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Nonsingular black holes from conformal symmetries
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1Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
2INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy

We derive the form of the metric for static, nonsingular black holes with a de Sitter core, rep-
resenting a deformation of the Schwarzschild solution, by assuming that the gravitational sources
describe a flow between two conformal points, at small and great distances. The resulting black-hole
metric turns out to be a particular case of the Fan & Wang metric, whose parameters have been
recently constrained by using the data of the S2 star orbits around the galactic centre SgrA∗.

I. INTRODUCTION

In recent times there has been renewed interest for
asymptotically flat, nonsingular black-hole solutions,
which deform the Schwarzschild solution at subleading
order [1–16]. Among them, the most interesting class of
solutions is represented by nonsingular black holes with
a de Sitter (dS) core [13]. These black-hole solutions
are of interest for several reasons. Firstly, they allow to
circumvent Penrose’s theorem [17] by removing the clas-
sical singularity at r = 0. Secondly, they are solutions
of Einstein’s field equations sourced by an anisotropic
fluid, effectively encoding the deviations responsible for
the smearing of the singularity. These deviations are de-
scribed by an external length scale ℓ, which represents an
additional “hair” of the black hole. An intriguing pos-
sibility is that it could be also of superplanckian origin
[13]. Thirdly, they can play the role of black-hole “mim-
ickers”, i.e., they are indistinguishable from the Schwar-
zschild solution at great distances, but could nonetheless
lead to observable deviations from the latter, for instance
in the orbits of massive particles and photons and in the
gravitational-wave spectrum (see Refs. [13, 15] and ref-
erences therein). Last but not least, they could be very
useful in solving the information puzzle arising during
black-hole evaporation [18].
On the other hand, such models suffer from a strong

limitation, which is purely theoretical. We can obtain
them using general relativity (GR) with anisotropic flu-
ids as sources, but the underlying microscopic physics
is mostly unknown. This difficulty becomes particularly
severe in those cases in which the deformations from the
usual Schwarzschild solution have superplanckian origin
[13]. The consequence is that we have a huge degener-
acy, giving rise to a broad class of metric solutions, which
all describe nonsingular black holes with a dS core. The
coarse-grained description in term of the anisotropic fluid
is not stringent. The equation of state (EOS) relating the
radial pressure with the energy density, p‖ = p‖(ρ), and
the density profile ρ(r), interpolating between small and
large r, are very weakly constrained.
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Probably these difficulties are hinting at the fact that
the microscopic explanation of this kind of solutions can-
not be found by merely looking at GR, which only allows
for an effective description of the sources in terms of an-
isotropic fluids. What is needed, then, is a general guid-
ing principle to select the physically relevant solutions.

In this paper, we will use conformal symmetries,
including Lorentz boosts, as the guiding principle to
remove the above mentioned degeneracy of solutions.
There is striking evidence that conformal symmetry
could be a crucial feature of any quantum theory of
gravity. It is the pillar of the AdS/CFT correspondence
[19, 20] and is also crucial for most microscopic deriva-
tions of the Bekenstein-Hawking black-hole entropy [21–
25].

We will select the EOS for the anisotropic fluid using
covariance under rotations and radial Lorentz boosts. In
order to fix the density profile ρ(r), we will use conformal
symmetries, motivated by the role played by the latter
in black-hole physics. In particular, we will assume that
ρ(r) describes the flow of matter fields between two con-
formal points where the local matter contribution is neg-
ligible, near r = 0 and at r = ∞. These are described,
respectively, by the dS spacetime [26, 27] and a CFT in
Minwkoski spacetime. The existence of the latter, in par-
ticular, represents a strong assumption, which is, how-
ever, motivated by the AdS/CFT correspondence. We
will show that these requirements select a specific space-
time metric, i.e., a particular case of the Fan & Wang
metric [8], which represents the one having the strongest
subleading deviations from Schwarzschild at infinity and
which was recently constrained by S2 observational data
[15].

The present paper is organized as follows.

In Section II, we will briefly review some basic features
of nonsingular black holes with a dS core and we will
fix the EOS using Lorentz symmetries. In Section III,
we discuss the conformal symmetries we use to constrain
the density profile and derive the form of the metric. In
Section IV, we give a simple example for the source in
terms of nonlinear electrodynamics. Finally, in Section V
we summarize our results.
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II. NONSINGULAR BLACK HOLES WITH A

DE SITTER CORE

Due to Birkhoff’s theorem, any nonstandard GR black-
hole solution has to be obtained from Einstein’s equa-
tions sourced by a nonzero stress-energy tensor. The
most general one is that of an anisotropic fluid, which
has been widely adopted to effectively parametrize sev-
eral different effects and deviations from GR phenomen-
ology, both at small and cosmological scales (for an in-
complete list, see, e.g., Refs. [10, 11, 13, 16, 28–34] and
references therein). This fluid is described by the stress-
energy tensor1

Tµν = (ρ+ p⊥)uµuν + p⊥gµν +
(

p‖ − p⊥
)

wµwν , (1)

where ρ, p‖ and p⊥ are the energy density, the radial and
perpendicular components of the pressure, respectively,
while uµ and wµ are a time-like and space-like 4-vectors,
respectively, satisfying the relations uµuµ = −wµwµ =
−1. A particular choice of the EOS p‖ = p‖(ρ) de-
termines and characterizes the solutions, whereas p⊥ is
determined by the covariant conservation of the stress-
energy tensor (see, e.g., Refs. [1, 2, 5, 6, 8, 10, 13, 16, 35–
37] and references therein).
Requiring symmetry properties of the fluid constrains

the free functions ρ and p‖ in Eq. (1). In the following,
we focus on spherically-symmetric models. Given this,
we consider fluids whose dynamic equations are covari-
ant under rotations in the [θ, φ] plane and under Lorentz
boosts in the [t, r] directions. Even if every stress-energy
tensor is covariant under boosts and rotation in gen-
eral frames, these choices select invariance for the par-
ticular class of radially-moving observers. The physical
consequence of this choice is that a stress-energy tensor
satisfying these properties is identified as describing a
well-defined spherically symmetric and Lorentz invariant
vacuum [2, 4, 38]. Its structure reads

T θ
θ = T φ

φ ; (2a)

T t
t = T r

r . (2b)

Equation (2b), in particular, fixes the EOS to be

p‖ = −ρ . (3)

Notice that, apart from being dictated by symmetry ar-
guments, this EOS is quite natural, as well as simple, in
an emergent gravity framework (see, e.g., Refs. [13, 39]).
Additionally, it appears in several physical contexts, such
as the simplest form of dark energy (the cosmological
constant, in the isotropic case), exotic compact objects
[36, 40] or solutions of GR coupled with nonlinear elec-
trodynamics [41, 42].

1 Throughout the entire paper, we will use natural units in which
~ = c = 1 and we will use G = ℓ2

P
interchangeably.

p⊥, instead, is entirely determined by the covariant
conservation of the stress-energy tensor.

p⊥ = −ρ− r

2
ρ′ . (4)

With Eq. (3), the general solution of Einstein’s equa-
tions, sourced by Eq. (1) and written in Schwarzschild
coordinates (t, r, θ, ϕ), reads (see, e.g., Ref. [13])

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2 ; (5a)

f(r) = 1− 2Gm(r)

r
, m(r) = 4π

∫ r

0

dr̃ r̃2 ρ(r̃) , (5b)

where m(r) the Misner-Sharp mass of the system.
Note that we could have adopted a different paramet-

rization of the metric (5a), resulting therefore in a differ-
ent definition of the radial coordinate. For example, the
line element written in isotropic coordinates

ds2 = −A(r′)dt2 +B(r′)
(

dr′2 + r′2dΩ2
)

(6)

is related to Eq. (5a) by the coordinate transformation
dr′/r′ = dr/

(

r
√
f
)

, relating the two radial coordinates.
All the relevant physical results of the present paper are
essentially independent of the particular parametrization
of the radial coordinate. The freedom in the choice of the
latter would simply amount to a different realization of
the same symmetries analyzed below, which, depending
on the chosen coordinates, could have an intricate form.
In what follows, therefore, we will limit ourselves to
considering the parametrization (5a), which allows for
a simple realization of such symmetries and is the one
most widely used in the literature.

Considering, thus, the system (5a)-(5b), Eq. (3) fixes
p‖ and p⊥, but leaves the density profile and, hence, the
form of m(r), completely unconstrained.
On the other hand, the behavior of ρ at r = 0 and

r → ∞ can be determined by stringent physical consid-
erations.
In light of the particular form of the EOS (3) and re-

quiring the absence of spacetime singularities, we expect
that, whenever matter contribution is negligible (at r ∼ 0
and r → ∞), the source of gravity is given by an approx-
imately isotropic fluid, which gives ρ ∼ constant using
Eqs. (3) and (4). Assuming the validity of the weak en-
ergy condition we have ρ ≥ 0. From Eq. (3), it follows
now that, in the core, at r ∼ 0, the spacetime behaves as
a dS spacetime 2. The density reads

ρ ∼ 1

4πℓ2P L2
, (7)

2 See, however, Ref. [10] for a model with an asymptotic Minkowski
core.
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where L represents the dS length in the core. This be-
havior at the center breaks the strong energy condition,
allowing to circumvent Penrose’s theorem and to replace
the classical singularity region with a completely regular
spacetime [1, 2, 5, 6, 8, 13]. Equation (7) constrains
the Misner-Sharp mass (5b) to behave extensively, as
m(r) ∼ r3/ℓ2PL

2, near r = 0.
If one considers the cosmological regime, dominated

by a cosmological constant at large r, one can still have
ρ ∼ constant 6= 0, and hence a dS behavior. Since we are
considering isolated bodies, we discard a dS asymptotics,
assuming that the density profile decays sufficiently rap-
idly to zero at r → ∞, so that we have asymptotically
flat solutions. We also note that, at infinity, p‖ = p⊥ → 0
according to Eq. (4).
Moreover, the asymptotic value M of m(r) appears as

an integration constant in Eq. (5b), so that imposing a
Schwarzschild behavior for the solution at r → ∞ implies

ρ ∼ rc , with c < −3 . (8)

Thus, our physically motivated “boundary conditions” at
r = 0 and r → ∞ imply that the function ρ interpolates
between the constant value (7) near r = 0 to Eq. (8) at
r → ∞.
A major drawback of this construction, however, is

that, as a consequence of the freedom in choosing both
the exponent c in Eq. (8) and the interpolating density
profile ρ(r), the model is not unique, but it exists an in-
finite class of models which realize the same flow [13].
Particularly relevant examples, discussed in the literat-
ure, are the Fan & Wang [8], Bardeen [1], Hayward [5]
nonsingular black holes, and black holes with Gaussian
cores [3, 6] (see also Ref. [13] and references therein).
In the following, we will see that requiring some con-

formal symmetries and scaling properties for the density
profile and for the field generating this energy density
will select a particular metric belonging to this general
class.

III. CONFORMAL SYMMETRIES AND

SCALAR FIELD DESCRIPTION

Although GR is not a conformal field theory (see, how-
ever, Ref. [27]), it is known that these symmetries could
play an important role for particular spacetime back-
grounds, like, e.g., the anti de Sitter (or also the dS)
spacetime, for which they take the form of holographic
correspondences [19, 20, 43]. Moreover, there is some
evidence that conformal symmetry could regularize the
short-distance behavior of gravity, by generating an UV
fixed point, which is at the base of the asymptotic safety
scenario [44].
Conformal symmetry plays also an important role for

black holes, in particular in the description of their near-
horizon physics. It has been widely used to give a mi-
croscopic derivation of the Bekenstein-Hawking entropy
[21–23, 25]. Moreover, extremal black-hole background

geometries (e.g., BPS states) typically describe the flow
between different conformal points, or a conformal point
and a flat spacetime [45, 46].
Finally, conformal symmetries are very important also

for nonsingular black holes with a dS core. In fact, the 4D
dS spacetime is endowed with a scale invariance [27] and,
in particular, invariance under transformations induced
by the conformal group SO(2, 4) [26] 3. For the nonsingu-
lar black holes under consideration here, this scale sym-
metry holds only in the dS core and it is broken at greater
distances, when localized matter begins to dominate [13].
On the other hand, the presence of the dS core implies
that, for some values of the hair ℓ, the black hole has
necessarily two horizons, which, for a critical value of
ℓ, merge into a single one. This produces an extremal
configuration, whose near-horizon geometry has an AdS2
factor, with an associated dual, near-horizon conformal
symmetry [13].
These considerations strongly suggest that the dens-

ity ρ(r) sourcing our black hole could generate a flow
between a conformal point near r = 0, described by the
dS spacetime, and some conformal field theory in the
r = ∞ region. The scale invariance is broken during the
flow by the nucleation of a local mass M , with a related
generation of an intermediate scale ℓ [13]. The latter rep-
resents an additional “hair” of these models, and allows
to realize the interpolation between the small r ∼ 0 and
the large scales r → ∞.
Lacking a fundamental microscopic description of our

nonsingular black holes, we are unable to exactly identify
the field content of the conformal matter sourcing the
black hole in the r → ∞ region. However, scale sym-
metry strongly constraints the form of ρ in this regime. It
must transform with definite weight ∆ under dilatations
r → ωr: ρ(ωr) = ω∆ρ(r). For conformal field theories,
the scaling dimension ∆ must be equal to the engineer-
ing dimensions, ∆ = −4, in such a way that the theory
does not contain dimensional constants. This fixes the
exponent c in the asymptotic behavior (8), so that we
have

ρ(r) =
α

4π

1

r4
, (9)

where α is a dimensionless constant. This scaling is typ-
ical of the energy density of conformal matter fields in
four dimensional Minkowski spacetime, like, for instance,
a set of free masseless scalar fields. We are therefore
assuming that, in the asymptotic r = ∞ region, if we
neglect the contribution of the localized matter M , our
system is well described by a solution of GR given by a
CFT in Minkowski spacetime, whose energy density cor-
responds to Eq. (9). Näıvely, this energy density charac-
terizes a system of N quanta inside a sphere of radius r.

3 This becomes evident when embedding dS spacetime in R1,4 and
writing it in the flat slicing.
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Each mode has a typical Compton energy E ∼ r−1, so
that the total energy density is ρ ∼ N/(r · r3) = N/r4.
The density profile (9) diverges at r = 0. This is due

to modes with arbitrarily short wavelength contributing
to the spectrum. According to our assumption on the
presence of a dS behavior at r = 0, this singularity is,
however, not physical, because the density ρ must in-
terpolate between the constant value (7) at r = 0 and
Eq. (9) at great distances.
The simplest way to regularize this divergent behavior

is through a translation of the radial coordinate r →
r+ℓ, which moves the singularity to nonphysical negative
values of the radial coordinate r

ρ(r) =
α

4π

1

(r + ℓ)4
. (10)

This introduces a length scale related to the local mass
M and to the dS length L, which is the physical source of
the breaking of the scale symmetry. Evaluating Eq. (10)
in r = 0, comparing it with Eq. (7) and considering the
Schwarzschild limit m(r) → M as r → ∞, we can easily
identify the dimensionless constant α and write the hair
ℓ in terms of the Schwarzschild radius RS = 2ℓ2PM and
of L

α =
ℓ4

ℓ2P L2
, ℓ ∼ R

1/3
S L2/3 . (11)

The second equation, in particular, gives a universal scal-
ing for every geometry interpolating between the dS at
r = 0 and the Schwarzschild spacetimes at great dis-
tances (see Ref. [13]). Specifically, Eq. (11) represents a
universal relation between ℓ and the black-hole mass M .
One can now easily find the mass function, using

Eqs. (5b) and (10)

m(r) =
Mr3

(r + ℓ)3
, (12)

which gives a particular case of the Fan & Wang model,
investigated in details in Ref. [8]. This model is charac-
terized by strong, order 1/r2 corrections to the Schwar-
zschild solution at infinity. Additionally, the parameter
ℓ in this model was recently constrained by S2 observa-
tional data [15].
In the next subsection, we will show that the result

(10), which is dictated by an Occam razor argument, can
be derived using, again, conformal symmetry arguments.

A. Scalar field description

The regularization proposed above is obviously not
unique. A different choice corresponds to different flows
between the r = 0 and r = ∞ points, and to differ-
ent patterns of the symmetry breaking. The most gen-
eral solution compatible with the boundary conditions
(7) and (9), and with an analytic behavior at r → ∞ is
ρ ∝ (Pn)

γ/(Pm)δ, with Pn, Pm polynomials of degrees n

and m, respectively, and nγ−mδ = −4 (to guarantee the
scaling (9) at great distances). This is a remarkable par-
ticular case of the more general formula sourcing regular
fractional models

ρ(r) =
α

4π

ℓm−1

(rm + ℓm)
3

m
+1

. (13)

Indeed, once used in Eqs. (5a) and (5b), it gives for m =
1, 2, 3, the Fan & Wang, Bardeen and Hayward black
holes, respectively.
To gain further insights into the details of the two

CFTs living at r = 0 and r = ∞, let us assume, for sim-
plicity, that there is a regime in which the flow between
these two conformal points can be described by a static
scalar field Φ, which is sourced by the density ρ. In a
static and spherically symmetric background, it will sat-
isfy the Poisson equation

∇2Φ = 4πρ . (14)

One can now easily find, using Eqs. (7) and (9), the
asymptotic solutions of Eq. (14) near r = 0 and r → ∞,

Φ(r) ∼
{

r2/ℓ2 , for r ∼ 0

r−2 , for r → ∞ , (15)

where we have neglected the constant and 1/r terms in
the r → ∞ behavior, which are related to the presence
of the mass M . As expected in the flow from r = ∞
to r = 0, the scaling dimension of Φ changes from its
engineering one ∆ = −2 to ∆ = 2, which is associated
with a constant ρ.
An important feature of the two conformal points,

which is immediately evident in Eq. (15), is that they
are mapped one into the other by the inversion

r → ℓ2

r
. (16)

Discrete symmetries, changing small with large radii,
are common in string theory, where they are called T -
dualities. They have been already used in the past to
investigate nonsingular black holes [47, 48].
The inversion can be used in combination with trans-

lations to produce special conformal transformations,
which, together with dilatations and translations, gen-
erate the conformal group (isomorphic to the SL(2,R)
group) realized here in one dimension as

r → ω r, r → r

1− νr
r → r + σ (17)

where ω, ν, σ are the group parameters 4.

4 We stress again that a different parametrization of the radial co-
ordinate would simply imply a different realization of the trans-
formations (17), with r replaced by a particular function de-
termined by the coordinate transformation (see the discussion in
Section II).



5

A generic flow, for instance the one described by
Eq. (13), will preserve neither the scaling behavior for
Φ nor the symmetry under inversion. However, we can
select a particularly symmetric profile for ρ, such that
the solution for Φ preserves at least part of the conformal
symmetries, in particular the scaling with ∆ = 2 attained
in the r = 0 conformal point. One can show that this
happens if we choose the simple profile for ρ given by
Eq. (10). Integrating the Poisson equation (14), we get

Φ(r) =
α

6 ℓ2
r2

(r + ℓ)2
. (18)

One can now check that the field Φ (18) transforms as

Φ → ω2 Φ (19)

under a conformal transformation of the form

r → ω
r

1− νr
, (20)

with ω ≡ 1 + νℓ, which represents the composition of a
dilatation and a special conformal transformation.

It is important to notice that Eq. (18) does not arise
as the Newtonian limit of the full GR solution with the
mass function (12). The EOS (3), indeed, prevents the
weak-field limit from being performed together with the
usual nonrelativistic limit, and a Newtonian fluid, with
ρ ≫ p‖, p⊥, from being considered. We can still per-
form a weak field limit, which gives the Poisson equation,
sourced however by the active mass ρ + p‖ + 2p⊥. Us-
ing Eqs. (3) and (4), together with the profile (13) (with

m = 1) yields the potential Φ̃ = −GMr2/(r + ℓ)3.

IV. NONLINEAR ELECTRODYNAMICS

It is interesting to note that the large scale behavior
r−4 of Eq. (13), and the related scale invariance, could
be explained in terms of the embedding of these regular
models as solutions of GR coupled with nonlinear elec-
trodynamics [41]. The action for such theory is

S =

∫

d4x
√
−g

[

R

16πG
− L (F)

]

, (21)

where R is the Ricci scalar, while F = 1
4
FµνFµν is the

trace of the electromagnetic potential. L is, in general,
a nonlinear function of F . Maxwell’s theory is of course
recovered in the linear case L ∝ F . If we compute the
stress-energy tensor related to L , we see that it naturally
satisfies the EOS (3) and that ρ(r) = L (F). We can now

combine this with Eq. (13) and the magnetic monopole
solution of Maxwell’s equations

F =
q2m
2r4

, (22)

which gives the lagrangian

L (F) =
α

4π

F
[

ℓβFβ/4 + 2−β/4q
β/2
m

]4/β
. (23)

We see now that the particular large-scale conformal scal-
ing r−4 can be explained by the fact that the subclass of
models described by Eq. (23) reduces to the standard
Maxwell theory in the weak field limit F → 0, which is
also conformally invariant.

V. SUMMARY AND OUTLOOK

One of the most unsatisfactory aspect of nonsingu-
lar black-hole solutions is that, although we can gener-
ate them using anisotropic fluids as sources, their phys-
ical origin in terms of elementary fields is mostly un-
known. This is particularly true if one considers nonsin-
gular black holes in which the deformations from the
usual Schwarzschild solution have superplanckian origin
[13, 15]. An unpleasant consequence of this lack of know-
ledge is the existence of a large number of solutions.
Although it is possible that, in the near future, astro-
physical and gravitational waves data may be used to
select/exclude models [13, 15], some theoretical guiding
principle is more than welcome.
It is likely that these difficulties are indicating that

the microscopic origin of this kind of solutions cannot be
found in a GR framework or its extensions (see Ref. [49]),
which allows only for a coarse-grained description in
terms of anisotropic fluids. For this reason, it is import-
ant to look at general guiding principles, like symmetries,
which are expected to underpin the classical GR descrip-
tion.
In this paper, we have adopted this philosophy to con-

strain the broad class of nonsingular black-hole mod-
els with a dS core. We have used conformal symmet-
ries, which are believed to be a crucial ingredient of any
quantum theory of gravity, as a selecting principle to
single out the physically relevant nonsingular black-hole
solution.
We have found that the conformal symmetry selects

a particular case of the Fan & Wang metric, which has
been recently investigated and constrained using data of
the orbits of the S2 star around the SgrA∗ black hole.
Obviously, the use of conformal symmetry to select

solutions is only a first step. Understanding the micro-
physics from which these symmetries originate is the next
important task.
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