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Abstract. The nonminimal  coupling of a massive self-interacting scalar field with a 
gravitat ional  field is studied. Spontaneous  symmetry  breaking occurs in the open universe 
even when the sign on the mass term is positive. In contrast  to grand unified theories, 
symmet ry  breakdown is more important  for the early universe and it is restored only in the 
limit of an  infinite expansion. Symmetry breakdown is shown to occur in flat and closed 
universes when the mass  term carries a wrong sign. The model has a naturally defined 
effective gravitational coupling coefficient which is rendered t ime-dependent due to the novel 
symmet ry  breakdown. It changes sign below a critical value of the cosmic scale factor 
indicating the onset of a repulsive field. The presence of the mass  term severely alters the 
behaviour  of ordinary matter  and radiation in the early universe. The total energy density 
becomes negative in a certain domain.  These features make possible a nons ingula r  
cosmological  model for an open universe. The model  is also free from the horizon and  the 
flatness problems. 
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1. Introduction 

The most widely accepted model of the Universe today is the Friedmann-Robertson-  
Walker big bang model which is based on the general theory of relativity. It is rightly 
titled as the standard model, being the only one which is capable of explaining 
satisfactorily most of the cosmological data obtained in the past few decades. The 
cosmological redshift, the microwave background radiation, the relative abundance 
of elements are but only a few things which the model can account for (Weinberg 
1972). However,  it is well known that the big bang cosmology can at best be a working 
model which would guide us in our endeavour to understand the true nature of the 
Universe. The reason for this belief is that some of the drawbacks of the model like 
the initial singularity are conceptual in nature. These obstacles are not due to any 
spurious assumptions made in constructing the model; rather they are generic to 
general relativity on which the model is based (Hawking and Penrose 1970; Hawking 
and Ellis 1973). So one hopes that some day we would have a theory which would 
most likely give us a model of the Universe which would be rid of the problems 
encountered in the standard model. It is believed that a quantum theory of gravity 
would solve many problems confronted not just in cosmological models but elsewhere 
in general relativity. Using De Witt's formulation of quantum gravity Hawking has 
shown that for a Friedmann-Robertson-Walker universe minimally coupled to a 
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massive scalar field, there are bounce solutions without singularity (Page 1984; 
Narlikar and Padmanabhan  1983). 

However, as of today, no formulation of quantum gravity is complete (Isham et al 

1981; Markov and West 1984). Thus it has now become a practice to attack the 
impediments of the standard model in the classical and semiclassical framework with 
the hope that such moves might give us clue to the more desired quantum theory of 
gravity. 

In the past few years many researchers have tried to develop the inflationary 
universe scenario (Guth 1981; Linde 1982, 1984) since it solves, apart  from others, 
the horizon and the flatness problems. But it is also true that there are many problems 
associated with inflation (Mazenko et al 1985; Narlikar and Padmanabhan  1985) and 
moreover this scenario does not solve the most outstanding p r o b l e m - - t h e  initial 
singularity (Vilenkin 1982, 1983). It can be shown that the initial singularity is the 
root  cause of the horizon puzzle (Narlikar and Padmanabhan  1983) and the flatness 
problem (Sathyaprakash et al 1986). Once this is taken care of, the others automatically 
disappear. In a recent paper (Sathyaprakash et al 1986) we have shown that a 
nonsingular cosmological model is possible in the classical framework by modifying 
general relativity. The alterations made do not imply any new results at low energies 
and large length scales (in particular the present day physics is unchanged); but on 
the other hand the novel features which become important  for the early universe, 
make possible a nonsingular cosmological model. The modification is made by 
nonminimally coupling the gravitational field with a self-interacting scalar field (Callan 
et al 1970).* In spite of the absence of a mass term the symmetry , ~ - , ; b  of 
the scalar field is spontaneously broken, through a non-vanishing time-dependent 
ground state solution (Grib and Mostepanenko 1977; Fleming and Silveira 1980; 
Padmanabhan 1983). Depending on the kind of model we choose, symmetry is 
broken either permanently (Grib and Mostepanenko 1977; Fleming and Silveira 
1980; Padmanabhan  1983) or below a critical "radius" (Sathyaprakash et al 1984; 
Sathyaprakash and Sinha 1987). In either case symmetry breakdown is more important 
for the early universe (Abbot 1981; Sathyaprakash et al 1984; Gonzalez 1985) in 
contrast to grand unified theories where all symmetries are restored at an early 
epoch (or equivalently at a high temperature). The model has a naturally defined 
"Effective Gravitational Coupling Coefficient" (EGCC) which is rendered time- 
dependent due to the symmetry breakdown. It undergoes a change in sign below a 
critical value of the cosmic scale factor indicating the onset of repulsive gravity** 
(Linde 1980). Provided the repulsive forces are strong enough one could avoid the 
singularity. In our earlier work (Sathyaprakash 1986) it was shown that a nonsingular 
model can be constructed if the background metric is that of an open universe. There 
we had considered only a massless scalar field to be the source of geometry. But finite 
temperature calculations show that the scalar field acquires a mass term which varies 

* Such a coupling was first considered by Callan et al with the intension of improving the energy- 
momentum tensor of the scalar field in curved space-time, so thal the resulting theory has no or lesser 
number of divergences. 

** The appearence of repulsive gravity in the early universe was first noted by Linde ( 1980/. Our treatment 
differs from Linde's in that we have exactly solved the scalar field equation in the curved space-time instead 
of just obtaining the extrema of the potential. 
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linearly with temperature (Dolan and Jackiw 1974; Linde 1979; Weinberg 1974). In 
this paper  we shall consider a massive scalar field, couple it nonminimally with the 
metric field and study the consequences. Many few features emerge due to the presence 
of the mass term. As opposed to the massless theory where the symmetry is broken 
only in the open universe, in the massive case symmetry may breakdown irrespective 
of whether the universe is open, closed or fiat. As a consequence of this, gravity 
becomes repulsive in the early universe in all these cases, but  solutions to the 
gravitational field equations are nonsingular only in the open universe. A very 
important  consequence of the mass term is that the energy-momentum tensor of the 
scalar field has a nonzero covariant divergence. This means that the principle of 
equivalence might not hold good any more. However, consistency with the principle 
of equivalene is guaranteed by including other matter  fields and demanding that the 
total energy-momentum tensor is covariant-divergenceless. Such a criterion leads to 
a change in the behaviour of ordinary matter  and radiation. 

In § 2 the Lagrangian is set up and the equations of motion are derived. Spontaneous 
symmetry breakdown with its novel features are demonstrated by obtaining the stable 
ground state solutions of the scalar field equation. Implications of such solutions for 
EGCC is discussed in §3. The conservation laws and their implications for the 
energy-momentum tensor of matter fields are dealt with in § 4. Solutions to the 
gravitational field equations are obtained in § 5. 

2. The system 

We shall consider a massive, self-interacting scalar field, nonminimally coupled to 
gravity, a metric field g and other mat ter  fields. The Lagrangian density appropriate 
for the system is* 

L = ~ / / ~  [g~,~(ibl'q~" -- p2~b2 - 2~b 4 + Oc -1 -- ~ 2 ) R  + L.,]. (1) 

Hence q~u denotes O(a/Ox", and R is the curvature scalar of the background metric 

field which we shall assume to be Friedmann-Robertson-Walker  universe, xf~-gLm 
is the Lagrangian density for the rest of matter fields and we shall assume that it does 
not contain ~b explicitly. The mass of the scalar field/z and the quartic self-interaction 
coupling constant  2 are the free parameters in the model. We shall identify the inverse 
of the coefficient of the curvature scalar as EGCC. 

K = x[1 - ~xq~2] -1. (2) 

In general ~b is a space-time-dependent quantity and so is A-. But the choice of the 
homogenous and isotropic background metric dictates that ~b be t ime-dependent 
atmost and therefore x is also a time-dependent quantity. Moreover,  x can become 
negative when x~b 2 > 6 and this is a departure from the standard Einstein theory. We 
shall see an equivalent interpretation of this result in § 4. 

*The metric has a signature - 2. The Greek indices run from 0 to 3. The Ricci tensor is defined as in 
Weinberg 1972. 
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By constructing the action from (1) and using the variational principle we arrive 
at the field equations. The scalar field equation is 

~ +/,2q~ + 22q9 + ~Rq~ = 0, (3) 

where []  denotes the d'Alambertian in curved space-time. The metric field equations 
are 

G,v = - K(O.~ + Tu~), (4) 

where G~ is the Einstein tensor, T~ is the energy-momentum tensor corresponding 

to x ~ -  gL= and O ~  is the effective energy-momentum tensor of the scalar field given 
by: 

1 p #242 ~(4~;,,~ - g.~ D ~ 2 ) .  (5) 

Here a semicolon denotes the covariant derivative. It is interesting to note that 
(3) and (5) are exactly those of Hoyle-Narlikar cosmology with # = 0 and 2 = 0 (Hoyle 
and Narlikar 1964). In (5) we have not included that contribution of the gravitational 
field to the energy-momentum tensor of the scalar field, since our  objective is to first 
study the behaviour of EGCC in the following section. In ~j 4 and 5 we shall consider 
the excluded term also. A few comments concerning the nonminimal coupling term 
are in order. Taking trace of (4) we get 

R = Ic(,u2(~ 2 + T), (6) 

where Tis the trace of Tuv. Substituting this in the scalar field equation we get, 

[~b  +p2dp + 2Z~b 3 = 0 (7) 

where It and ;t are the modified mass and self-interaction coupling constant 
respectively: 

~2 = //2 _{_ ~KT and 2 = 2 + l~l/2hT. (8) 

Thus, when a massive scalar field is present the nonminimal coupling term has a 
contribution to the sell-coupling also, unlike the massless case where it behaves purely 
as a mass term. Observe that although we had assumed Lm to be independent of q~, 
coupling between $ and the rest of matter  fields is indeed present through geometry. 
Note  that, unlike the usual symmetry breaking theories, (7) does not admit any 
nonzero constant solution, since in general Tis a space-time-dependent quantity. 

We shall now proceed to obtain the ground state solutions of the scalar field 
equation. The Fr iedmann-Rober t son-Walker  metric in conformal coordinates is 
given by the line element 

ds 2 = a2(z)[dr 2 - dz 2 - h2(x)(dO 2 + sin 20dt~2) "] (9) 

where h(x) is given by 

h(x) = sin X for a closed universe 

= Z for a flat universe and 

= sinh X for an open universe. 



Nonsingular cosmological models 19 

The curvature scalar for this metric is 

R = +[(a/a)  + k] (lO) 

where k = _ 1, 0 according as the Universe is closed, open or flat and a dot  denotes 
differentiation with respect to the time coordinate 3. Now, let the ground state solution 
be denoted by r/. The choice of the homogeneous and isotropic background restricts 
r / to  be atmost time-dependent. Substituting the above relation for R in (3) and using 
the metric (9) we get the following equation in q: 

( ) / ~ + 2 a o +  #2a2+_aa + k  t /+22aZt /3=0.  (11) 

On dimensional grounds we can try a solution of the form 

tl(z) = 7kf  (z)/a(z), (12) 

where 7k is a constant. On substituting this in (11) we obtain 

y + (#2a2 + k ) f  + 22yk2f 3 = 0. (13) 

Unfortunately, a general solution of this equation is not available. Since we need an 
exact solution of (3) for an analysis of the gravitational field equations, we shall make 
the simplifying assumption that the mass of the scalar field varies inversely with the 
cosmic scale factor. This can be justified because (i) # has the dimensions of inverse 
length and (ii) finite temperature calculations indicate that # varies linearly with 
temperature and in an adiabatically expanding universe the "radius" of the universe 
is inversely proportional  to the temperature. Thus, with 

~2=b/a(z)2, (14) 

where b is a dimensionless constant, (13) takes the form 

f + (b + k ) f  + 2)~y2f 3 = O. (15) 

This equation can have nonzero constant solutions depending on the value o fk  and b. 
(i) b > 1: In this case, symmetry remains unbroken irrespective of whether the 

Universe is closed, open or flat since f = 0 is the stable constant solution of (15). This 
means r /= 0 is the stable vacuum solution of (11) and therefore the scalar field is in 
the symmetric state. This will not be of any interest to us and therefore we shall not 
consider this any more in our discussion. 

(ii) 0 < b < 1: As long as b is positive, symmetry is unbroken for k = 1 and 0. 
However, for an open universe symmetry is broken because now the stable solutions 
of(15) are f =  + 1 with 

7 ~ = - ( k + b ) / 2 2 ,  k = - l ,  (16) 

and the vacuum solutions of (1 I) are 

q(z)= ___Tk/a(z). (17) 

Thus the symmetry ~b ~ -- qb of the scalar field is spontaneously broken, not  through 
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a constant ground state solution but through a time-dependent solution. These 
solutions are energetically more favourable than the r /=  0 solution as shown in §4 
(cf. eq. (23)). It is interesting to note that symmetry breaking becomes more and more 
important  for the early universe and it is restored only in the limit of an infinite 
expansion. Notice that symmetry breakdown has occurred in spite of the fact that 
p2 is positive. This is in contrast to the usual symmetry breaking theories where #2 
has to be necessarily negative to bring about  symmetry breaking. By making the 
transformation q~ ~ ,~ = f f -  r/, we can write down the effective Lagrangian; the 
physical field ,], is found to have a mass / l  given by 

p2 = (3 - 2b)/a2(r). (18) 

The effective mass is found to depend inversely on the cosmic scale factor. 
We have restricted /~2 to be positive in the above analysis since its origin 

was supposed to be the finite temperature effects which induce a mass term of the 
form 2T2~p 2 and 2 has to be positive to ensure a lower bound for the potential. Hence, 
when only one scalar field is present, high temperature effects cannot facilitate 
symmetry breaking in the usual symmetry breaking theories. However,  it is perfectly 
consistent with the positivity conditions, of the potential, to have a tachyonic mass 
induced when more than one scalar field is present (Mohapatra  and Senjonovic 1979; 
Weinberg 1974; Zee 1980). Hereafter, let us assume #2 to be negative (or equivalently 
b < 0) but we shall not complicate the issue by including an extra scalar field. 

(iii) b < 0: For  open and flat universes symmetry is broken since f = + 1 are the 
stable solutions of (15). For the closed universe symmetry is unbroken for b > - 1  
and it is spontaneously broken for b < - 1. Broken symmetry solutions in all these 
cases are given by (17) but now k can take all values, i.e. 1,0, - 1 .  It should be borne 
in mind that 7k 2 is positive always. 

The results of this section can be summarized as follows. Symmetry breaking occurs 
for values of (b + k) less than zero; for k --- - 1 when b < 1, for k = 0 when b < 0 and 
finally for k = 1 when b < 1. In all these cases symmetry breakdown is permanent  
and it is restored only in the limit of an infinite expansion. 

3. Repulsive gravity 

We shall now investigate how the results of the previous section affect EGCC. We 
shall substitute for ~b in (2) the vacuum solution r/(r). Then, 

r = x(l - ~x~/2) - 1. (19) 

For  values of (b + k) > 0, the scalar field is in the symmetric state with r /=  0 the 
stable ground state solution. In that case EGCC is a constant and the behaviour of 
gravity is the same at all epochs. However, when the mass of the scalar field is 
sufficiently small, i.e., (b + k) < 0, the scalar field is in the asymmetric state with the 
stable ground state solutions given by (17). Then EGCC becomes 

2 x7~/6. (20) x=KEl--(ac/a)2] -1, where a c =  

Here ac is a constant and has the dimensions of length. It is the value of the cosmic 
scale factor below which the gravitational interaction between elementary particles 
becomes repulsive and we shall call it the critical "radius". For  values of a(r) >> ao 
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approaches the constant r. Observe that as a(z) approaches ac from below, repulsive 
forces increase without any limit, indicating that classical physics might not hold 
near the critical radius. However, as we shall see in § 5, a(r) = ac is not a space-time 
singularity as none of the curvature tensor components blow up at this epoch. 

The appearance of repulsive gravity in the early universe indicates that the resulting 
cosmological model might be free from singularity. Incidentally, since 7-1 > 7o > 71, 
repulsive forces start operating at a larger value of the cosmic scale factor in an open 
universe than in a closed or a flat universe. The onset of antigravity at a larger value 
of a(z) enables a nonsingular model in an open universe. 

4. C o n s e r v a t i o n  l a w s  

Henceforth we shall write the gravitational field equations in the standard form: 

G.~ = - x(19.v + T . 0 .  (21) 

Here 19.v is the total energy-momentum tensor of the scalar field given by 

- -  ~C~ Gu~. Ou~ = 19u~ a 2 (22) 

By writing the field equations in the above form the term responsible for having 
repulsive gravity has been absorbed in ®~v and we shall see an equivalent inter- 
pretation of antigravity presently. For  the asymmetric ground state solutions (17) of 
the scalar field, 19~ has the following nonzero components: 

19 ° = 7~' ¢b + k), (23) 
4a 4 , 

, 7~ k)@ (24) 0 i :-1-~a4 (3b - 

Notice that since 7k ~ is positive and (b + k) is negative, the energy density of the scalar 
field Oo ° is negative. But, the symmetric solution r /= 0 would have rendered all the 
components  of O ~  zero. Thus, the asymmetric solutions (17) are not only stable when 
(b + k )<  0 but are also energetically more favourable than the unstable symmetric 
solution r /= 0. The negative energy density accounts for the repulsive field that crops 
up at small length scales. The presence of a negative energy density in the model 
violates the energy condition of the singularity theorem and hence a singularity need 
not occur in the present model. However, to avert singularity, in addition to having 
the energy density negative, one must have the space-space components  of O~, which 
represent the pressure, positive. This cannot be satisfied if b is negative. This means 
a nonsingular solution is not viable in a closed or a fiat universe. For  b > 0, ®~ are 
positive and symmetry breaking occurs for positive values of b only in an open 
universe provided b < 1. We shall assume in what follows that 0 < b < 1 and therefore 
we shall consider only the open universe case for which 

Oo ° - 72-~ (1 - b), (25) 4 a  4 

i _  72-~ ~1 + 3b)6~. 
O j -  1 2 a 4 , -  

(26) 
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Let Eu~ be the total energy-momentum tensor of the scalar field and the rest of matter  
fields: 

Euv = ®u~ + T~. (27) 

It should obey the covariant conservation law 

E~, = 0. (28) 

Now, if ®,,~ is the only source of geometry (i.e., Tuv = 0), then the above equations 
imply that b = 0. In other words, if b is nonzero, O ~  alone does not satisfy the 
conservation law. To be consistent with the principle of equivalence (28) must be 
satisfied. This can be assured if we have in addition to the scalar field some other 
matter  fields as a source of the gravitational field. For  simplicity we shall take Tuv 
to be that of a perfect fluid. 

T~  = (p + p)UuU~ - P9~,~, (29) 

where p, p and U s are the energy density, pressure and the four-velocity of the fluid 
respectively. Assuming an equation of state of the form p =/~p, and using (25) and 
(26), conservation laws imply for 1~ < 1/3 that 

A bY 21 1 
- ( 3 0 )  P a 3(1+•) (1 - 3fl) a 4' 

and for fl = 1/3 (i.e. radiation) that 

0 = ~-  + In (a/ao). (31) 

Here A and a o are the constants of integration. The expression for the energy density 
of the perfect fluid picks up an extra term due to the presence of the mass term. (In 
the absence of a mass term Ou~ satisfies the conservation law independently and 
would have the usual dependence on a(z)). Even when fl :~ 1/3, p has a term 
proport ional  to 1/a 4. Thus, fluids other than radiation can also become important  
for the early universe. Notice that as a(z) decreases, p becomes negative eventually. 

Making the scalar field time-dependent is equivalent to including a thermal gas 
which behaves like radiation at very high temperatures. This is the reason why the 
energy density of the perfect fluid picks up an extra term which corresponds to the 
scalar field whose contribution is more important  at higher temperatures. 

In what follows, for simplicity we shall consider only the two extreme cases fl = 0 
a n d / / =  1/3. Using expressions (25), (26) and (30) or (31) we get the following nonzero 
components  of Z~:  
(i) For  dust 

E ° = x3a 4 (2qa - 12) (32) 

Z~ 1 2 i = - -  1 ~j (33) 
K a  4 
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(ii) For  radiat ion 

Eo ° = ~a4 (2q - m 2 + n 2 In (a/ao)) 

E~ = x -~  (m2 - 2q - n 2 In (a/ao))t$~ 

where 12, q ,  m 2 and n 2 are positive constants given by: 

12 = (a2/2) (1 + 3b). 

n 2 = 2a2b, 

m 2 = (a2/EX 1 - 3b), 

q = (A/6)K. 

23 

(34) 

(35) 

5. Nonsingular solutions 

We can now solve the gravitational field equations. As ment ioned in the previous 
section, even pressure-free fluids can become impor tant  in the early universe. Thus,  
though we are interested in the implications of the field equations for the early 
universe, we should consider both dust and radiation models. 

(i) Dust  models: 
form 

i t  2 - -  a 2 = 2qa -- 12 

2aii -- d 2 - -  a 2 = 12. 

A consistent solution of the above equations is 

a(T)  = (l 2 --I- q2)1/2 c o s h ( z  q.- ~;0) - q ,  

Using expressions (32) and (33) metric field equations (21) take the 

(36) 

(37) 

(38) 

where ~0 is a constant  of integration which sets the origin of the time coordinate.  
The choice Zo = 0, renders a(r) to be minimum at z = 0: 

a(0) = (l 2 + q2)1/2 _ q. (39) 

The constant  12 involves the parameters  2 and b and will be zero if the scalar field is 
absent; then a(0) = 0. Thus, it is the presence of a scalar field that leads to a nonzero 
value for the min imum size of the Universe. The solution we have obtained will be 
meaningful only if the minimum size of the Universe is larger than the Planck length 
since, then one can be assured that the quantum gravity effects will not alter the 
results obtained. The problems that arise at Planck lengths, Ee can be averted if 
a(0) > l~,. This can be achieved by choosing 12 to be sufficiently large. Since 12 depends 
inversely on the coupling constant 2, smaller the 2 larger is the initial size of the 
Universe. For  large • the expansion of the Universe is exponential  as in the inflationary 
universe models. The inflation here is not due to a constant  energy density of  a 
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supercooled symmetric state of a scalar field, but  instead, it is due to a rapidly 
decreasing ground state energy density of a scalar field in the asymmetric state. As 
a result, the exponential  expansion proceeds only as long as the negative energy 
density part  dominates over other terms. Thereafter the evolution of the Universe is 
akin to the usual Friedmann phase. Thus, in this model the Friedmann phase appears 
naturally after an exponential phase of expansion. By choosing appropriate values 
for the parameters b and 2 one can transit to the Fr iedmann phase at an early epoch 
such that, such late time processes as helium synthesis are not affected by the present 
model. 

The "velocity" at ~ = 0 given by d(0) is zero. Thus, the Universe does not start with 
a big bang but instead there is a smooth bounce at z = 0. 

A nonzero minimum size for the Universe does not necessarily mean that the 
space-time is devoid of a singularity at all epochs. In the present model, for instance, 
the critical radius at which the magnitude of EGCC becomes infinite can be suspected. 
to be a singular point. We shall now see that this is not  so by showing (a) finiteness 
of curvature tensor components and (b) completeness of the null geodesic. 

(a) The nontrivial independent components of the Riemann-Christoffel  curvature 
tensor are 

R~ I o = (aii -- a2)/a ~ (40) 

R122x = (a 2 - fi2)/a2. (41) 

For  the solution (38) these components are 

R~ 10 = ( °92  - -  qo  cosh "c)/J( l-)  2 (42) 

R212 = ( (02  "-[- q~ - 2(0q cosh z)/J(r) 2, (43) 

where J ( z ) = ( ( 0 c o s h z - q )  and (0 is a constant given by (02= 1 2 + q Z  These 
components  of the curvature tensor remain finite for all values of z and in particular 
at the critical time zc given by: 

ac = 09 cosh L - q. (44) 

Thus, we are assured that the epoch at which E G C C  changes sign is not singular 
and that the curvature tensor components remain finite at all finite times. 

(b) Consider a null geodesic travelling radially. Then the line element satisfies 

ds 2 = 0 =  dr  z - d Z  z. (45) 

Hence the affine parameter  length from the event (%, Xo) to the event (r, Z) denoted 
by ((z, to) is given by: 

fz r ((r,  %) = a(r) dr. (46) 
0 

Now the geodesic is said to be complete if the above integral diverges in the limit of 
r o --.0 (to--* - Gc) in the case of a singular (nonsingular) cosmological model. From 
solution (38) we have 

{(r, r o ) = a ( r ) ( r - r o ) .  (47) 
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Clearly, the above integral diverges in the limit ro ~ - ~ and hence the geodesic is 
complete. Since the Universe has been existing for all times and also since the geodesic 
is complete, there has been enough time for different parts of the Universe to come 
into contact with each other. Thus the horizon problem does not occur in the present 
model. Notice also that one does not have to bother about  the initial conditions 
since there is no such thing as initial time and as a consequence the flatness problem 
does not arise. 

(ii) Radia t ion  models: The gravitatiooal field equations in this case are 

42 - a 2 = 2q - m 2 + n 2 In (a/ao) (48) 

2 a / / -  ci z - a z = 2q + m 2 - n 2 In (a/ao). (49) 

These equations cannot be solved exactly. However, some qualitative arguments can 
still be made. Self consistency of the above equations can be established very easily. 
Hence we shall analyse only (48) but the features that emerge will be respected by 
(49) also. For  convenience we shall write (48) as 

42 = a 2 + w 2 + n 2 In (a/ao), (50) 

where w 2 = 2q - m 2. Since the left hand side is always a positive quantity so should 
the right hand side. For  a(r) < a o the last term in the above equation becomes negative 
and as a(z) decreases further the right hand side will itself become negative. Therefore 
a(z) cannot  become zero and its minimum value is determined by the transcendental 
equation 

a z + w 2 + l n ( a / a o ) = 0 .  (51) 

When a(r) reaches its minimum value, ci(0) is obviously zero. The main features of 
the 'dust '  model are reflected in this case also. 

At first it would appear that since the effective gravitational "constant" approaches 
- ~  as the universe expands from a = a(0) to a = ac there is a big bang at the critical 
"radius". But when we look at the solutions for the cosmic scale factor we see that 
the "velocity" given by ¢i(z) does not blow up at any time and in particular at the 
critical time. Thus the effective gravitational coupling coefficient should only be 
considered as a means to understand why singularity is avoided in the present model. 
It is true that we have added new terms to the general relativistic theory. But that 
singularity avoided is proved not only by proving the finiteness of the curvature 
tensor invariants but also by showing that geodesics are complete. In fact we have 
shown that past directed null geodesics are complete. 

6. Conclusions 

In this paper we have obtained a nonsingular model for an open universe in the 
presence of a massive scalar field. The nonminimal coupling makes contributions to 
the mass term as well as to the self-interaction. Though the scalar field and the rest 
of matter fields were assumed to be independent, the coupling indeed shows up 
through geometry. This is also evident from the fact that a nonzero mass can be 
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accommodated  in the model only if the energy-momentum tensor corresponding to 
the rest of the world has a contribution from the scalar field. 

In contrast  to grand unified theories, the scalar field "inversion" symmetry is 
permanent ly  broken and the consequences are more impor tan t  for the early universe. 
A very peculiar feature is that symmetry breakdown occurs, in the open universe, 
even when the mass term carries the right sign. It is found that a singularity-free 
model is viable only if the mass term carries a positive sign. In a massless theory, 
symmetry  breaking occurs only in an open universe whereas in the present model it 
occurs in fiat and closed universes also, when the mass is tachyonic. As a result of 
this gravity becomes repulsive in a certain domain in all these cases, with the 'critical 
radius', at which gravitat ional interaction changes sign, being the largest for the open 
universe. The appearence of antigravity can be at tr ibuted to the fact that the scalar 
field energy density is negative. 

The reason why singularity-free models are possible only for an open universe, is 
the following. The energy density corresponding to the total energy-momentum tensor 
becomes negative below a certain value of the cosmic scale factor only for k = - 1. 
But it stays positive for k = 0, 1 except when Tu~ corresponds  to radiation, in which 
case it becomes negative above a certain value of a(z). This only enables to set an 
upper  limit on the size of  the universe in these two cases, but the initial singularity 
continues to be there. Even for k = 0, 1 the initial velocity ~(0) is finite and thus the 
birth is not explosive. 

At late times the expansi,~n of the universe is exponential ,  as in the inflationary 
universe models. In inflationary universe models, the right value for density perturb- 
ations, which are needed to explain the formation of small scale structures, can be 
obtained only if the self-interaction coupling constant  is chosen to be ,-~ 10 -~4 
However,  in the present model one can possibly do away with a reasonable value of 
2 since we have two parameters  instead of one. Work  is in progress to see whether 
this can be accomplished. 
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