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Abstract: Among many types of defects present in crystalline materials, dislocations are the most
influential in determining the deformation process and various physical properties of the materials.
However, the mathematical description of the elastic field generated around dislocations is chal-
lenging because of various theoretical difficulties, such as physically irrelevant singularities near the
dislocation-core and nontrivial modulation in the spatial distribution near the material interface. As
a theoretical solution to this problem, in the present study, we develop an explicit formulation for the
nonsingular stress field generated by an edge dislocation near the zero-traction surface of an elastic
medium. The obtained stress field is free from nonphysical divergence near the dislocation-core, as
compared to classical solutions. Because of the nonsingular property, our results allow the accurate
estimation of the effect of the zero-traction surface on the near-surface stress distribution, as well
as its dependence on the orientation of the Burgers vector. Finally, the degree of surface-induced
modulation in the stress field is evaluated using the concept of the L2-norm for function spaces and
the comparison with the stress field in an infinitely large system without any surface.

Keywords: edge dislocation; surface effect; gradient elasticity; gauge theory; stress distribution

1. Introduction

Continuum mechanics theory enables the calculation of the spatial distribution of
stress (and strain) inside a material and its deformation under loading. If the interior of
the material is ideally uniform and free from defects, then the elastic field is smooth and
continuous over the system. However, in actual materials, a certain number of defects are
often embedded in a discrete and inhomogeneous manner. Thus, contributions from those
defects to the mechanical properties of the system in the realm of continuum theory should
be considered [1,2].

Of many types of defects, dislocations are ubiquitous in crystalline metals and alloys
and are typically found at a high density of 108 or more per 1 cm2. Each dislocation is a
line defect that disturbs the lattice arrangement of the perfect crystal, locally breaking the
translational symmetry and acting as the source of stress and strain that are distributed in
the materials [3]. The broken symmetry near the dislocation-core and its movement due to
external forces or thermal excitations play primary roles in the physical phenomena. For
instance, the plastic deformation of a crystal is caused by a large flow of dislocations [4,5],
and work hardening is caused by the dislocation arrangement formed in the crystal [6].
Otherwise, the nucleation and mobility of dislocations near the tip of a crack have a
strong impact on the fracture mechanics of the material [7]. Furthermore, an in-depth
understanding of dislocation dynamics and dislocation-induced elastic fields near traction-
free boundaries [8–10] and grain boundaries [9,11–14], as well as the assessment of the
boundary conditions used in the existing formulations [15] are critical to predicting the
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performance of advanced materials: they include gold nanowires [16,17], barium titanium
nanomaterials [18], functionally graded materials [19], and other metallic and semiconduc-
tor materials [20–23].

The mechanics of dislocations and their long-range correlated behaviors [24] have
been addressed successfully using conventional (traditional) dislocation theory, as well as
coarse-grained approaches [25], at least from a macroscopic viewpoint [26–28]. However,
when considering nanometric-scale mechanics, conventional dislocation theory may not
work adequately. The most significant drawback of the conventional theory is that stress
and strain fields diverge infinitely near the dislocation-core. Because of this divergence,
the theory does not fully describe the elastic field near the dislocation-core. This loss of
accuracy hinders a detailed analysis of the near-core elastic field. Still, this analysis is crucial
in the cases where a large number of dislocations are densely packed in a nanoscopic region
or close to the interface (free surfaces, grain boundaries, etc.), as experimentally observed in
the middle and late stages of the plastic deformation of metals under cyclic loading [4,29].
Furthermore, the conventional dislocation theory is intrinsically size-independent, and
thus, no characteristic length appears. This complicates the theoretical interpretation of the
characteristic length of the self-organized structures of dislocation ensembles that occur
spontaneously during the cyclic deformation of metals [30,31].

To overcome these difficulties, various nonclassical continuum theories of dislocations
have been developed in recent decades. These include theories of nonlocal elasticity [32,33],
gradient elasticity [34,35], the gauge-field approach [36,37], and other sophisticated nu-
merical approaches [38,39]. One notable feature of these nonstandard approaches is that
stress singularities at the dislocation-core are eliminated in the obtained solutions so that
the stress distribution becomes smooth and continuous without a divergence [33,40]. In
addition, all these approaches engender characteristic length scales defined by theory-
dependent parameters (e.g., nonlocality parameter, gradient coefficient, or related material
parameters), which correspond to the spatial dimension of dislocation-cores. These nonsin-
gular solutions turned out to be consistent with the numerical simulations of elastic fields
realized in actual materials [41,42] and those caused by uniformly moving dislocations in
an infinite body [43]. The practical significance of the nonsingular solutions has also been
confirmed in the study of stress fields near crack tips in isotropic elastic materials [44]. Yet,
most theoretical studies reported on the nonsingular problem so far have considered the
elastic field of dislocations existing in an infinitely large system, and only a few studies have
handled a finite or semi-infinite system endowed with a surface boundary. For microsized
and nanosized materials [4,30], the ratio of the surface area to sample volume is so high
that the effect of a surface boundary should be more prominent than that observed in
macroscale samples.

Against this backdrop, we were motivated to derive a theoretical representation of the
nonsingular stress field generated by an edge dislocation near the free surface of a semi-
infinitely large elastic medium. The Burgers vector of the edge dislocation was assumed to
be oblique to the free surface, considering that, in the actual plastic deformation process, the
slip plane of edge dislocations in metals is often oriented diagonally to the load direction.
Our analytical expression allows us to quantify the spatial modulation of the nonsingular
stress field of an edge dislocation in the presence of a zero-traction surface boundary. The
stress-field formula derived in this study provides a theoretical basis for analyzing the
behavior of dislocations accumulated near the free surface and the interaction between
adjacent dislocations on micrometric and nanometric scales [4,30].

2. Nonsingular Elastic Field in an Infinite Medium

We assume an infinitely long, straight edge dislocation that extends along the z-axis
in the Cartesian coordinate system. The dislocation-core is located at the origin of the x-y
coordinate plane. For convenience, we first consider an infinite elastic system without
boundaries, and then, a semi-infinite system, including a planar free surface with no
traction. Because the system spreads infinitely in the z direction, the edge dislocation
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produces a two-dimensional state of plane stress, as well as plane strain defined by uz = 0
and dui/dz = 0 for i = x, y, z, where ui is the i-directional displacement of an infinitesimal
element of the system.

It is known that any in-plane stress problem can be reduced to exploring an appropriate
biharmonic function [45], φ(x, y), the so-called Airy’s stress function, that satisfies∇4φ = 0.
Once the solution of φ(x, y) in a particular domain of interest is obtained under the given
boundary conditions, the stress components within the domain can be derived through
partial differentiation of φ(x, y) as

σxx(x, y) =
∂2φ

∂y2 , σyy(x, y) =
∂2φ

∂x2 , τxy(x, y) =
−∂2φ

∂x∂y
. (1)

The existing work based on the gradient elasticity theory [34,35] and the gauge field
theory [36,37] has unveiled that Airy’s stress function φ(x, y) associated with a nonsingular
stress field of an edge dislocation with the Burgers vector parallel to the x-axis obeys the
following inhomogeneous Helmholtz equation:

(∇2 − κ2)φ(x, y) = κ2Gy log
(√

x2 + y2
)

. (2)

Here, G is a material-dependent constant defined by

G =
µb

2π(1− ν∗)
, (3)

with the elastic shear modulus µ, the magnitude of Burgers vector b, and Poisson’s ratio ν∗.
The solution of Equation (2) is represented by (see Appendix A)

φ(x, y) = −2Gy

 log
(√

x2 + y2
)

2
+

1− κ
√

x2 + y2 · K1

(
κ
√

x2 + y2
)

κ2(x2 + y2)

. (4)

In Equation (4), Kn indicates the nth-order modified Bessel function of the second kind (see
Appendix B). By taking the partial derivative of φ(x, y) twice according to Equation (1), we
obtain the nonsingular solution of the stress field around the edge dislocation located at
the origin of an infinitely large elastic medium.

The factor κ in Equation (2), having dimension of inverse length, is decisive for
the elastic field obtained from φ(x, y) to be free of singularities at the dislocation-core
(i.e., the origin of the x–y coordinate plane). In the framework of the gauge field theory,
κ is defined by the coefficient of the constitutive relation between translational gauge-
invariant physical state quantities; κ determines the position and magnitude of the extrema
of the nonsingular stress field. In contrast, in the gradient elasticity theory, κ−2 serves
as the gradient coefficient appearing in the modified constitutive relation. It should be
emphasized that, in both theories, κ−1 is regarded as a characteristic length scale of the
system. In the limit of κ−1 → 0 (or equivalently, κ → ∞), the problem under consideration
falls into a conventional one suffering from the dislocation-core singularity.

It is noteworthy that the nonsingular solution of φ(x, y) given by Equation (4) covers
the classical counterpart suffered from a dislocation-core singularity, as confirmed by
considering the limiting behaviors of the modified Bessel function Kn(u). In general, Kn(u)
is a monotonic decreasing function with u. In particular, when n = 1, its asymptotic decays
for u� 1 and u� 1 are approximated by [46]

K1(u) '
√

π

2u
e−u (u� 1) and K1(u) '

1
u

(u� 1). (5)
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At
√

x2 + y2 � κ−1, therefore, the second term in the square brackets in Equation (4)
vanishes so that φ(x, y) reduces to the classical stress function for an edge dislocation:

φ(x, y) = −Gy log
(√

x2 + y2
)

.

3. Semi-Infinite Problem Solution
3.1. Outline of Strategy

The stress field in a semi-infinite plane with a free surface can be derived by consid-
ering the superposition of three Airy’s stress functions such that their sum satisfies the
traction-free boundary condition. To proceed with this argument, let us suppose that a
semi-infinitely large elastic medium spans in the region of x < 0, and an edge dislocation
is positioned at (x, y) = (−d, 0) with d > 0. If there were no free surfaces and, thus, the
elastic medium was infinitely large, the stress field caused by this edge dislocation could
have been derived from Airy’s stress function φ(re)(x, y) given by

φ(re)(x, y) = φ(x + d, y), (6)

where the superscript “re” indicates that the edge dislocation at x = −d actually exists
in the real elastic material under consideration. In Equation (6), φ(x + d, y) is a function
obtained by rewriting the argument x of φ(x, y) expressed by Equation (4) to x + d.

As a matter of course, the stress field derived from φ(re)(x, y) does not satisfy the
traction-free boundary conditions expressed by σxx = 0 and τxy = 0 along x = 0. Of these
two, the former requirement is accomplished by superposing another Airy’s stress function
defined by

φ(im)(x, y) = φ(x− d, y), (7)

onto φ(re)(x, y). The superscript “im” indicates a contribution from a virtual image disloca-
tion, which is assumed to be located at (x, y) = (+d, 0) (outside the free surface), but it is
not present in the real material. We also assume that the Burgers vector of the image dislo-
cation has the same magnitude as that of the real dislocation, whereas their orientations can
be different from each other. By tuning the relative orientations of the two Burgers vectors,
we can make the stress field obtained from the sum of φ(re)(x, y) + φ(im)(x, y) satisfy the
condition of σxx(x, y) = 0 at x = 0. Here, the contribution σ

(im)
xx (x, y) from the image

dislocation cancels out the contribution σ
(re)
xx (x, y) from the real dislocation at every point

along x = 0. This technique of canceling the stress component σxx at a given boundary is
called the image force method [47,48], which is a mechanical analog of the image charge
construction employed in electromagnetism [49].

The remaining requirement of τxy = 0 along x = 0 is met by introducing a third
“excess” Airy’s stress function, designated by φ(ex)(x, y), such that the two components of
the stress field derived from it, σ

(ex)
xx and τ

(ex)
xx , satisfy the following conditions at x = 0:

σ
(ex)
xx (0, y) = 0 and τ

(ex)
xy (0, y) = −

{
τ
(re)
xy (0, y) + τ

(im)
xy (0, y)

}
. (8)

The latter in Equation (8) indicates that the contribution from the excess Airy’s function
cancels out those from the two dislocations (real and image). If such φ(ex)(x, y) is found,
the sum of three Airy’s functions given by

φ(all)(x, y) = φ(re)(x, y) + φ(im)(x, y) + φ(ex)(x, y) (9)

satisfies both σ
(all)
xx (x, y) = 0 and τ

(all)
xy = 0 along x = 0. Thus, it can be used to obtain the

three stress components distributed over the semi-infinite plane at x < 0.
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3.2. Stress Due to the Real Dislocation at x = −d

In metals, edge dislocations that move in a slanted direction with respect to the free
surface play a vital role in plastic deformation [4,6,30]. Therefore, we developed an explicit
and tractable formula for the nonsingular stress field of a semi-infinite system to infer the
surface effect on the fundamental properties of the edge dislocations near the free surface.

To simplify the mathematical expressions, we henceforth use the following notations:

xp ≡ x + d, cp(x, y) ≡ κ
√
(x + d)2 + y2, (10)

where the subscript “p” indicates the plus sign “+” contained in the term x + d. Next, we
calculate the three components of the stress, σ

(re)
xx (x, y), σ

(re)
yy (x, y), and τ

(re)
xy (x, y), generated

by the edge dislocation located at (x, y) = (−d, 0). Herein, the Burgers vector is oriented in
the slanted direction by α with respect to the x-axis. The coordinate rotation of the stress
components is obtained by partial differentiation of φ(re)(x, y) as

σ
(re)
xx (x, y) = G

4χ
[1]
xx + c2

pχ
[2]
xx + 2c2

pK0(cp)χ
[3]
xx + 2cpK1(cp)χ

[4]
xx

c2
p

(
x2

p + y2
)2 , (11)

with

χ
[1]
xx = xp

(
x2

p − 3y2
)

sin α + y
(

3x2
p − y2

)
cos α, (12)

χ
[2]
xx = −xp

(
x2

p − y2
)

sin α− y
(

3x2
p + y2

)
cos α, (13)

χ
[3]
xx = −χ

[1]
xx , (14)

χ
[4]
xx = −2χ

[1]
xx + c2

py2(xp sin α + y cos α
)
, (15)

and

σ
(re)
yy (x, y) = G

4χ
[1]
yy + c2

pχ
[2]
yy + 2c2

pK0(cp)χ
[3]
yy + 2cpK1(cp)χ

[4]
yy

c2
p

(
x2

p + y2
)2 , (16)

with

χ
[1]
yy = −xp

(
x2

p − 3y2
)

sin α− y
(

3x2
p − y2

)
cos α

(
= −χ

[1]
xx

)
, (17)

χ
[2]
yy = −xp

(
x2

p + 3y2
)

sin α + y
(

x2
p − y2

)
cos α, (18)

χ
[3]
yy = −χ

[1]
yy , (19)

χ
[4]
yy = −2χ

[1]
yy + c2

px2
p
(
xp sin α + y cos α

)
, (20)

and

τ
(re)
xy (x, y) = G

4χ
[1]
xy + c2

pχ
[2]
xy + 2c2

pK0
(
cp
)
χ
[3]
xy + 2cpK1(cp)χ

[4]
xy

c2
p

(
x2

p + y2
)2 , (21)
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with

χ
[1]
xy = y

(
3x2

p − y2
)

sin α− xp

(
x2

p − 3y2
)

cos α, (22)

χ
[2]
xy =

(
x2

p − y2
)(
−y sin α + xp cos α

)
, (23)

χ
[3]
xy = −χ

[1]
xy , (24)

χ
[4]
xy = −2χ

[1]
xy + c2

p
(
−xpy

)(
xp sin α + y cos α

)
. (25)

Note that the three expressions in Equations (11), (16) and (21), have the same func-
tional form, whereas the definitions of χ

[k]
ij (i, j = x or y, 1 ≤ k ≤ 4) are different

depending on the components. It also should be noted that, at sufficiently far distances
from the dislocation-core (i.e., at (x− d)2 + y2 � κ−2), only the term proportional to χ

[2]
ij

remains non-negligible. Hence, the three components are reduced to the classical counter-
part. These two noteworthy facts hold true for the stress components associated with the
image dislocation, which will be described in the next subsection.

3.3. Stress Due to the Image Dislocation at x = +d

The three components of the stress generated by the image edge dislocation at
(x, y) = (+d, 0), denoted by σ

(im)
xx (x, y), σ

(im)
yy (x, y), and τ

(im)
xy (x, y), can be obtained by

the variable transformation for all the mathematical expressions regarding the real disloca-
tion counterparts given in the previous subsection. Once they are rewritten as G → −G,
α→ β, and x + d→ x− d, we obtain the expressions of the stress component of the image
dislocation drawn in Figure 1.

Z
e
ro
-tra

c
tio
n
s
u
rfa
c
e

 

!

Elastic

medium

  

!
Image
dislocation

Real
dislocation

"
#

"

Figure 1. Real edge dislocation (left) existing inside a semi-infinite elastic medium and image edge
dislocation (right) virtually introduced for convention. The Burgers vectors of the two dislocations
are assumed to be oblique relative to the x-axis at angles α and β, respectively.

By setting the slanted angles to α = θ and β = −θ, it is easily proven that, at x = 0, the
obtained expressions of σ

(re)
xx and σ

(im)
xx cancel each other out. This cancellation means that

the virtually introduced image dislocation makes it possible to eliminate the σxx component
at the surface, on which no traction force must be present.
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3.4. Sum of the Shear Stress Components at a Free Surface

For later use in the derivation of the excess Airy function φ(ex), we now compute the
sum of the two shear components of the two above-mentioned dislocations along the line
of x = 0, denoted by τ

(re)
xy (0, y) + τ

(im)
xy (0, y). Using the notation of

c0(y) = κ
√

y2 + d2, (26)

the sum of the shear components is rewritten as

τ
(re)
xy (0, y) + τ

(im)
xy (0, y) = 2G

4ω[1] + c2
0ω[2] + 2c2

0K0(c0)ω
[3] + 2c0K1(c0)ω

[4]

c2
0(y

2 + d2)
2 , (27)

with

ω[1] = −y
(

y2 − 3d2
)

sin θ + d
(

3y2 − d2
)

cos θ, (28)

ω[2] =
(

y2 − d2
)
(y sin θ − d cos θ), (29)

ω[3] = −ω[1], (30)

ω[4] = −2ω[1] + c2
0(−dy)(d sin θ − y cos θ). (31)

In the limit of c0 → ∞, the right-hand side of Equation (27) is reduced to

2G
(
y2 − d2)(y sin θ − d cos θ)

(y2 + d2)
2 , (32)

which agrees with the counterpart obtained by the classical dislocation theory.

3.5. Stress from Excess Airy’s Function

For now, we have successfully derived the nonsingular stress components associated
with the real and image dislocations that satisfy one of the two free surface conditions,
i.e., σxx(0, y) = 0. In order to make another remaining component τxy(0, y) be zero keeping
σxx(0, y) = 0, we now consider the definition of excess Airy’s function φ(ex)(x, y).

The two stress components, σ
(ex)
xx (x, y) and τ

(ex)
xy (x, y), associated with φ(ex) must

satisfy the following relations:
σ
(ex)
xx (0, y) = 0, (33)

and

τ
(ex)
xy (0, y) = −2G

4ω[1] + c2
0ω[2] + 2c2

0K0(c0)ω
[3] + 2c0K1(c0)ω

[4]

c2
0(y

2 + d2)
2 . (34)

The solution satisfying the former condition can be derived by the separation of
variables method, signified by φ(ex)(x, y) = X(x)Y(y) (see Appendix C). A straightforward
calculation leads to the conclusion that the general solution of φ(ex)(x, y) that satisfies
σ
(ex)
xx (0, y) = 0 is

φ(ex)(x, y) =
∫ ∞

0
a1(k)xekx sin ky dk +

∫ ∞

0
a2(k)xekx cos ky dk, (35)

where a1(k) and a2(k) are k-dependent coefficients. Its partial differentiations according to
Equation (1) yield the stress components associated with φ(ex)(x, y):
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σ
(ex)
xx (x,y) = Is,1(−kx; x, y) + Ic,2(−kx; x, y), (36)

σ
(ex)
yy (x,y) = Is,1(2+kx; x, y) + Ic,2(2+kx; x, y), (37)

τ
(ex)
xy (x,y) = Is,2(1+kx; x, y) + Ic,1(−1−kx; x, y), (38)

where

Is,i(u; x, y) =
∫ ∞

0
u kai(k) ekx sin ky dk, (39)

Ic,i(u; x, y) =
∫ ∞

0
u kai(k) ekx cos ky dk, (40)

with i = 1 or 2.
The remaining task is to find the k-dependences of a1(k) and a2(k) that suffice for

τ
(ex)
xy (0, y) to cancel the shear stress contribution of Equation (27) from the real and im-

age dislocations. From Equations (34) and (38), this requirement regarding τ
(ex)
xy (0, y) is

expressed as

Is,2(1; 0, y) + Ic,1(−1; 0, y)=−2G
4ω[1] + c2

0ω[2] + 2c2
0K0(c0)ω

[3] + 2c0K1(c0)ω
[4]

c2
0(y

2 + d2)
2 , (41)

with the definitions of c0(y) and ω[j](y, θ) (j = 1, 2, 3, 4) given by Equations (26) and (29)–(31),
respectively. We then apply the inverse cosine and sine Fourier transforms to both sides of
Equation (41), in which the integrations are performed using Cauchy’s residue theorem,
which is a powerful tool for evaluating real improper integrals (from −∞ to ∞) of analytic
functions. As a result of the calculation, we obtain the following solution:

ka1(k) = 2G
(

kd− 2k2

κ2

)
e−kd cos θ +

4G
π

∫ ∞

−∞
K(y, θ) cos ky dy, (42)

ka2(k) = 2G
(

kd− 1− 2k2

κ2

)
e−kd sin θ − 4G

π

∫ ∞

−∞
K(y, θ) sin ky dy. (43)

with

K(y, θ) =
c2

0K0(c0)ω
[3] + c0K1(c0)ω

[4]

c2
0(y

2 + d2)
2 , c0 = κ

√
y2 + d2. (44)

The integrals in Equations (42) and (43) cannot be solved analytically owing to the pres-
ence of K0 and K1. Therefore, we used numerical integration to derive the k-dependences
of the coefficients ka1(k) and ka2(k). Once ka1(k) and ka2(k) are numerically obtained, the
spatial distribution of the stress components, σ

(ex)
xx (x,y), σ

(ex)
yy (x,y), and τ

(ex)
xy (x,y), can be

computed using Equations (36)–(40). Eventually, we obtain the nonsingular stress field of
the edge dislocation in the infinitely large system with a traction-free planar surface.

4. Numerical Results
4.1. Nonsingular Stress Field of an Edge Dislocation

Figure 2 shows the contour plots of the nonsingular stress distribution in a semi-
infinite elastic medium depicted in Figure 1. The panels (a)–(c) show the component of
σxx; (d)–(f) show σyy; (g)–(i) show τxy. The Burgers vector orientation is fixed to be parallel
to the x-axis. The distances from the free surface to the dislocation-core measured by κd
(i.e., the ratio of d to the characteristic length scale κ−1) are shifted as κd = 8.0, 4.0, and 2.0,
from left to right in the figure.
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(b) sxx for kd=4.0, q=0
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(d) syy for kd=8.0, q=0

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

-8

-6

-4

-2

0

2

4

6

8

ky

kx

(e) syy for kd=4.0, q=0
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(h) txy for kd=4.0, q=0
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Figure 2. Nonsingular stress fields around a single edge dislocation positioned at (x, y) = (−d, 0)
with various values of d. For all the plots, θ = 0 is fixed, indicating that the Burgers vector of the dislo-
cation is assumed to be parallel to the x-axis. Upper row: (a–c) σxx(x, y). Middle row: (d–f) σyy(x, y).
Bottom row: (g–i) τxy(x, y). The units of stress and length scales are set to be µκb/2(1− ν∗) and
κ−1, respectively.

When κd = 8.0, the profiles of the stress distribution are fairly close to those realized
in an infinitely large system with no boundary, in particular for the components of σxx and
τxy. The profile of σxx in Figure 2a is close to a figure-eight-shaped one, endowed with
the inversion symmetry with respect to the x-axis. The profile of τxy(x, y) in Figure 2g
also exhibits a multipolar symmetry, analogous to the infinite system. An exception is the
profile of σxy, where strong amplitude stresses occur near the free surface (all but y = 0),
even though the dislocation is far from the surface.

As the dislocation approaches the surface, the stress field distribution gradually
deviates from that in the infinite system. The area with a high stress magnitude gradually
decreases with decreasing κd, indicating that the presence of the free surface suppresses the
near-surface field. However, regardless of the proximity of the dislocation to the surface,
the divergence near the dislocation-core that occurs in the classical theory does not occur
here. The stress field derived in this work is always smooth and continuous, differing
from the stress field derived from the classical theory, wherein the upward and downward
peak magnitudes diverge infinitely, resulting in the field discontinuity at y = 0. The
disappearance of the singularity in our results can be visually observed in the 3D plot
presented in Figure 3, where the component σxx under the settings of κd = 4.0 and θ = 0
(the same as in Figure 2b) is plotted as an example.
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Figure 3. Three-dimensional plot of σxx for the case of κd = 4.0 and θ = 0, which is shown in
Figure 2b. The unit of stress is µκb/2(1− ν∗). The smoothness and continuity in the stress field with
no singularity near the dislocation-core can be visually confirmed.

Figure 4 depicts contour maps, which decompose the three constituent elements of
the shear component, τ

(re)
xy , τ

(im)
xy , and τ

(ex)
xy , under the settings of κd = 4.0 and θ = 0.

The superposition of the three contour plots reproduces Figure 2h. The stress distribution
drawn by τ

(re)
xy would have been realized by the edge dislocation at x = −d if there was

no surface boundary at x = 0; thus, the system was infinitely large. Similarly, the contour
diagram shown by τ

(im)
xy is the stress field created by the (image) dislocation at x = d if the

surface boundary does not exist. The third element, τ
(ex)
xy , is a compensating element so

that the sum of the shear stress contributions from the first two elements becomes zero at
the surface boundary. In fact, for the case shown in Figure 4, the large negative shear stress
of τ

(ex)
xy within the region near the origin compensates for the large positive shear stress

derived from the sum of the other two elements, τ
(re)
xy + τ

(im)
xy in the same region. It should

be emphasized that all three elements are smooth and continuous, free from singularities
near the dislocation-core.
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Figure 4. Contour diagram decomposing the contributions from (a) τ
(re)
xy , (b) τ

(im)
xy , and (c) τ

(ex)
xy

to τ
(all)
xy for the case of κd = 4.0 and θ = 0, which is shown in Figure 2h. The unit of stress is

µκb/2(1− ν∗).
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The above-mentioned facts are valid even if we set the Burgers vector to a different
orientation from the x-axis. Figure 5 shows the case of θ = π/4, in which the Burgers
vector is oblique diagonally to the free surface. Again, the obtained stress fields are free
from singularities, for any choice of κd and θ.
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(b) sxx for kd=4.0, q=p/4
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(h) txy for kd=4.0, q=p/4
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Figure 5. Nonsingular stress fields of an edge dislocation at (x, y) = (−d, 0) with the angle θ = π/4
between the Burgers vector and the x-axis. Upper row: (a–c) σxx(x, y). Middle row: (d–f) σyy(x, y).
Bottom row: (g–i) τxy(x, y). The units of stress and length scales are the same as in Figure 2.

As previously mentioned, only component σyy can have a finite magnitude at the
traction-free surface at x = 0. Figure 6 shows the spatial distribution of the stress component
σyy(0, y) along the free surface of x = 0. The closer the dislocation is to the surface, the
sharper are the peaks near y = 0. As is clear from Figure 6, the regions with strong σyy
components do not disappear and remain, even if the dislocations are far away from the
free surface. This result can be said to be a manifestation of the long-range interaction
nature between dislocations and free surfaces.
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Figure 6. Spatial distribution of the stress component σyy(0, y) along the free surface of x = 0. The
closer the dislocation is to the surface, the sharper are the peaks near y = 0. The relative angle of the
Burgers vector to the normal of the free surface is set to (a) θ = 0 and (b) θ = π/4.

4.2. Spatial Field Modulation Induced by the Free Surface

In order to estimate the magnitude of spatial modulation in the stress field caused
by the presence of the zero-traction surface, we use the concept of the L2-norm of the
function [50]. In general, the L2-norm of a function f (x, y), denoted by ‖ f ‖2, is defined by

‖ f ‖2 ≡
{∫ ∞

−∞
dx
∫ ∞

−∞
dy| f (x, y)|2

} 1
2
. (45)

This quantity can be regarded as a generalization of the length of a vector x = (x1, x2, . . . , xn),
in an n-dimensional space:

|x| =
(

n

∑
j=1

x2
j

) 1
2

. (46)

Using this analogy, the distance between two functions f (x, y) and g(x, y) is measured by
the L2-norm of ‖ f − g‖2, which quantifies the deviation of the spatial distribution of f (x, y)
from that of g(x, y). Based on the discussion, we calculated the following three quantities:

Sxx =
‖σxx − σ

(re)
xx ‖2

‖σ(re)
xx ‖2

, Syy =
‖σxy − σ

(re)
xy ‖2

‖σ(re)
xy ‖2

, Txy =
‖τxy − τ

(re)
xy ‖2

‖τ(re)
xy ‖2

, (47)

in all of which the denominator takes the role of “unit length” for normalization.
Figure 7 shows the results of Sxx, Syy, and Txy for the cases of θ = 0 and π/4. As

can be seen from the figure, the L2-norm curves exhibit crossover behavior across κd = 1.
When the dislocation is close to the surface (d � κ−1), the L2-norms are nearly constant.
This indicates that the norm value does not change significantly because the surface effect
is already sufficiently strong even if the distance from the dislocation to the surface changes
slightly. In contrast, when the dislocation is far from the surface (d � κ−1), the norm
decreases in a logarithmic manner. This logarithmic heavy-tail decay in the norm represents
again the long-range nature of the dislocation-to-surface interaction.
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Figure 7. L2-norm of the stress distribution from those produced by the real edge dislocation; see
Equation (47) for the definitions of the L2-norm. (a) θ = 0, (b) θ = π/4.

5. Discussion

In general, the modified Bessel functions of the second order, Kn(u), are difficult to
manipulate in an analytic manner because they cannot be expressed in a closed form.
However, if the value of the variable u is not less than 1, the following approximation
formula holds for the cases of n = 0 and n = 1:

K0(u) '
√

π

2u
e−u
(

1− 1
8u

)
. (48)

uK1(u) '
√

πu
2

e−u
(

1 +
3

8u

)
. (49)

Therefore, when considering the case where the dislocation-core is located farther than the
characteristic length κ−1 from the free surface at x = 0, the functions K0 and K1 involved
in the present study can be approximated by Equations (48) and (49), respectively. This
approximation will facilitate the analytical treatment of Airy’s stress functions and the
resulting stress fields in the systems under study.

Figure 8 visually shows the high accuracy of this approximate expression. It shows
the y-dependences of the functions:

K0(κ
√

y2 + d2) and κ
√

y2 + d2K1(κ
√

y2 + d2), (50)

both of which play an important role in the formulation of the present nonsingular stress
field. Clearly, in the settings of κd = 2.0 and 4.0, these functions agree quite well with the
approximation for all y values, as drawn by dotted curves. The accuracy of the approx-
imation increases as the value of κd increases. In addition, these functions exhibit large
values only in a limited area near the origin (i.e., y = 0), showing a single peak at y = 0
and decaying sharply as they move away from y = 0. Such a localization property, as
well as the high accuracy of the approximation formula of the modified Bessel functions
for κd > 1 are useful in situations where simple mathematical expressions can facilitate
understanding of the process under study.
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Figure 8. Symmetric peak of K0(u) and uK1(u) around the point of y = 0 (solid curve). The variable
u is defined by u = κ

√
y2 + d2. Approximated curves, given by Equations (48) and (49), are also

plotted by dotted curves. The edge dislocation is assumed to be located at (x, y) = (−d, 0) with
(a) d = 2.0 and (b) d = 4.0.

6. Concluding Remark

We developed an explicit formula of the nonsingular stress distribution around an
edge dislocation near the traction-free surface. Our formula is applicable to any value of
the distance from the free surface to the dislocation center and for any orientation of the
Burgers vector of the edge dislocation. The formulas allow us to evaluate the impact of the
free surface on the interior stress field with high accuracy without the singularity problem
that occurs at the dislocation-core in existing theories.

In this study, we only considered the stress field of single edge dislocations that exist
alone, with a particular emphasis on the explicit and tractable mathematical expressions.
We believe that an extension of our formulation from the single-dislocation system to
mutually interacting dislocations systems will provide a theoretical basis for accomplishing
singularity-free analysis of energetically stable configurations of multiple dislocations near
the surface boundary of nanometals. Another possible extension of this work is related
to the selection of boundary conditions. The main assumption used in this study was
that the boundary of the elastic medium was a free surface with a planar geometry. The
zero-traction conditions were expressed by σxx = 0 and τxy = 0 over the boundary surface
of x = 0. On the other hand, actual metal specimens are often surface-treated; to deal
with the latter case, appropriate boundary conditions different from those above need to
be applied in theoretical analyses. Given the generality of the formulation used in this
study, it can be extended to apply to the latter systems by replacing the imposed boundary
conditions with appropriate ones; this issue will be considered in the near future.
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Appendix A. Solution Method of Inhomogeneous Helmholtz Equation

The inhomogeneous Helmholtz Equation (2) is solved by substituting it with the
ansatz solution of [36]:

φ(x, y) = −Gy log
√

x2 + y2 + f1(x, y). (A1)

We then have (
∇2 − κ2

)
f1(x, y) = 2G ∂

∂y
log
√

x2 + y2. (A2)

To evaluate f1(x, y), we introduce f2(x, y) using the relation

f1(x, y) = 2G ∂

∂y
f2(x, y). (A3)

From Equations (A2) and (A3), we have(
∇2 − κ2

)
f2(x, y) = log

√
x2 + y2, (A4)

or equivalently, in a polar coordinate expression as(
∇2 − κ2

)
f2(r, θ) = log r. (A5)

We now remind that K0(u) is a solution of the following differential equation:

d2 f (u)
du2 +

1
u

d f (u)
du

− f (u) = 0. (A6)

Comparing the latter two equations, we obtain

f2(x, y) = − 1
κ2

{
log
√

x2 + y2 + K0

(
κ
√

x2 + y2
)}

(A7)

Finally, by summarizing the results of Equations (A1), (A3) and (A7), we obtain the solution
φ(x, y) of the original inhomogeneous Helmholtz equation, as shown in Equation (4).

Appendix B. Properties of the Modified Bessel Function Kn(u)

The n-th-order modified Bessel function of the second kind, denoted by Kn(x), is
defined by one of the solutions to the modified Bessel differential equation:

u2 d2 f
du2 + u

d f
du
− (u2 + n2) f = 0. (A8)

The function Kn(u) is an important special function used in mathematics and physics; in
the last few years, it has also been actively used in the fields of biometrics [51,52] and
machine learning [53], in particular in association with the normal inverse Gaussian-type
probability distribution [54].

The sum rule for Kn(u) is

Kn(u) = (−1)n+1 In(u) log
u
2

+
(−1)n

2

∞

∑
p=0

1
p!(n + p)!

(u
2

)2p+n[
ψ(p + 1) + ψ(n + p + 1)

]
(A9)

+
1− δn,0

2

n−1

∑
p=0

(−1)p (n− p− 1)!
p!

(u
2

)2p−n
,
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where the function In(x) appearing in the first term on the right side is called the n-th-order
modified Bessel function of the first order, which is defined by

In(u) =
(u

2

)n ∞

∑
p=0

1
p!(n + p)!

(u
2

)2p
. (A10)

In Equation (A10), δi,j is Kronecker’s delta and ψ(n) is the digamma function defined by

ψ(n) = −γ + (1− δn,1)
n−1

∑
j=1

1
j

(n ≥ 1), (A11)

with γ being Euler’s constant:

γ = lim
n→∞

(
n

∑
j=1

1
j
− log n

)
' 0.57721. (A12)

The derivative of Kn(u) with respect to u follows the recurrence formula:

dKn(u)
du

= −n
u

Kn(u)− Kn−1(u) =
n
u

Kn(u)− Kn+1(u). (A13)

More generally, it is known that(
1
u

d
du

)k[
xnKn(u)

]
= (−1)kxn−kKn−k(u). (A14)

The formulae imply the following relation between adjacent trinomials:

Kn+1(u)−
2n
u

Kn(u)− Kn−1(u) = 0. (A15)

Appendix C. Method of the Variable Separation

In Appendix C, we derive a solution for φ(ex)(x, y), given by Equation (35). This
solution satisfies both the conditions of Equations (33) and (34). First, we hypothesize that
such a solution can be obtained using variable separation:

φ(ex)(x, y) = X(x)Y(y). (A16)

Because any Airy’s stress function obeys the biharmonic relation of ∇4φ(ex)(x, y) = 0, the
two functions X(x) and Y(y) must satisfy

∂4X
∂x4 +

2
Y

∂2X
∂x2

∂2Y
∂y2 +

X
Y

∂4Y
∂y4 = 0, (A17)

which implies that the two terms:

2
Y

∂2Y
∂y2 and

1
Y

∂4Y
∂y4 (A18)

are constants (i.e., independent of y). If the first term in Equation (A18) is set to be equal to
constant −2k2 with k > 0, Y(y) becomes

Y(y) = a∗1 sin ky + a∗2 cos ky, (A19)
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with appropriate constants a∗1 and a∗2 . Substituting Equation (A19) into (A17), we have

∂4X
∂x4 − 2k2 ∂2X

∂x2 + k4X = 0, (A20)

the solutions of which are

X(x) = (a∗3 + a∗4 x)ekx + (a∗5 + a∗6 x)e−kx (k > 0). (A21)

As the stress field produced within the elastic medium far from the free surface should
converge to zero, X(x) must vanish at the limit of x → −∞, which implies that a∗5 = a∗6 = 0.

In addition, the traction-free condition at the surface, σ
(ex)
xx (0, y) = 0, is satisfied only if

X(x)
∂2Y(y)

∂y2 = 0 (A22)

at x = 0. Therefore, X(x) should vanish at x = 0, implying that a∗3 = 0. As a consequence,
only the term attached to a∗4 in Equation (A21) remains, and we obtain the solution of
φ(ex)(x, y) as given by Equation (35).
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