). Then S is equal to its own
double commutant.

Corollary 4.10. Suppose m is an infinite, countably cofinal cardinal, m < dim ZZ,
and S m a unital, separable, norm closed subalgebra of Qm(H). Then S íí reflexive.

The next theorem illustrates the "meta-theorem" that if R0 < m < dim H and m
is not countably cofinal, then any separable subset of &m(H) having a property
that can be "countably" defined can be lifted to a separable subset of B(H) that
possesses the same property. It also shows that the countable cofinality of m
cannot be dropped in the preceding three results. If S Q B(H), let S ' denote the
commutant of S.

Theorem 4.11. Suppose m is an infinite cardinal, m < dim H, and m is not
countably cofinal. If S is a separable subset of B(H), then:

(1) there is a separable C*-subalgebra 91 of B(H) such that 1 G 91, vm(W) is the
C*-algebra generated by p„(<*> ) and 1, and i»m|9I is an isometry;

(2) »%(§') = "«.(§>)';
(3)^LatS) = Latm(,m(S)).

Proof. (1) Choose T„ T2, . . . in B(H) so that vm(Tx), v^TJ, ... is dense in
C*(pm(S)). For each pair (/,/) of positive integers choose a sequence {KiJn} in
gCm(ZZ)sothat

||T,. - Tj + KUJ -> p„(T, - Tj)W = \\pJT,) - vm(Tj)\\.
Let MQ = V {ran Kijn: i,j, n = 1, 2, . . . }. It follows from Lemma 4.1 that
rank KiJn < m for i,j, n = 1, 2, . . . . Thus it follows that dim M0 < m. Let M be
smallest subspace of H that contains M0 and reduces all of the operators
Tx, T2, . . . . Then dim M < N • dim M0 < m. Let P be the orthogonal projection
onto M x, and let Sn = PTn for n = 1, 2, ... . Thus, for each pair (i,j) of positive
integers we have

||S,. - 5,|| = ||P(T,. - Tj)\\ = lim||Z>(T,. - 7} + A,„,J||

< \\vm(T¡) - vJjj)W = \\vm(S¡) - vm(Sj)\\.

Thus {vm(Sx), ^(SJ, ...} = {vm(Tx), ^(TJ, ...} is dense in C*(vm(S)) and
pm\{Sx, S2, . . . } is an isometry. It seems that we are finished. However, the norm
closure of {Sx, S2, . . . } will not generally contain 1. We can remedy this situation
by choosing a »-isomorphism tt: C*(vm(§>))^> B(M) and replacing each S„ by
S„ ffi Tr(vm(Sn)). (Note that there is no harm in assuming that M is infinite
dimensional.)
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(2) Let Sx, S2, . . .   be dense in S. It is clear that pm(S') E pm(§)'. Suppose
T E B(H) and pm(T) E Pm(%)'. Thus TSn - SnT E %m(H) for n = 1, 2,_Let
M be the smallest subspace of H that reduces T, Sx, S2, . . . and contains
V{ran(T5„ - S„T): n = 1, 2, . . . }. As in the proof of (1) we conclude that
dim M < m. If P is the projection onto Mx, then TP E S' and T - TP =
7X1 - Z>) G 3Cm(ZZ). Thus rm(T) G „„(S'). Therefore ,„,(§)' ç »-„(§')•

(3) The proof of (3) is very similar to the proof of (2) and is omitted.

Corollary 4.12. If m is an infinite cardinal, m < dim H, and m is not countably
cofinal, then &m(H) contains a separable, unital C*-algebra that does not equal its
own double commutant.

Note that Theorem 4.11(1) shows that the theory of extensions of Brown,
Douglas and Fillmore [BDF] is completely trivial in the quotient Qm(H) when m is
not countably cofinal.

In addition, Theorem 4.11(1) shows that any property of an operator that can be
defined in terms of the C*-algebra that it generates can be lifted from the quotient
Qm(H) when m is not countably cofinal. Among such properties are the properties
that are simultaneously preserved under direct sums, restrictions to reducing
subspaces, and norm limits (see [H 2, Theorem 5.1]); we will call these latter
properties continuous part properties. It was proved in [H 2, Theorem 5.1] that if we
are given a continuous part property and a positive number r, then there is a
sequence {p„(x, y)} of noncommutative polynomials such that:

(1) {p„(T, T*)} is uniformly (norm) convergent on every bounded set of opera-
tors;

(2) an operator T has ||T|| < r and the given property if and only if p„(T, T*)
^0.

Define <p(T) = limp„(T, T*) for every operator T; such a function is called a
continuous decomposable function [H 2]. Note that (1) implies that <p(a) =
lim p„(a, a*) makes sense when a is an element of a unital C*-algebra. Some of the
obvious properties of <p are:

(3) <p(A ffi B) = tp(A) ffi <p(B) for all operators A and B;
(4) <p(T) E C*(T) for every operator T;
(5) if T is an operator and tt E Rep(C*(T)), then ir(<p(T)) = <p(w(T));
(6) <p|Z?(ZZ) is norm continuous for every Hilbert space ZZ.
Note that the definition <p(T) = limp„(T, T*) where {pn(x,y)} satisfies (1) is not

the definition of a continuous decomposable function given in [H 2], but it is
equivalent to that definition [H 2, Proposition 2.1]. We can restate the preceding
characterization of continuous part porperties in terms of continuous decomposa-
ble functions: given a continuous part property and a positive number r, there is a
continuous decomposable function <p such that <p(T) = 0 precisely when ||T|| < r
and T has the given property.

Examples of continuous part properties are normality and subnormality. The
following theorem shows that if m is an uncountable, countably cofinal cardinal,
then many lifting problems in Qm(H) do not depend upon m. Recall that y4(oo) = A
®A®---.
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Theorem 4.13. Suppose m is an uncountable, countably cofinal cardinal, m <
dim H, and <p is a continuous decomposable function. The following are equivalent:

(1) for every t in Qm(H) with <p(f) = 0 there is a T in B(H) such that <p(T) = 0
andvJT) = f;

(2) for every bounded sequence {Tn} of operators on a separable Hilbert space with
||<p(T„)|| —»0 there is a sequence {S„} such that <p(Sn) = 0 for n — 1, 2, . . . and
\\Sn-(Tn®Tn+x®---)^\\^0.

Proof. (2) => (1) Suppose (2) is true, and suppose t E Qm(H) with <p(r) = 0.
Choose an operator A in B(H) such that pm(A) = f. Since the space M =
V {ran S: S E C*(A) n %m(H)} has dimension at most m, and since q>(A\Mx)
= a>(A)\M x = 0, we can assume that dim H = m. Also, since

dim V {ran S: S E C*(A) n ^(H)} < N0,

we can assume that C*(A) n %(H) = 0. It follows from Corollary 3.11 that there
is a sequence {Bk} of irreducible operators and a sequence {mk} of infinite
cardinals such that the operator B = 2® B^ is approximately equivalent to A. It
follows from Theorem 4.6 that A at B ffi K for some K in %m(H). Thus we can
assume that pm(B) = t. Note that <p(B) is the direct sum of the operators ^(B^).
Thus if mk = m for some k, then <p(Bk) = 0 (because Pm(<p(B)) = <p(p„(B)) = <p(t)
= 0). Hence we can assume that mk < m for k = 1, 2, .... A moment's reflection
shows that there is no harm in assuming mx < m2 < • • • . Since <p(B) E %m(H), it
follows that lim*11<p(Bk)11 = 0. Thus, by (2), there is a sequence {Sk} of operators
such that <p(Sk) = 0 for k = 1, 2, . . . and \\Sk - (Bk® Bk+X® ■ ■ ■ )(oo)|| -► 0. We
can rewrite B as a direct sum 2®((5A: © Bk+X © • • • )<°°>)<m<'), and if we let
T = 2* Sg*>, then B - T E %m(H). Thus <p(T) = 0 and pm(T) = /.

(1) => (2) Suppose (1) is true and {Tn} is a bounded sequence of operators on a
separable Hilbert space with ||<p(T„)|| -»0. Since each T„ is approximately equiva-
lent to a direct sum of (countably many) irreducible operators, there is no harm in
assuming that Tn is irreducible for n = 1, 2, ... . There is also no harm in
assuming that q>(Tn) ̂  0 for n = 1, 2, . . . and that T„ st Tk only when n = k.
Next we will show that there is an irreducible operator T0 such that

T0®Tn®Tn + x®-a7;ffiTn+,©---

for n = 1, 2, .... To do this, consider the C*-algebra 91 of bounded sequences of
operators on the Hilbert space where the T„'s act, and consider the »-ideal fy of
sequences that converge (in norm) to 0. If A is the image of the sequence {Tn} in
9l/£, then, for each positive integer n, there is a unital »-homomorphism from
C*(Tn © Tn+, © • • • ) onto C*(A) that sends T„ ffi T„+, ffi • • • onto/l. Suppose
tt E Irr(C*04)) and let T0 = ir(A). It is clear that

||<p(T0)|| < ||<p(TnffiTB+,ffi-- -)ll

for n = 1, 2, ... ,   whence rjp(T0) = 0. Thus T0 =* Tn for n = 1, 2.It follows
from Proposition 3.5 that T0 ffi Tn ffi Tn+X ffi • • • ~a T„ ffi Tn+X ffi • • • for n =
1,2,.... Since m is countably cofinal, there is an increasing sequence {mk} of
infinite cardinals less than m such that m = supk mk. Let q = dim H, and define
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T = T0(9) ffi 2® 7$**. It is clear that <p(T) E %m(H). Thus if t = pm(T), then
<p(t) = <p(pm(T)) = pm(<p(T)) = 0. Hence, by (1), there is an S in B(H) such that
(p(S) = 0 and pm(S) = f - p„(T). Thus S - T E %m(H). We can write H =
2®=/ ZZ, where each ZZ, is separable and reduces both S and T. Suppose e > 0.
Since T - S E %m(H), there is a subset J of I such that card/ <w and
\\(S — T)|ZZ,|| < e whenever / G /. Choose k so that mk > Card J. Since zw, < m2
< • • • < m*, there is no harm in assuming that (S — T)\H¡ has no summand that
is unitarily equivalent to one of the operators TX,T2, . . . ,Tk_x whenever i & J
(because we need only add to / a set with cardinality less than mk to obtain this
property). Hence there is a countable subset Ik of I — J such that each of the
operators T0, Tk, Tk+X, . . . appears infinitely often as a summand of T\Mk where
Mk = 2® ,k ZZ,. Thus T\Mk is unitarily equivalent to (T0 ffi Tk ffi Tk+X ffi • • • )(oc).
If Sk = S\Mk, then \\Sk - (T0 © Tk ® Tk+X ® ■ ■ ■ )(°°>|| < e; since this is true for
each k with mk > Card J, we have proved that

\\Sk-(T0®Tk®Tk+x®-- O^II^O   asfc^oo.

It is clear that <p(Sk) = 0 for every k. Also <p(U*SkU) = U*<p(Sk)U = 0 for every
unitary operator U. Since (T0 ffi Tk ffi Tk+X ffi • • • )<00) is approximately equiva-
lent to (Tk ffi Tk+X ffi • • • )(co) for every k, we can conclude that there is a
sequence { Uk} of unitary operators such that || U£Sk Uk - (Tk + Tk+, + • • • )(oc)||
—» 0. This proves (2).

Note that Theorem 4.13(2) is implied by the following statement: for every
bounded sequence {Tn} of operators on a separable Hilbert space with ||<p(Tn)|| -»
0, there is a sequence {Sn} of operators such that <p(Sn) = 0 for n = 1, 2, . . . and
IISn ~ T„\\ ->0. This latter condition was studied by S. Campbell and R. Gellar
[CG]. In particular, the functions <p(T) = |1 - T*T\ + \l - TT*\ and \p(T) =
|T*T— e| — (T*T — e) satisfy this condition (where e > 0).

Corollary 4.14. Suppose m is an uncountable, countably cofinal cardinal, m <
dim H. Suppose t E Qm(H) and t is unitary (resp. invertible); then there is a T in
B(H) such that Pm(T) = t and T is unitary (resp. invertible).

The preceding theorem and its corollary show a marked difference between N0
and other countably cofinal cardinals. The fact that unitary elements and invertible
elements can be lifted from Gm(H) when m > N0 suggests that the same might be
true for normal elements. However, it is known [PRH 2] that there is a bounded
sequence of operators {Tn} such that ||7¡*T„ - T„7£|| ->0 and the distance from
the T„'s to the set of normal operators is bounded away from 0. On the other hand,
it is not known whether Theorem 4.13(2) is true when <p is defined by <p(T) = T*T
- TT*.

It should be noted that the condition in Theorem 4.13(2) is dependent only upon
the property defined by <p(T) = 0 and not by the decomposable function <p used to
describe this property. (This is implied by the equivalence of (1) and (2) in
Theorem 4.13.) A stronger statement can be proved.
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Proposition 4.15. Suppose tp, \¡/ are continuous decomposable functions such that,
for each operator T, tp(T) = 0 if and only if ^(T) = 0. Suppose {Tn} is a bounded
sequence of operators. Then \\q>(Tn)\\ —»0 if and only if \\^(Tn)\\ ->0.

Proof. Apply the hypothesis to %/fy where 91 is the C*-algebra of bounded
sequences of operators and fy is the ideal of null sequences.

The following conjecture is weaker than Theorem 4.13(2). It is a converse of the
fact that if {An} is a bounded sequence of operators, <p is a continuous decomposa-
ble function with y(An) = 0 for n = 1,2,..., and if Tn is "almost" a summand of
4,asii-»oo,then||v(7;)||->0.

Conjecture 4.16. If {Tn} is a bounded sequence of operators on a separable
Hilbert space, <p is a continuous decomposable function, and ||<p(Tn)|| -»0, then
there are bounded sequences {An}, {Bn} such that <p(An) = 0 for n = 1, 2, . . . and
\\A„- Bn®Tn\\->0.

5. Approximate subrepresentations. In this section we extend some of the results
of the preceding sections to approximate subrepresentations. Although many of the
results are true for nonseparable C*-algebras, we restrict ourselves to the separable
case. However, the representations are not assumed to be separable. For singly
generated C*-algebras some of these results appear in [H 1] and [BuDe].

If tt, p E Rep(9I), then tt is an approximate subrepresentation of p, denoted
it <a p, provided there is a net { Vn} of isometries such that || V^p(a)Vn — Tr(a)\\ —*
0 and \\(Vn V*)p(a) - p(a)(F„ V*)\\ -> 0 for every a in 91.

Theorem 5.1. Suppose 91 is separable and tt, p E Rep(9t). The following are
equivalent:

(1)tt <ap;
(2) Ap-mult(T, tt) < Ap-mult(r, p)for every r in Irr(9();
(3) rank 77(a) < rank p(a)for every a in 91;
(4) there is a representation p' such that it < p' and p —a p';
(5) there is a sequence {Vn} of isometries such that V*p(a)V„ -» Tr(a) weakly for

each a in 91.

Proof. The implications (4) => (1) => (5) => (3) are obvious.
(3) => (2) This follows from Lemma 3.13.
(2) => (4) By Corollary 3.11 we can assume that there is a sequence {rk} in Irr(9i)

and a sequence {mk} of cardinals such that it = 2® t¿"*). It follows from (2) and
Proposition 3.5(3) that we can assume that Ap-mult^, it) is infinite for k =
1, 2, ... . Since mk < Ap-mult(rt, tt) < Ap-mult(Tfc, p) for k = 1, 2, ... , it fol-
lows that p ~a p ® t^) for k = 1, 2, ... . Therefore, by Lemma 3.9, p ~a p ffi tt.
Hence (4) is true.

It should be noted that the implications (1) <=> (3) <=* (4)<=(5) remain true when 91
is not separable, while (1) => (5) is generally false (see Proposition 2.7). If 91 is
nonseparable and the term "sequence" in (5) is replaced by "net", then (1) => (5) is
obviously true, but (5) => (1) no longer true; the problem hes in the fact that the
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function rank( ) is weakly sequentially lower semicontinuous but not weakly lower
semicontinuous on nonseparable Hilbert spaces. It should also be pointed out that
it is necessary in (5) to assume that tt is a representation because this fact does not
follow automatically unless it is known that V*p(a) Vn -» 77(a) strongly for each a in
91.

We conclude this section with an analogue of Theorem 4.6 for approximate
subrepresentations.

Theorem 5.2. Suppose 91 is separable, tt, p E Rep(9t), and it <a p. Suppose also
that m is an infinite, countably cofinal cardinal with m > dim 77. Then there is a
representation p' such that p —a p'(%m(H)) and tt < p'.

Proof. It follows from Theorem 4.6 and Corollary 3.11 that we can assume that
there is a sequence {rk} of irreducible representations and a sequence {mk} of
cardinals such that tt = 2® t^K If Ap-mult(Tfc, p) is finite for some k, then it
follows from Proposition 3.5(3) that t^) is unitarily equivalent to a subrepresenta-
tion of p. Hence we can assume that Ap-mult(rfc, p) is infinite for k = 1, 2, ... .
Thus, by Corollary 4.4, we have p^^p® t^DC«) for k = 1, 2, ..., and, by
Lemma 4.5, we have p ~^p ® ir(%m). This completes the proof.

We conclude this section with a look at what statement (3) in Voiculescu's
theorem (Theorem 2.1) means on nonseparable Hilbert spaces.

Proposition 5.3. Suppose tt E Rep(9t, Hn), p E Rep(9t, Hp), and dim Hm <
dim Hp. The following are equivalent.

(1) There is a net {Vn} of isometries such that V*p(a)V„ -* ir(a) weakly for every a
in 91.

(2) min(rank ir(a), K0) < rank p(a)for every a in 91.
(3) The nonzero part of tt\p~x(%(Hp)) is unitarily equivalent to a subrepresentation

ofp\p-xl(%(Hp)).

Proof. (1) => (2) This is obvious.
(2) <=> (3) This follows from Lemma 2.3.
(2) => (1). If dim Hp < X0, then (2) implies rank ir(a) < rank p(a) for every a in

91, whence, by Theorem 5.1 and Lemma 2.4, we have tt <a p. Thus we can assume
that dim Hp > N0. Suppose S is a finite subset of 91, M is a finite subset of Hm, and
e > 0. Let ¿V = V {Tr(a)f: a E S, / G M}, and define t: C*(S) -> B(N) by r(a)
= ir(a)\N. It follows from (2) that

rank t(û) < min(rank tt(o), N0) < rank p(a)

for every a in C*(S). Thus, by Theorem 5.1, t <ap|C*(§>). Hence there is an
isometry W: N -» ZZp such that ||( W*p(a)W — t(o))/|| < e for every a in S and
every / in M. Since dim N < N0 < dim ZZp, it follows that W can be extended to
an isometry V: Hv—>Hp. Thus \\(V*p(a)V — 77(a))/1| <e for every a in S and
every / in M. Since S, M, and e were arbitrary, it follows that (1) is true.
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Proposition 5.4. Suppose tt, p E Rep(91, H). The following are equivalent.
(1) There are nets {U„}, {Vm} of unitary operators such that U* 77(a) U„ -^ p(a)

weakly and V*p(a) Vm —» 77(a) weakly for every a in 91.
(2) ker 77 = ker p, tt~x(%(H)) = p~'(5C(ZZ)), and the nonzero parts of

tt\tt'x(%(H)) and p\ir~x(%(H)) are unitarily equivalent.
(3) ker 77 = ker p, and the essential parts of tt and p are unitarily equivalent.
(4) min(rank 77(a), N0) = min(rank(p(a), tig)) for every a in 91.

Proof. The implications (1)«=>(4) follow from Proposition 5.3. The implications
(2)<=>(3) follow from Proposition 2.10. The implications (2)<=>(4) follow from
Lemmas 2.2 and 2.3.

6. Direct integrals. In [H 4] the author used Voiculescu's theorem (Theorem 2.1)
to show that every direct integral of unital, separable representations of a separable
C*-algebra is approximately equivalent to a "naturally related" direct sum of
representations. In this section we prove a nonseparable version of this theorem.
We also extend some of the results of F. J. Thayer [Th] on quasidiagonal
C*-algebras. In particular, we show that a separable direct integral of quasidiago-
nal representations is quasidiagonal.

Throughout this section H is separable, 91 is separable, and (X, 911, u) is a
sigma-finite measure space. Let % = L2(p, H) be the Hilbert space of all Borel
measurable functions f:X^>H such that fx\\f(x)\\2 dp(x) < 00, with the inner
product defined by

(/, g) = [ (Ax), g(x)) dp(x).

Let Lx(p, B(H)) denote the set of all essentially (norm) bounded, weakly Borel
measurable functions from X into B(H). Each function x-±Tx in Lc°(p, B(H))
gives rise to an operator T on L2(p, H) defined by (7Y)(jc) = TJ(x). The operator
T is the direct integral of the Txs denoted by /® Tx dp(x).

Next consider a mapping x —* ttx from X into Rep(9t, H) that is Borel measura-
ble in the point-weak topology. Each such mapping defines a representation
77: 91 -» B(%) defined by

77(a) = f    irx(a) dp(x)
Jx

for each a in 91. The representation 77 is the direct integral of the 77x's and is denoted
by /? ** Mx).

There are more general direct integrals than the ones defined here, but they are
unitarily equivalent to direct sums of the ones defined here [Di 2].

Before we get to the main result of this section (Theorem 6.2), we need the
following lemma. If E E X, let %E = {/ G %: f\X - E = 0).

Lemma 6.1. Suppose the mapping x -» Tx is in L°°(p, B(H)) and T =
/® Tx dp(x), and suppose X has no atoms. If E = {x: Tx =£ 0}, then rank T =
dim %E.
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Proof. If T = 0, the conclusion is obvious. Thus there is no harm in assuming
that E = X. The proof is based on a series of reductions using the fact that if X is
a disjoint union of sets Ex, E2, . . ., then it suffices to prove the lemma in each of
the cases when X is replaced by En. We can therefore assume that p(X) < oo
(because A1 is a countable disjoint union of sets with finite measure). Let e„ e2, . . .
be an orthonormal basis for H. Then, for each x in X there is a smallest positive
integer nx for which Txe ^ 0. Since the mapping x —* nx is obviously measurable,
we can assume that there is a vector e in H such that Txe ¥= 0 for every x in X. The
mapping g(x) = \\Txe\\ is measurable, and we can assume that g is bounded away
from 0 (because X is a countable disjoint union of sets on which this happens). If
the vector/in % is defined by f(x) = e/g(x), and if {<p,: i G 1} is an orthonormal
basis for L2(p), then {T<pJ: /£/) is an orthonormal subset of ran T. Thus
rank T > dim L2(p). However, {<f>¡en: i G Z, n = 1, 2, . . . } is an orthonormal
basis for %. Thus (because p is nonatomic), dim % = dim L2(p) and we are done.

We are now ready for the main result of this section.

Theorem 6.2. Suppose x -» 77x is a measurable mapping from X into Rep(9I, H)
and 77 = /® 77x dp(x). Then:

(1) if X contains no atoms, then tt ® ttx ~a 77 a.e.;
(2) there are points xx, x2, . . .   in X and cardinals mx, m^, . ..   such that tt

~a2®77^>.

Proof. (1) If X contains no atoms, then 77(91) n %(H) = 0. Choose a dense
sequence {an} in ker 77 and let E = {x E X: TTx(an) = 0 for n = 1, 2, . . . }. It
follows that p(X — E) = 0. Also, for every x in E, ker 77 E ker 77^. Thus, by
Lemma 3.2,77 ~a 77 ffi 77^ for every x in E.

(2) Using the proof of (1) we can assume that ker 77 Ç ker 77^ for every x in X.
For each nonzero m in 911(77) let m' denote the smallest cardinal greater than m.
Choose a countable dense subset <$„, of tt~x(tt(W) n %m.(%)), let Em = {x E
X: Tix(d) =*= 0 for some d in tym}, and let Fm = Em - U {Ek: k E 911(77), k < m)
for each cardinal m in 911(77). Since the atoms of p yield direct summands of 77 and
since X contains only countably many atoms (because ft is sigma-finite), we can
assume that X contains no atoms. It follows from Proposition 3.5(3) that all of the
nonzero cardinals in 911(77) are infinite. It follows from Lemma 6.1 that dim %F
< dim %Em < m for each m in 91L(77). Write 77 = 2® 77m relative to % =
2® %fm- Suppose a E 91 and k = rank 77(a) < m. It follows from Corollary 3.12
that k G 9H(77). Thus p({x E X: trx(a) ^ 0} - Ek) = 0. Hence 77m(a) = 0. It fol-
lows from Lemma 3.2 that 77 ~a 77 ffi tt^ for each nonzero m in 911(77). Hence, by
Lemma 3.9,77 ~a 2®{77m: m E 9H(77)}. Also, for each nonzero m in 9H(t7) we can
choose a countable subset Im of Fm so that {ttx: x E Im} is a point-weak dense
subset of {77x: x G Fm, ker 77^ E ker 77m}. Let pm = 2®{77JC: x E Im} for each non-
zero m in 9H(77). Hence ker 77m = ker pm, and by Theorem 3.14, we can conclude
that 77^m) ^a p<,m) for each nonzero m in 9H(t7). Thus

(T\ (T) (X) (Xx

m xelm
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Since 911(77) is countable (Proposition 3.7), it follows that  (J {Im: m G 911(77),
m ¥= 0} is countable; thus (2) is proved.

Corollary 6.3. A property of separable representations of 91 that is preserved
under direct sums and approximate equivalence is preserved under direct integrals.

Corollary 6.4. Suppose x —» ttx is a measurable mapping from X into Rep(9I, H)
and tt = /® ttx dp(x). If tt has a property of representations that is preserved under
approximate equivalence and subrepresentations, then ttx has the property for almost
every x in X.

We now apply Theorem 6.2 to improve a theorem of F. J. Thayer [Th] on
quasidiagonal representations of a separable C*-algebra. A representation 77: 91 —>
B(H) is quasidiagonal [Th] if there is an orthogonal sequence {Pn} of finite-rank
projections such that 2„ P„ = 1 and 77(a) — 2„ P„Tr(a)Pn is compact for every a in
91. It is not difficult to show that a countable direct sum of quasidiagonal
representations is quasidiagonal [Th, Proposition 2]. It is also obvious that a
representation is quasidiagonal if it is unitarily equivalent modulo the compact
operators to a quasidiagonal representation. Therefore, by Theorem 2.1(2), quasidi-
agonality is preserved under approximate equivalence. The following theorem is
therefore a direct consequence of Theorem 6.2. Note that this theorem was proved
by F. J. Thayer under some additional measure-theoretic assumptions and the
rather severe assumption that there is a separable C*-subalgebra % of B(H) such
that ran ttx e % for almost every x in X.

Theorem 6.5. Suppose L2(p) is separable and x-^ttx is a measurable mapping
from X into Rep(9I, H) such that ttx is quasidiagonal for almost every x in X. Then
ff ttx dp(x) is quasidiagonal.

7. Approximate versus unitary equivalence. This final section gives a brief com-
parison between the notions of approximate equivalence and unitary equivalence.
The purpose of this section is mainly evangelistic; the main theme is that for many
purposes approximate equivalence is just as useful as unitary equivalence and is
much easier to deal with. In fact, approximate equivalence behaves very much like
finite-dimensional unitary equivalence (i.e., unitary equivalence on finite-dimen-
sional Hilbert spaces).

If 91 is finite dimensional, then every representation of 91 is a direct sum of
irreducible representations and the problem of unitary equivalence amounts to
counting multiplicities of irreducible summands. If 77 G Rep(9t) and t G Irr(9f),
then Ap-mult(r, 77) ■» min{rank 77(a): a G ker it} is the number of orthogonal irre-
ducible summands of 77 that are unitarily equivalent to t. Since two irreducible
representations of 9Í with the same kernel are unitarily equivalent, the "multiplicity
function" can be defined on Prim 91 = {ker t: t G Irr 91}.

Even for commutative C*-algebras the analogous theory involves direct integrals
of irreducible representations rather than direct sums and the multiplicity function
is defined on measure classes on Prim 91. There is a similar theory for GCR (type I,
postliminal) C*-algebras. However, when 91 is not GCR, irreducible representations

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONSEPARABLE APPROXIMATE EQUIVALENCE 229

with the same kernel need not be unitarily equivalent (e.g., see Example 7.3(2))
[Di 1, Theorem 9.1], and Prim 91 no longer plays a central role.

However, if 91 is separable and unital, then every representation on 91 is
approximately equivalent to a direct sum of irreducible representations and two
irreducible representations with the same kernel are approximately equivalent.
Thus each 77 in Rep(9l) defines a cardinal-valued function M„ on Prim 91 defined
by Mw(kei t) = Ap-mult(r, 77). The function M„ can be defined more directly
(Lemma 3.13) by M„(fy) = min{rank 77(a): a G fy} for each fy in Prim 91. It follows
from Lemma 3.6 that M„ is upper semicontinuous relative to the Jacobson
(hull-kernel) topology on Prim 91. The proof of Corollary 3.11 contains the key
ingredient in showing that every upper semicontinuous cardinal-valued function on
Prim 91 is M„ for some 77 in Rep(91). The following is a mere translation of
Theorem 3.14.

Theorem 7.1. Suppose 91 is separable and unital and tt, p E Rep(9T). Then tt —a p
if and only if M„ = Mp. Also tt <a p if and only if Mn < Mp.

If one looks at the world through the eyes of approximate equivalence, then all
normal operators are diagonalizable, direct integrals are direct sums, and every
operator has an eigenvalue; this is a world that should look pleasing to most
operator theorists. Because we humans are finitary by nature, any view of operators
on an infinite-dimensional space must of necessity be approximate; thus there
often is little loss in considering approximate equivalence instead of unitary
equivalence.

Perhaps the most compelling reason for considering approximate equivalence is
the fact that on a separable Hilbert space approximate equivalence can be
determined by finitary methods. For example, suppose H is separable and S, T G
B(H). It follows from [H 1, Corollary 4.2] that S ~a T if and only if there are
sequences {Un}, {Vn} of unitary operators such that i/*S£/n-» T »-strongly and
V*TVn -» S »-strongly. However, since a sequence of the form {U*SUn} is always
bounded, it is only necessary to check for »-strong convergence on a spanning set
of H (e.g., an orthonormal basis). This leads to the following simple (but useful)
conclusion.

Proposition 7.2. Suppose S, T E B(H), and {ex, e2, . . . } is an orthonormal basis
for H. Then there is a sequence {£/„} of unitary operators such that U*SUn —» T
^-strongly if and only if, for each positive integer m and each positive number e, there
is a unitary operator U such that \\(U*SU - T)ek\\ + \\(U*SU - T)*ek\\ < e for
1 < k < m.

This gives us a simple technique for demonstrating the approximate equivalence
of two operators. Here are three elementary examples that illustrate this idea.

Examples 7.3. (1) Let S be a direct sum of finite complex matrices such that
|| S || < 1 and, for each positive integer n, the n X n summands of 5 are dense in
the unit ball of B(&n)). It follows immediately from Proposition 7.2 that S ~a S ffi
T for every T in B(H) with ||T|| < 1. Thus if 5" is another operator with the
property used to define S, then S ~a S'.
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(2) Suppose S is a weighted unilateral shift operator with postive weights such
that || S || < 1 and, for each positive integer n, the blocks of weights of S of length n
are dense in the Cartesian product of n copies of [0, 1]. It is easy to show that
S ~a S ffi T whenever T is a weighted (unilateral or bilateral) shift operator and
||T|| < 1. In particular, if S' is any unilateral weighted shift operator with the
property used to define S, then S —a S'; let S be the class of all such operators.
Since two weighted unilateral shift operators are unitarily equivalent if and only if
their weight sequences coincide (assuming the weights are positive), it is clear that
there is a family {S¡: i G 1} contained in S such that Card I = Card[0, 1] and
S¡ » Sj only if i = j. For each i in I there is a representation 77, of C*(S) such that
77,(1) = 1 and 77,(5') = S¡. Since a weighted unilateral shift operator with positive
weights is irreducible, it follows that all of the 77,'s are irreducible. Thus the 77,'s are
irreducible representations of C*(S) with the same kernel, but no two of them are
unitarily equivalent.

(3) Suppose {ex, e2, . . . } is an orthonormal basis for H, and let Pn be the
projection onto \J{ex, e2, . . . , en} for n = 1, 2, . . . . For each S in B(H) let
Sn = P„S\ran Pn for n = 1, 2, . . . , and let S0 = Sx ffi S2 ffi ■ • • . It follows from
Proposition 7.2 that S0 ~a S0 ffi S for every S in B(H).

The notions of approximate equivalence and approximate summands seem to
suggest a general "approximate" structure theory for operators. It would therefore
be natural to examine "approximate" analogues of some of the other concepts in
operator theory, e.g., similarity, double commutants, reflexivity. One important
success in this direction concerns an "approximate" version of reductivity (called
strong reductivity) introduced by K. Harrison [Ha]. C. Apóstol, C. Foia§ and D.
Voiculescu solved the "approximate" analogue of the reductive algebra problem
[AFV1], [AFV 2] with the aid of [AF]. An "approximate" version of von
Neumann's double commutant theorem as well as an initial study of
"approximate" versions of various operator-theoretic concepts is contained in [H5].
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