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Abstract. A new approach to local analysis of nonsmooth mappings from one
Banach space into another is suggested. The approach is essentially based on the
use of set-valued mappings of a special kind, called fans, for local approximation.
Convex sets of linear operators provide an example of fans. Generally, fans can be
considered a natural set-valued extension of linear operators. The first part of the
paper presents a study of fans; the second is devoted to calculus and includes
extensions of the main theorems of classical calculus.

Introduction. The idea to extend the framework of differential calculus so as to
cover more general classes of functions and mappings is by no means new.
Basically, it was the underlying idea for the differentiation theory connected with
the Lebesgue integral and for the theory of distributions. Both theories deal
essentially with what could be called nonlocal aspects of the calculus centered
around the Newton-Leibniz and integration by parts formulae. The notion of the
value of a derivative at a given point makes no sense in either of them.

Nonsmooth analysis appeared in the 1970's just to carry out an extension of the
local aspect of the calculus connected with the idea of (linear) approximation of a
mapping about a given point. Certain separate ideas and results appeared of course
much earlier (one could recall the Dini numbers for instance) but a systematic
study began during the last decade when the natural development of the optimiza-
tion theory made the need for such an extension very acute and, as often happens,
practical and heuristic computations were initiated before an adequate theory
appeared (see [52] and references therein).

It is not surprising that the main impulse came from the optimization theory
which has natural mechanisms generating nonsmoothness. But as a result, most of
the efforts were applied to obtain more and more refined conditions for extrema
with less interest in those aspects of analysis that are less immediately connected
with this purpose. The only exception was perhaps the generalized gradients of
Clarke whose analytical virtues were recognized from the beginning ([8]-[12], [17],
[20]-[24], [26], [36], [38], [45], [46], [49], [50], [53], [61] and others).

The original motivation for the present research was just to find a satisfactory
extension of Clarke's approach to mappings in infinite-dimensional spaces and the
first version of this paper (see [25] for a summary of results) was written completely
along these lines. Later, however, it became more and more difficult to ignore a
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2 A. D. IOFFE

very important circumstance, namely that the approximation that generalized
gradients provide for is rather rough and that certain other devices, less flexible
analytically and less convenient to define constructively as they are, give sometimes
more subtle results ([18], [42], [43], [57], [60]).

As a result, this paper appears to be an attempt to develop a general outlook on
nonsmooth analysis, on the one hand, and, on the other hand, it presents a more
detailed study of certain special classes of approximating objects (within the
framework of this general outlook).

A general class of objects chosen here to be the apparatus for local approxima-
tion of nonsmooth mappings is formed by closed-valued multifunctions which are
positively homogeneous of degree one. The most important point is that, unlike in
the classical calculus, it is not a single object that we consider a "derivative", but
rather a net of objects called prederivatives which provide a mapping with an ever
finer approximation about the point. What would be natural to call derivatives are
limit objects of nets and they rarely exist in the general case. (This philosophy is
not new. It was clearly expressed by Warga [56] and, for a somewhat different
purpose, by Levitin-Miljutin-Osmolovskii [62].)

Most approaches to nonsmooth analysis can be considered special methods to
construct prederivatives or define them axiomatically (as in [19]). We shall study
here several new classes of prederivatives, among them an extension of Clarke's
generalized gradients and Jacobians to an infinite-dimensional setting.

The crucial question we tried to answer while endeavouring to carry out such an
extension was: do convex sets of linear operators provide a good approximation for
Lipschitz mappings in Banach spaces? The answer proved to be negative and the
attempts to find a substitute resulted in introducing convex-valued mappings of a
special kind called fans. (I cannot avoid mentioning a funny coincidence: Halkin
[19] used the same, not very scientifically sounding, word for different approximat-
ing objects which were compact sets of linear operators. Geometrically, the graph
of any homogeneous set-valued mapping resembles a deployed fan. This analogy
becomes even more noticeable if the graph is decomposed into graphs of linear
operators.)

According to the now prevailing terminology, fans should be defined as convex-
valued sublinear multifunctions. Linear operators and convex sets of linear opera-
tors are examples of fans. And generally, there is a surprising parallelism between
properties of fans and linear operators which could be traced throughout the paper.

(It would be wrong to assert that nothing like fans appeared earlier. I know of
one work [51] where similar objects were introduced in connection with the
Hahn-Banach extension theorem. As a matter of fact, fans seem to be a very
natural language for anything connected with extensions of linear operators-see §7
here and also [27], [28]. But it was probably Rockafellar who first considered them
as early as in the middle 1960's as antipodes for convex processes studied in [48].
His results remained unpublished because, as I understand, no possible application
was known at that time.)
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Certain results on fans are collected in Chapter 1. I have been trying to
concentrate upon those properties of fans that could be further applied to non-
smooth analysis. Many interesting questions remained, however, outside this scope.

The second chapter is devoted to the differential calculus. It begins with
surveying in §8 certain definitions and results about various tangent and normal
cones. Main definitions are gathered in §9. Here general notions of a prederivative,
a strict prederivative (with the word "strict" having a meaning close to that in the
classical calculus [7]) and a derivative are introduced as well as three special classes
of them. In particular, fans appear naturally as, in a sense, a base of the net of all
strict prederivatives. The other two classes relate to plus-derivatives like those
considered in [45] and to derivatives introduced by Mordukhovich [42] in the same
way as fan-prederivatives correspond to generalized gradients of Clarke. §10 is
mainly devoted to describing situations in which the graph of a strict prederivative
can be decomposed into graphs of linear operators. To a large extent, this happens
when the local behaviour of a Lipschitz mapping can be described by a set of linear
operators. In §11 we consider various surjection theorems and their corollaries
(Ljusternik-type theorems, inverse mapping theorems, implicit function theorems).
They seem to be the first infinite-dimensional results which contain their classical
smooth counterparts in the most general form. The final 12th section contains
several examples which have been added mainly to demonstrate that calculations
involving fans are almost as easy as with the usual derivatives of smooth mappings.

Structurally, the differentiation theory using fans is very similar to the classical
calculus. As there, we have an independently defined approximation apparatus and
a device to transform properties of approximations into the corresponding proper-
ties of the mappings to be approximated. In the classical calculus this used to be
done with the help of various fixed point theorems, especially of the contraction
mapping principle. In the nonsmooth case, this principle does not work. Instead we
have the variational principle of Ekeland [16] which proved to be completely
adequate to the situation.

We deal here only with single-valued mappings and refer to [3], [15], [41] for
differentiation results concerning set-valued mappings. Some of what will be said
here can also be applied to them. But so far a satisfactory version of the techniques
we use here which would be completely applicable to set-valued mappings has not
been found.

This paper, as well as some of my earlier papers, has been prepared for
publication in rather unusual circumstances with normal connection between the
publisher and the author almost completely broken. The patience and goodwill of
the Transactions are thankfully acknowledged. I doubt that the paper could appear
at all without the generous cooperation of Professor Terry Rockafellar and Profes-
sor Jack Warga which included reading, correcting errors, inserting changes and
proofreading. I have no words to express my gratitude to them. I am also greatly
thankful to Professor Jean-Pierre Aubin for stimulating discussions on the subject
(by correspondence) and for constant friendly encouragement.
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4 A. D. IOFFE

Notation. X, Y, Z, if nothing else is said, are locally convex Hausdorff topologi-
cal vector spaces over reals;

X* is the space dual to X;
X*, X* are the strong and weak dual spaces;
<x*, x) is the canonical pairing between X and X*;
C is the closure of C;
conv C is the convex closure of C;
||jc|| is the norm in a Banach space X;
Ux, Bx are open and closed unit balls in a Banach space X;
U(x, r) is the open ball of radius r about x;
B(x, r) is the closed ball of radius r about x;
p(x, C) is the distance from the point x to C;
H(C, D) is the Hausdorff distance between C and D;
8*(x*, C) is the support function of C;
df(x) is the subdifferential of a convex function/at x.

1. Fans and bisublinear functions
1. Definitions and elementary properties. All set-valued mappings, if nothing is

added, are assumed closed-valued.
1.1. Definition. Let & be a set-valued mapping from X into Y. It is called

homogeneous if
(1.1.1)0 £0(0),
(1.1.2) â(Xx) = \&(x) for all x and A > 0.
It follows that £2(0) is a pointed cone. The sets dom £E = {x\&(x) ¥= 0} and

supp & = {x e dom &\&(x) t^ Y) will be called the domain and support of â.
A homogeneous set-valued mapping & will be called aprefan if
(1.1.3) all sets &(x) are convex.
A prefan & will be called a fan if
(1.1.4) â(x + u) c&(x) + &{u) for all x,u(E X.
1.2. Definition. Let & be a set-valued mapping from X into Y. The extended-

real-valued function

s&(y*, x) = ô*(y*, &(x)) = mp{Om,y>\y G <$(*)}
will be called the support function of &. As usual, we set sup 0 = -oo. Often, if this
does not cause any confusion, we omit the subscript &.

1.3. Definition. An extended-real-valued function f(x,y) on X X Y will be
called bisublinear if it is sublinear (i.e. convex and positively homogeneous of
degree one) in each variable.

1.4. Proposition. An extended-real-valued function s(y*, x) on Y* X X is the
support function of a fan & from X into Y if and only if it is a bisublinear function
such that s(y*, x) = -oo if x & dom & ands(-, x) is o(Y*, Y)-lower semicontinuous
and everywhere more than -oo if x 6 dom &. In this case

&(x) ={ye Y\s(y*,x) > (y*,y),Vy* S Y'}.

Proof. This is an elementary exercise in convex analysis [30], [48].
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nonsmooth analysis 5

1.5. Definition. Let L* c Y*, K c X be pointed convex cones. A fan & will be
called an L*-oriented fan supported on K if dom & = X, supp & = K and the
support function of & differs from infinity precisely on L* X K. The notion of
orientation will not be used in this paper except for examples in the next section.
But it is useful for fans with values in ordered spaces [27].

1.6. Definition. A homogeneous set-valued mapping is odd if &(-x) = -&(x)
for all x. This amounts to saying that &(Xx) = \&(x) for all A ¥= 0.

1.7. Proposition. A prefan & from X into Y is odd if and only if

s(y*, -x) = s(-y*, x)   for ally*, x.

Proof. This is a reformulation of a well-known property of support functions of
sets: 8*(y*, -C) = ô*(-y*, C).

Unlike the boundedness property introduced below, the oddness assumption
enters statements of rather few theorems here. But, as we shall see, all the most
important fans appear to be odd.

1.8. Definition. A homogeneous set-valued mapping 6£ from X into Y is
bounded if &(x) ¥= 0 for all x and for any neighbourhood V about the origin in Y
there is a neighbourhood U about the origin in X such that éE(x) c V whenever
x G U.

1.9. Definition. Let & be a fan with nonempty values. If s(y*, x) is a(X, X*)-
l.s.c. in x then the set-valued mapping &*(y*) = {x* G X*\s(y*, x) > <;c*, x},
Vx 6 1} is a fan from Y* into A'* which will be called the adjoint to &. If & is
L*-oriented and supported on K, then éE* is K-oûented and supported on L*.
Obviously, no adjoint can be in general associated with a prefan which is not a fan.

1.10. Proposition. Let & be a fan from X into Y. Assume that the adjoint fan â*
exists. Then (£* is weak* lower semicontinuous in the following sense: for any
v* G Y* and any weak* open set U c X* containing the origin, there is a weak*
open set V c Y* containing v* such that &*{v*) C &*(y*) + U for any y* G V.

Proof. Take xx, . . . , xn e v and e > 0 such that U(xu . . . , xn, e) =
{x*\ \(x*, x¡y\ < e, /'= 1, ...,«} c U. Since s(-, x) is weak* lower semicontinu-
ous, the set V = {y*\s(y*, ± x¡) > s(v*, ± x¡) — e, i = 1, . . ., n) is nonempty (it
contains v*) and open in the weak* topology.

Fix y* G V and jc* G &*(y*) and consider the function f(x) = s(y*, x) —
<x*, x). This function is everywhere finite, sublinear and weakly lower semicon-
tinuous. We have also/(±x,) > -e. Let z* G 3/(0) be such that <z*, ±x,> < -e
for any /' = 1, . . . , n. (Such a z* does exist. Indeed, consider two sets in X X R:
epi/= {(x, a)\a >/(*)}, the epigraph of/, and C = (conv{±x„ . . . , ±x„}), -e).
The first of them is closed, the second is compact and they do not meet each other.
Take a hyperplane separating these sets and use the fact that / is everywhere finite
which makes it impossible for the hyperplane to be vertical.) Then |<z*, ±x,)| < e
for all i and hence z* G U(xv . . . , xn, e).

On the other hand, / is the sum of two sublinear functions, one of which is
weakly l.s.c. and the other of which is linear and continuous. Therefore 8/(0) is the
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6 A. D. IOFFE

sum of the subdifferentials of the summands, i.e. 3/(0) = dxs(y*, 0)-x* which
means that there is w* G dxs(y*, 0) = &*(y*) such that x* = w* + z*. Hence
x* G â*(y*) + U(xv . . . , x„, e).

1.11. Proposition. // & is an odd fan and &* exists, then (£■* is also an odd fan.

Proof. This is obvious.

1.12. Proposition. Let & be a bounded fan from X into Y. Then s(y*, x) is
continuous in x for any y* G Y* and the set-valued mapping x —» &(x) is continuous
in the following sense: for any open V C X containing the origin there is an open set
U C X also containing the origin such that éB(x) C ¿t(x') + V whenever x — x' G
U.

Proof. Given y*, we can choose a neighbourhood U about the origin in X in
such a way that (y*,y} < 1 whenever^ G (£(x), x G U. Then s(y*, x) < 1 for
x G U. Hence s(y*, ■) is continuous on U (as a convex function bounded from
above on an open set [6]) and hence on all of X since 0 G U and s(y*, •) is
homogeneous.

Now if U is such that £E(x) c (1 — e) V for x G U, then, whenever x — x' G U,

#(x) c &(x') + &(x - x') c &(x') + (l-tt)V C éE(jc') + V.

1.13. Corollary. Any bounded fan from X into Y has an adjoint which is a
bounded fan from Y* into X* with a(X*, X)- compact values.

Proof. The existence of &* follows from 1.9. All sets â*(y*) are a(X*, A')-com-
pact as subdifferentials of continuous convex functions x -» s(y*, x) at the origin.

Thus only boundedness needs to be proved. Since all sets &(x) are bounded, the
function^* -» s(y*, x) is continuous on Y* for any x G X. Let e > 0 and

U{xx, . . . , x„, e) = {x* G A'*! \(x*, x,}\ < e, i = 1, . . . , n),

Q, - {y* G Y*\s(y*, x,) < l,s(y*, -*,-) < 1}.
The sets Q¡ are open in the strong topology of Y* and contain the origin. Thus so is
Q = n Qj and, whenever y* G eQ, we have @.*(y*) c {x*\ \(x*, x¡}\ <e, i =
1, ...,«} C t/(x„ . . . , x„, e).

1.14. Definition. In an obvious way, the notion of a bisublinear function can be
extended to the case of many variables. Namely, an extended-real-valued function
s(y*, . . . ,y*, X|, i..., xn) will be called apolysublinear function of type (k, n) if it is
sublinear in each variable. Most important for us are polysublinear functions of
type (1, n) which are naturally connected with set-valued mappings.

A set-valued mapping & from X" into Y will be called an n-fan if all sets
eE(x„ . . . , xn) are nonempty, convex and closed and the support function of &■ is a
polysublinear function of type (1, n). The notions of oddness and boundedness can
be easily extended to polyfans.

In this paper we shall deal only with 2-fans. Such a fan will be called symmetric if
&(xl, x2) = &(x2, xt). Clearly, a 2-fan is symmetric if and only if s(y*, x„ x-¿) =
s(y*, x2, x,) for all values of the variables.
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2. Exampies. In this section we shall show that the class of fans includes all
homogeneous objects of convex analysis: linear operators, convex sets of linear
operators, convex processes, sublinear operators. Later in §7 and Chapter 2 we
shall see that the class of fans is, in fact, much richer.

2.1. Fans generated by sets of linear operators. Any linear operator is a fan (from
all of X) and any fan whose values are singletons is a linear operator. This is
obvious.

More generally, let 31 be a convex weakly closed set of linear operators from X
into Y. Consider the set-valued mapping x -» é£(x) = {y G Y\y = Ax for some
A G SI). It is not difficult to see that & is a fan and that, moreover, in this case
&(x + u) c éE(x) + &(u).

We shall say that & is generated by 31. It is obvious that a fan generated by a set
of operators is odd.

The support function of ct,

s(y*, x) = sup{0*, Ax)\A G 31},
is both o(Y*, y>l.s.c. in y* and a(X, A'*)-l.s.c. in x so that & has an adjoint. A
simple calculation shows that the adjoint fan is defined as follows:

&*(y*) = {x* G X*\x* = A*y* foi some A G 31}.

Thus ($,* is generated by 31*, the set of operators adjoint to elements of 31.
In view of what has been said in the introduction, the problem of characterizing

fans generated by sets of operators is most important. We shall discuss it more
thoroughly in §7. A simple example of a fan not generated by a set of operators is
the following: let X = R2, let ev e2 be a basis in X, let y be a nonreflexive Banach
space, and let C, and C2 be two closed bounded subsets of Y whose sum is not
closed. Then we set

&(\ex + fie2) = ÀCj + fiC2.

2.2. Linear system. According to the terminology accepted in the system theory
[39], a linear system is a set-valued mapping £ from X into Y such that £(x) +
£(«) C £(x + m) and £(Ax) = A£(x) if A ¥= 0.

It is easy to see that £ is a linear system if and only if the second of the relations
above holds and there is a subspace L c Y such that £(x) = £(x) + L for every
x. Therefore we have actually £(x) + £(w) = £(x + u) and hence any linear
system with closed values is a fan with orientation defined by a certain o( Y*, in-
closed subspace L* c Y*. The support function of this fan is bilinear on L* X X;
hence the adjoint fan is defined by a linear mapping from L* into X*.

2.3. Restrictions of fans and convex processes. Given a fan & and a pointed cone
K c X, we can define the restriction <£K of & to K as the fan whose support
function is s(y*, x) + S(x, K), where S(x, K) is the indicator function of K, i.e. the
one equal to zero on K and + oo outside.

Clearly supp &K = (supp &) n K. If K° is the polar cone to K, then (if 0*
exists)

(&K)*(y*) = v(y') + K° ■
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8 A. D. IOFFE

In particular, if <£ is a bounded fan, then, as follows from 1.13,

(&K)*(y*) = &*(y*) + k°.

It follows that with every pointed convex cone K c X we can associate two fans
from K into X, the restrictions to K of the fans generated by the zero and identity
operators.

Convex processes introduced by Rockafellar [48] are by definition set-valued
mappings whose graphs are pointed convex cones. Therefore we can associate a fan
with every convex process, i.e., at least formally, any convex process can be
considered a fan. This reduction seems, however, to be somewhat artificial and it
may be that certain properties of convex processes cannot be naturally derived
from the general properties of fans. (The interrelation is similar to that between
convex functions and their epigraphs. Though the epigraph defines the convex
function completely, in most cases considering the function as such is much more
natural.)

2.4. Fans associated with sublinear operators. Let L be a closed convex cone in Y.
Denote by >- the partial ordering defined by this cone. A mapping P: X —* Y is
called ¿-sublinear if P(Xx) = AP(x) for A > 0 and P(x + u) < P(x) + P(u).

Let L* = {y* G Y*\(y*,y} > 0, Vy G L), and let an L-sublinear mapping P
from X into Y be given. Then the set-valued mapping

x -* ffi(jc) = {y G Y\y < P(x)}
is an L*-oriented fan from X into Y.

If y is a lattice ordered by L, then
&(x) =[-P(-x), P(x)] = {y\-P(-x) <y< P(x)}

is an odd fan and, more generally, if Q: X —» Y is superlinear (i.e. -Q is sublinear)
and ö(x) -< P(x) for all x, then S(x) = [Q(x), P(x)] = {y\Q(x) < y < P(x)} is a
fan.

Either of these three fans may fail to be generated by a set of linear operators (cf.
[13], [37]) unless the order defined by L is conditionally complete. We refer to [27],
[28] for further properties of fans associated with sublinear operators. It is ap-
propriate to mention here that certain extension problems for linear operators, say,
the norm preserving extension problem [44] or the majorized extension problem [5],
[55] can be formulated naturally and in a unified fashion in terms of fans.

3. Operations with prefans.
3.1. Definition. Homogeneous set-valued mappings and prefans can undergo

the same operations as other set-valued and convex-valued mappings respectively.
Namely, we define

the product \(£ of a homogeneous set-valued mapping & and A G R, A ¥= 0, by

(A#)(x) = Atf(x),
and set (0£)(x) = &(0) for all x;

the sum of homogeneous set-valued mappings & and <3J by

(d + %)(x) = ffi(x) + $(x) ;
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NONSMOOTH ANALYSIS 9

the Cartesian product of homogeneous set-valued mappings & and % (from X
into y and Z respectively) by

(& x <2>)(x) = &(x) X ®(x);
the ¿Arec/ sum of homogeneous set-valued mappings 0 and ® (from A1 and Y

respectively into Z) by

(&®<3>)(x,y)- &(x) + 9>(y);
the upper bound of prefans & and © (both from X into y) by

(fi V $)(*) = <»n^(Ä(x) u ®(x));
and the composition of prefans S and ® (from X into y and from Y into Z

respectively) by

(® o (£)(*) = ^nV{ U <8>(y)\y g éB(x)).

3.2. Proposition. We have

s\&(y*> x) = |À|js((i/g* A)>>*, x),       A 9* 0;
■Ss+aO'*. •*) = s&(y*> x) + s^(y*, x);

s&x®((y*> z*)> *) = %(.K*> x) + s%{z*, x);

**#»(**> (x,y)) = se(z*, x) + s^(z*,y);

««v«^*» x) = max{j4(^*, x), s9(y*, x)};

% o a(z*> *) = sup{i9(z*,.y)|>' G â(x)}.

If the prefans involved are bounded (odd) then so is the result of every operation; if in
addition they are fans, then the result is also a fan.

Proof. Elementary.

3.3. Proposition. For bounded fans, the following formulas hold:

(X&)* =X&*;        (& + %)* = &* + <$>*;
(& X <&)* m &*®%*; {Á ©$)* = &* X <&*;
(& V®)* = &* V®*;      (® • &)* = &* ° <£*.

Proof. All formulas are obvious except maybe the last one. To prove it, take
y* G <$>*(z*). Then sy,(z*, y) > (y*, y) for all .y G Y.

Hence, given any x G X, we have

sup{i9(z*,^)|>- G &(x)} > sup{(y*,y)\y G &(x)} = ss(y*,x).

This is true for any_y* G <3à *(z*). Therefore, in view of 3.2,

s&.. %.{z*, x) = sup{ia(.y*, x)\y* G ® *(z*)}

< supf-s^z*,^)^ G &{x)} = Jgj ! s(z*, x).

Repeating the same with ÍB * replaced by & and 7* by y, we obtain the opposite
inequality.
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4. The topological space '»(X, Y).
4.1. Definition. We denote by ^(X, Y) the collection of all bounded fans from

X into y. According to §3, ^(X, Y) is a semigroup with respect to summation, and
scalar multiplication is an external operation in ^(X, Y). It is easy to see that
W(X, Y) is a semigroup with reduction, that is to say, & + G = ft + C implies
& = © . In other words, W(X, Y) is a vector prespace according to the terminology
of Akilov and Kutateladze [1].

We begin with supplying ^î(X, Y) with "locally convex" topologies which will be
done precisely in the same manner as for spaces of linear operators.

4.2. Definition. Given a bounded set M c X and a neighbourhood V c Y
about the origin, we set

pMy(&, ft) = sup{K(>>*, x) - s^(y*, x)| |x G M,y* G Vo),

where Vo = {y* G Y*\(y*,y} < 1, Vy G V) is the polar of V.
We have pM<v(&, ft) < oo for all &, ft G ^(A", y). Indeed, take a neighbour-

hood U <z X about the origin such that £E(x) c V whenever x G U. Since Af is
bounded, there is A > 0 such that AM c U and after simple calculations we obtain
PmA®" 0) < Va- ft remains to note that

/V^éE, ft) < pMy(&, 0) + pM,K(ft, 0)

(here 0 denotes the zero fan).
It is easy to see that any pMV is a pseudometric on ^(X, Y), i.e. it is nonnegative

and
PmA&> S) = 0,        Pa,,k(#, ft) = PmA® . <£)>
p„,„(0, S) < pMiK(ÉE, ft) + pM>K(ft, e).

4.3. Proposition. Lei a be a family of bounded subsets of X which covers X and
contains finite unions. Let & be a base of neighbourhoods of the origin in Y (formed by
convex neighbourhoods). Then the family of pseudometrics pMV (M G a, V G #)
defines a locally convex Hausdorff topology in ^î(X, Y) which is compatible with the
structure of vector prespace in Sr(Ar, Y).

Proof. We need to show that
(a) for any <£ G <5(X, Y), M¡ G a, V¡ £ ê, i «■ 1,..., », there are M G a and

V G # such that

PmA&> •) > max Pm,v(&> ®)'       V® G f» y);

(b) for any distinct  &, ft G 5:(Ar, y),  there are M G a,   KG#  such that
p„A&> ®)>°;

(c) for any Ao > 0, (îo G f (A", y), M G a, F G fl, S > 0, there is e > 0 such
that |A - Aol < e, p„A&> @q)<e^ PMAm> *A) < S;

(d) for any 3^, ft0 G W(X, Y), M G a, V G t>, 5 > 0, there is e > 0 such that
PmA&> ^o) < e> <<W® . ®o)< « => Pa/.k(« + ®, ®x> + %)< »■

To prove (a), let us take M G a containing U M,- and V G # which is contained
in D  Pj; to prove (b), let us choose x G X and y* E. Y* such that s^y*, x) ¥=
s<$,(y*> x) and then take any M G a containing x and K G # whose polar contains
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nonsmooth analysis 11

an element positively proportional to_y*. The proof of (c) follows from the obvious
inequality

p„Ax&> W < *PmA&> ®o)+\X- WhíAGt» °)-
The proof of (d) is similar; one should only take 3.2 into account. It follows also
from 3.2 that pMV(&, ft) is a convex function in each argument (in an obvious
sense) and hence the topology defined by these pseudometrics is locally convex in
the sense that any bounded fan has a base of neighbourhoods in %(X, Y) formed
by convex sets.

4.4. Definition. In what follows, we shall consider topologies corresponding to a
being the collections of all finite sets, all compact sets and all bounded sets which,
as in the case of linear operators, will be called respectively the topologies of
pointwise convergence, compact convergence and bounded convergence.

We conclude the section by extending the uniform boundedness principle to
fans.

4.5. Definition. Let 31 be a family of bounded fans from X into Y. We shall say
that 31 is upper equicontinuous at x if for any neighbourhood V c Y about the
origin, there is a neighbourhood U c X about the origin such that

&(x + h) c &(x) + V,   for any h G U, & G 3t.
It is easy to see that 31 is upper equicontinuous at the origin iff for any V there is

a U such that s^y*, x) < 1, for all x G U, y* G Vo, â G 91.
If U can be chosen in such a way that also &(x) c &(x + h) + V, for any

h G U, & G 31, then we shall say that 3t is equicontinuous at x. This is the same as

\s&(y*, x) - s&(y*, x + A)| < 1,    for all A G U,y* G Vo, & G 31.
Finally, if for any given V the same U can be chosen for all x G X, we shall say

that 31 is uniformly upper equicontinuous (resp. equicontinuous).

4.6. Proposition. The following four properties are equivalent:
(a) 31 is upper equicontinuous at the origin;
(b) 31 is equicontinuous at the origin;
(c) 31 is uniformly upper equicontinuous;
(d) 31 is uniformly equicontinuous.

Proof. Clearly (d) => (c) => (b) => (a) so that it remains to prove the implication
(a)=»(d).

If 31 is upper equicontinuous at the origin, then for a given V c Y, we can
choose U c X such that &(x) c V/2 if x G U, & G 31. We can assume that
U = -U so that x — u G U and u — x G U simultaneously. In this case, for any
& G 31 we have

&(x) c &(u) + &(x - u) c &(u) + V/2 c &(u) + V.
The inclusion â(u) c #(x) + V can be verified similarly.

4.7. Theorem. Let 91 be a family of bounded fans from X into Y which is upper
equicontinuous at the origin. Then the restrictions on 31 of the topologies of pointwise
and compact convergence coincide.
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Proof. Given a neighbourhood V c Y about the origin and a compact M c X,
we have to show that for any e > 0 there is a finite set M' c A" such that

Pw,K(ft, ®) < Pm',k(®. ft) + e,   for all ft, ft G St.
Making use of 4.6, we can choose an open  U c X containing 0 such that
sap{\s^y*, x + A) - s¿y*, x)\ \y* G Vo, A G Í/} < e/2 for all x G X and ft G
91. Take a finite collection M' = {x„ . . . , x„} of points of A" such that Af c
U (x,. + U). Let M, = (x, + U) n Af. Then for any ft, ft G 91,

PmA&' ®) < max sup{|jÄ(^*, x) - s%(y*, x,)| |>>* G F°,x G M,}
i

+ max sup{|ía(^*, x,) - s*(y*, x,)| |j* G Vo]

+ max sup{|jft(.y*, x,) - s%(y*, x)| |>>* G Vo, x G A/,}

< pM,A&> ft) + «•

4.8. Theorem. Assume that X is a barrel space and 91 is a pointwise bounded family
of elements of ^î(X, Y). Then 9t is upper equicontinuous at the origin.

Pointwise boundedness means boundedness in the topology of pointwise conver-
gence, in other words, that for any x G X the set { U ft(x)|ft G 31} is bounded in
y. Observe that, according to the definition, any family of bounded fans which is
upper equicontinuous at the origin is bounded in every a-topology, in particular
pointwise bounded.

Proof. Fix a neighbourhood V c Y about the origin. Since any set B(x) =
{ U ft (x) | ft G 31} is bounded, the function

f{x) = sup{s&(y*, x)\y* G Vo, ft G 31}

= sup{(y*,y)\yeB(x),y*Œ Vo)

is everywhere finite. On the other hand, this function, being the upper bound of a
family of continuous sublinear functions, is convex and l.s.c. Since A" is a barrel
space, it follows that/is continuous. Then U = (x|/(x) < |} is open and contains
the origin. But x G U only if B(x) c V/2 c V.

5. Fans and prefans in Banach spaces.
5.1. Definition. Let X and Y be Banach spaces. For any prefan ft from X into

y we define the norm of ft by

||ft||=sup{||^|||^Gft(x), ||x||< 1},

and the diameter of ft by

diam ft = supilly, - y2\\ \y¡ G ft(x), llxll < 1).

The Hausdorff distance between two bounded prefans is

H(&, ft) = sup{//(ft(x), ft(x))| ||x|| < 1}.
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5.2. Proposition. The following formulas hold:

||ft||=sup{^*,x)| 1^*11 < l,||x||< 1};
diam ft = sup{iO>*, x) + s(-y*, x)| ||/*|| < 1, ||x|| < 1};

//(ft, ft) = sup{|ideO>*, x) - s®(y*, x)\ | \\y*\\ < 1, ||x|| < l}.

Proof. Let us prove the last formula (proofs of the first two are even simpler).
We have

sup    Jl[A\y-v\\= sup    JsL   sup  <y*>y-*>)

(applying the Ky Fan theorem)
= sup{iÄ(>>*, x) - s^(y*, x)| ||.y*|| < 1}

so that //(ft(x), ft (x)) = sup{M.y*, x) - s^y*, x)\ \ \\y*\\ < 1}.

5.3. Proposition. A prefan ft is bounded if and only if ||ft|| < oo.

Proof. This is obvious.

5.4. Proposition.
||ft + ft||<||ft|| + ||ft||,
||ft °ft||<||ft||||ft||,

||ftVft||< sup{||ft||, ||ft||},
diam(ft + ft) < diam ft + diam ft,
diam(ft ° #) < diam ft +||ft||diam ft.

Proof. All formulas are easily verified by direct calculation.

5.5. Proposition. Let ft and ft be bounded fans. Then
||ft||=||ft*||,        //(ft, ft) = H (ft*, ft*),

and if ft is odd, then
diam ft = diam ft*.

Proof. This follows from 5.2 since ft and ft* have the same support function.

5.6. Proposition. Any a-topology in ^(X, Y) associated with the norm topology of
Y is defined by pseudometrics

dM(&, ft) = sup{//(ft(x), ft(x))|x G M)        (MG a).

In particular, //(ft, ft) is a metric corresponding to the topology of bounded conver-
gence. With this metric, the space (3(X, Y) is complete.

Proof. All except completeness follows from the fact that, in a Banach space,
balls about the origin form a base of neighbourhoods. Completeness results from
the corresponding property of the space of convex closed bounded sets with the
Hausdorff metrics.
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5.7. Proposition (Banach-Steinhaus Theorem). A family 9t of bounded fans
from X into Y is equicontinuous if and only if it is bounded in the metric topology, i.e.
if || ft || < k < oo for all ft G 91. In particular, if a sequence {&„} of bounded fans is
such that, for any x G X, ft„(x) Hausdorff converges to a certain ft(x), then ft is also
a bounded fan, ft„ converges to ft in the topology of compact convergence and the
norms of ft„ are uniformly bounded.

Proof. The first part is obvious; the second follows from Theorem 4.7.
5.8. Remark. The assumptions of the second part of the last proposition are

satisfied if {&„} is a decreasing sequence of bounded fans and there is a prefan ft,,
with nonempty and norm compact values such that ft„(x) c ftn(x) + SJIxH/?^ for
all x and n, where 8n —» 0.

5.9. Definition. Let ft be a prefan from X into Y and K c X a nonempty cone.
Let, furthermore, ty denote the collection of all sequences {Dn} of weak* closed
subsets of By, such that lim,,^ inf{||.y*|| \y* G Dn) = 1.

We define the Banach constant of ft on K by

C(ft, K) = -   sup      inf   s(y*, x)
ll.m-1  *eB*

and the slope of ft on A" by
sl(ft, K) = -    sup       inf     lim     sup   s(y*, x),

{D„)e^l   xSBk   n^"x   y*eD„

where BK = Bx n K. We write also C(ft) = C(ft, A"), sl(ft) = sl(ft, A").
5.10. Definition. Let ft be a homogeneous set-valued mapping from Y* into A"*

and P c X* a cone. We set

C*(ft,/>) = inf{||x* + ii*|| |w* G P,x* G ft(y*), \\y*\\= 1},

sl*(ft,/>) =     inf     infi||x* + u*\\ \u* G P, x* G (~) W(%,Dn)\

where W(%, /)) =conv D^.eo ft (.y*) (the weak* closure).
The following simple proposition summarizes some elementary properties of the

four constants. We set

||ft||* - sup{*(.y*, x)| ||.y*|| < 1, x G BK).

5.11. Proposition.
C(ft, K) > C(ft', K'),       sl(ft, K) > sl(ft', K')

ifK' c Kand&(x) c &'(x)for all x;
C*(ft, P) > C*(ft ', P'),       sl*(ft, P) > sl*(ft ', P')

ifP c P'and<$>(y*) c ^'(y*) for ally*;
C(ft + ft', A) > C(ft, A) -||ft'||x,
sl(ft + ft', AT) > sl(ft, K) -||ft'||*,

C*(ft + ft',P)>C*(ft,/»)-||ft'||,
sl*(ft +ft',P)>sl*(ft,/>)-||ft'||.
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5.12. Theorem. Let & be a bounded fan from X into Y and K c X a nonempty
convex cone. Then

c(ft, a:) = c*(ft*, k°),     si(ft, K) = si*(ft*, a:0),
where K° = {x*|<x*, x> < 0, Vx G K) is the polar of K.

Proof. What we need to show is that for any nonempty weak* compact convex
set Q and nonempty convex cone K c X,

-inf{5*(x, ß)| ||x|| < 1, x G K) - inf{||x* + w*|| |w* G AT0, x* G Q).

The desired formulas will follow from here if we take Q = ft *(>>*) and Q =
n„ W(&*, Dn), respectively.

We have

a = inf{||x* + M*|||«*G A-°,x*Gß}

=   inf       inf       sup   <x* + u*, x)
x'eQ u'eK0  lull<i

=   lim      inf       inf       sup   (x* + u*, x)
m^oo    j'eg    u'fEK0    \\x\\<l

\\U'\\<m

(applying the Ky Fan theorem)
=   lim     sup      inf       inf     (x* + «*, x)

",-°°   ||x||<l   **eß   WeK°
||u'||<m

=   lim     sup (-8*(-x, Q) - mp(-x, AT00))
m-°°     ||X||<1 "

= - lim      inf   (5*(x, Q) + mp(x, A"))»■^°°   ||x||<iv    v  * *' "■       "

> -inf{5*(x, ß)| ||x|| < 1, x G A"}.

Here A"00 is the bipolar of A coinciding with A" since A" is a convex cone.
To prove the opposite inequality, let us find a sequence {xm} G A" such that

||xj| < 1 and

«*(*«. Q) + ™p(xm, K) < inf{5*(x, Q) + mp(x, K)\ \\x\\ < 1} + \/m.

Then (since a < oo if Q and A" are nonempty)

0 < mp(xm, K)<a- ô*(xm, Q) < a + sup{||x*|| |x* G Q)

which implies that p(xm, K)—>0. Let x'm G A be such that ||xm — x¿,|| —»0. Then
8*(xm, Q) - 8*(x'm, Q) < 8*(xm - x'm, Q)^0 and

inf{ô*(x, ß)l ||*|| < 1, x G AT} < lim inf 8*(x'm, Q) = limmf 8*(xm, Q)

< jirn^ inf{5*(x, Q) + mp(x, K)\ ||x|| < 1} = -a.

5.13. Definition. Let
A( y*) =     inf      lim sup (diam D„).
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5.14. Theorem. If ft is a prefan from X into Y and K c X a cone, then

C(ft, A") > sl(ft, AT);
if, in addition, ft is bounded, then

sl(ft, A") > C(ft, K) - A(Y*)\\&\\K.
If ft is a homogeneous set-valued mapping from Y* into X* and P c X* is a cone,

then
C*(ft,/>)>sl*(ft,/>);

if, in addition, ft is a fan adjoint to a bounded fan from X into Y, then

sl*(ft, P) > C*(ft, P) - diam ft.

Proof. To prove the first and third inequalities, one should consider stationary
sequences {/)„} of singletons (i.e. Dn = {y*}, wherey* is the same for all n).

To obtain the second inequality, we first observe that îory*, v* G Y*, x G BK,

s(y*, x) < s(v*, x) + s(y* - v*, x) < s(v*, x) +\\y* - v*\\ \\&\\K.

If {/>„} G öD and v* G n  />„, then ||ü*|| = 1 and

-sl(ft, A") <   inf     lim (s(v*,x) + (  sup   \\y* - u*||)||ftÜ
xeBK  "—<*> V V'eA, ' i

<-C(ft,A-) + A(y*)||ft||Jf.

It remains to prove the last inequaüty. If x* G If (ft, D), then x* is a weak*
limit of a net {x¿} such that x* = 2^, aiXx*x, x*x G ft (y*), y£ G D, aiX > 0,
i - 1.«(A), 2^> «lX = 1.

Let y£ = 2"^i aiKy*. If D is a weak* closed subset of the unit ball and if D is
convex, then, taking if necessary a subnet, we may assume that y * converge in the
weak* topology to some_y* G D.

Since ft is the adjoint to a fan from X into Y, 1.10 implies the existence of
w* G ft (y*) converging in the weak* topology to some w* G ft (y*). On the other
hand, every w* can be represented as

n(\)

< =   2 «,X<, < 6 ftOfl)

(the closure operation in (1.1.4) is needless here thanks to 1.13). We have, therefore,
n(\)

X*  =  W*  +   2   «,\(*A  -  O =  w*  +  z*
Í-1

and the net {z*} converges toz* = x* — w*so that
„(X)

||z*|| < hm inf||z^|| < lim inf 2 «,x||** ~ w*|| < diam ft.

(Recall that D c BY.).
/-i
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Let r(D) = inf{||j>*|| |>>* G /)}.Then
inf{||x* + u*|| |w* G P,x* G W(%,D)}

> inf{||w* + z* + u*\\ \u* G />, w* G ft(>>*),.y* G Z), ||z*|| < diam ft }

> inf{||w* + w*|| \u* G /", w* G ft(7*),7* G />} - diam ft

> inf       A: • inf {||(w*/A:) + «*|| \u* G P, w* G fcft (7*), ||>>*|| = 1}
* I  LJ  } ^ rC  ^    1

- diam ft
= r(D)C*(%,P) -diam ft.

It remains to take into account that r(Dn) -» 1 if {D„} G ^.

5.15. Theorem. If & is a bounded prefan from X into Y, then the equality
C(ft, A") = sl(ft, A") holds if either

(a) || • || w a locally uniformly convex norm in Y*, or
(b) the values of ft are norm compact and \\ ■ \\ is strictly convex in Y*.
The equality C*(ft, P) = sl*(ft, P) holds if
(c) ft is a linear operator adjoint to a bounded linear operator from X into Y.
In particular, if & is a bounded fan from X into Y, ft = ft*, A" is convex and

P = A"0, then all four quantities coincide, provided one of the conditions (a)-(c) is
satisfied.

Proof. If the norm in Y* is locally uniformly convex, then any sequence {•£>„}
norm converges to a point y* of the unit sphere in the sense that

sup{||>>*- t>*|||t;*GZ>n}^0.

Since the support function of a bounded fan is norm continuous in each variable, it
follows that

lim     sup   s(v*, x) = s(y*, x) (1)

which implies the desired equality.
If the norm in Y* is strictly convex, then n Dn is a singleton whenever

{£>„} G 6D. If now ft is norm-compact-valued, then s(y*, x) is weak* continuous
in_y* on every norm bounded subset of Y* and we come again to the limit relation
(!)■

The two last statements of the theorem follow from 5.14 and 5.12 respectively.
5.16. Remark. The four constants introduced in 5.9, 5.10 will play a very

important role in the next chapter (see also the next section) for they decisively
enter the "modulus of surjectivity" of nonsmooth mappings (see §11). As a matter
of fact, the estimations of the moduli originally include only slopes sl(ft, AT) and
sl*(ft, P). Banach constants C(ft, A") and C*(ft, P) appear to be useful only as
long as they, in turn, provide estimations for slopes which are less convenient to
handle than Banach constants.

But slopes have one more disadvantage which seems to be even more serious.
Banach constants are stable under perturbations of the norm: for an equivalent
norm in Y* close to || • ||, Banach constants corresponding to this norm are close to
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those corresponding to || • ||. On the contrary, sl(ft, K) and sl*(ft, P) essentially
depend on geometry of the unit ball, and small perturbations of the norm can
cause noticeable variations of their values.

This suggests the following definition.
5.17. Definition. We set

Sl(ft, A") = lim sup sl(ft,A", |-|),
H-IHI

Sl*(ft, P) = lim sup sl*(ft, P, [ |),
I-Ml-II

where sl(ft, A", | • |) and sl*(ft, P, \ • |) are defined as in 5.9, 5.10 but by way of the
| • |-norm in Y* and the symbol | • | —» || • || obviously means that equivalent norms
| • | converge to || • || (uniformly on bounded subsets of Y*).

One can easily verify that all the properties of si and si* discussed above can be
extended to SI and SI*. Moreover, some of them can even be strengthened.

5.18. Proposition (cf. 5.14). // ft is a bounded prefan from X into Y, then

Sl(ft,A") >C(â,K)-8(Y*)\\â\\K,

where 8(Y*) = lim 0%^ A(Y*, \ ■ \) and A(Y*, \ ■ \) is defined as in 5.13 with \ ■ \
instead of \\ ■ \\.

Proof. The only circumstance that should be taken into account in addition to
5.14 is that the Banach constant depends continuously on equivalent norms.

5.19. Theorem. Let ft be a bounded prefan from X into Y. Then the equality
C(ft, A") = Sl(ft, A") holds if either

(a) there is an equivalent locally uniformly convex norm in Y*, or
(b) ft is norm-compact-valued and there is an equivalent strictly convex norm in

Y*.

Proof. The only additional consideration to be incorporated is that in either
case there is a sequence of locally uniformly or strictly convex norms converging to
II • II-

5.20. Remark. Observe that, in general, the sequence of equivalent norms that
realize Sl(ft, A") or Sl*(ft, P) depends on ft, K, ft, P. On the contrary, under the
assumptions (a), (b) of the theorem, the same sequence can be chosen for all ft, K,
ft, .P.

6. Open mapping theorem.
6.1. A mapping is said to be open if it transforms open sets into open sets. The

classical Banach open mapping theorem says that any bounded linear operator
from a Banach space onto another Banach space is an open mapping. In this form,
this principle cannot be extended to fans. However, it admits an equivalent
formulation which turns out to be extendable.

Let A : X -> Y be a linear bounded operator which sends X onto Y. Simple
category arguments (with which the proof of the Banach open mapping theorem
usually begins) imply that the closure of A(BX) contains a ball about the origin
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with radius r > 0. This is the same as

,4V = sup{0*,>4x>|||x||< 1} >r\\y*\\
for all y*, which is equivalent to C*(A*) (and hence C(A) due to 5.12) being
positive.

Thus the Banach open mapping theorem can be reformulated as follows: if
C(A) > 0, then A is an open mapping. This is just the equivalent form of the
Banach open mapping theorem which can be extended to fans.

First we consider the finite-dimensional case.

6.2. Theorem. Assume that dim Y < oo. Then for any ft G Sr(Ar, Y) and for any
closed convex cone K c X,

C(&,K)UYC &(Bxn K).

Proof. Fix ft and A". If C(ft, A") = 0, the theorem is obvious. So let us assume
that C(ft, A") = r > 0.

The theorem will be proved if for any e > 0 we shall find a finite-dimensional
subspace A" c X and continuous mappings /: A" —> Y, g: Y-► Y*, A: Y* —> A"
such that

f(x) G ft(x),    for all x G A";
IISOOII-IMI-        <s(y),y) > 0,    for all y G Y;
\\Ky*)\\ = \\y*\\,       h(y*)^K,       forall.y*G Y*;
(y*, (/ • A)(^*)> < - (r - e)\\y*\\2,    for My* G Y*.

Indeed, assume that such X', f, g, A exist. Let p = f ° A » g, and for any v G Y
let

pÁy) =
p(y)- v+y,   û\\p(y)-v+y\\< 1,

*(y\~ v+J,r «\\p(y)-» + y\\>i.
\\p(y)-v+y\\

Then the restriction of pv to BY is a continuous mapping from BY into itself so that,
according to the Brouwer fixed point theorem, there is_y G BY such that pv(y) = y.

If A = \\p(y) - v + y\\ > 1, then ||^|| = 1 a.nàp(y) - v + y = Ay or
<g(y), v) = (g(y),p(y)) - (A - \Kg(y),y) < <g(y),P(y)>

because A > 1, {g(y),y} > 0.
We have, setting g(y) = y*,

(g(y),p(y)> = O*, (/ ° h)(y*)) <-(r- e)\\y*\\2 = -(/•- e)\\yf
so that

-lloll IMI = -||»ll II ̂)ll < <«G0, o> < - (r - e)\\yf
or

M > (r - e)\\y\\ = r - e.
It follows that, whenever ||o|| < r — e, there isy E^ BY such that pv(y) = p(y) —

v + y = y or />(.y) = v. On the other hand, p(y) = /(x), where x = (A ° gJi^), so
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thatx G A" and ||x|| = ||A(gO0)|| = ||g(.y)ll = ||.y|l < 1. Thus
(r - e)UY df{Bx n K)C &(BX n A")

and, since e > 0 is arbitrary, the desired result follows.
Thus we need to prove the existence of A", / g, A with necessary properties.

According to 1.12, ft is a continuous set-valued mapping. Thus, thanks to the
continuous selection theorem of Michael [40], the set of continuous selections of ft
is nonempty. Let /be one of them.

Let furthermore e(y) be a smooth norm on Y, say euclidean, and let q(y) be the
derivative of e2(y) aty. Then

iCO-f*  if" = 0>
I W l|4O)ir*00,  if^^o

meets the necessary requirements (see [44] for the properties of gauge functions and
their derivatives).

It remains to construct A and X'. Fix e > 0. Then for any>>*, ||.y*|| = 1, there is
x G Bx n A" such that s(y*, x) < -r + (e/4). For any fixed x the function s(-, x),
being everywhere defined and convex on a finite-dimensional space, is continuous.
Therefore, we can find a finite collection of elements of Bx n A" such that for any
y*' \\y*\\ = 1> tne inequality s(y*, x) < -(r — (e/2)) holds for a certain element x
of the collection. Let X' be the subspace spanned by such elements x and
A"' = A" n A.

Therefore if ft' is the restriction of ft to A", then C(ft', A"') > r-(e/2).
Now let || • ||' be a strictly convex norm on A" such that ||x||' < ||x||. Consider

the fan fte(x) = (e/2)||x||'.Br and let ft£ = ft' + fte. Then ||fte|| < e/2 and,
according to 6.2,

C(fte, K') > C(ft', A") -||ft,|| > r - e > 0
if e is sufficiently small.

It follows that, whenever ||.y*|| = 1,

inf {se(y*, x)\ ||x|| < 1, x G A'} < -r + e < 0,

where st is the support function of ft£. In view of the compactness of Bx n AT' and
positive homogeneity of se(y*, •), this infimum is attained at some x with ||x|| = 1.
This x is uniquely defined by_y* because || • ||' is a strictly convex norm. If we set
x = h(y*), then the function A appears to be defined on the unit sphere of Y* and
routine arguments show that it is continuous. We can extend A to all of Y* by
setting

0,    if>*-0,
1 KIIM.v7ll.vl),  *y* * o.

Then   st(y*, h(y*)) = \\y*\\\(y*/\\y*\\, h(y*/\\y*\\)) < -(r - e)\\y*\\2   so   that
whenever^ G &(h(y*)), in particular, if y = f(x), we have

<y*,y> < se(y*, h(y*)) < -(r - e)\\y*\\2.

This completes the proof.
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6.3. Corollary. Let dim Y < oo, let & be a bounded fan from X into Y, and let
K c A" be a closed convex cone. Then whenever f(x) is a continuous selection of ft,
we have

C(&,K)UYcf(BxnK).

6.4. Remark. Observe that if ft is a single-valued fan, i.e. a linear operator, the
theorem just proved is a trivial fact of linear algebra which needs no topology to be
proved. We can replace topological assumptions in the theorem by some algebraic
requirements, say, that K and the values of ft be polyhedral. But I have failed to
find an algebraic proof of the theorem even under such purely algebraic assump-
tions. It seems that the "linear algebra" of fans is heavily bound up with topology.
We present below another result of this kind extending the (again elementary)
proposition that a linear operator which maps a finite-dimensional space onto itself
is one-to-one.

6.5. Theorem. Let dim X = dim Y = n < oo. Then for any bounded fan from X
into Y, C(ft)= C(ft*).

Proof. Consider the mapping A as in 6.3. It sends the unit sphere of Y* into the
unit sphere of X. (We do not assume either A" or y euclidean so that the spheres in
X and y* are boundaries of certain bounded centrally symmetric convex bodies.)
It is well defined if C(ft) = r > 0, and s(y*, h(y*)) < -(r - e) if ||.y*|| = 1. It
follows that (y*,y)> < -(r - «) if y G ft(A(>>*)), ||.y*|| = 1 so that ft(A(>>*)) n
ft(A(->-*)) = 0 and hence h(y*) and h(-y*) cannot be positively proportional.
According to the Borsuk antipodal theorem (see [32] for instance) A maps the unit
sphere of Y* onto the unit sphere of X.

Now let ||x|| = 1, and let>>* be such that ||^*|| = 1, x = h(y*). We have
inf{*(z*, x)| ||z*|| < 1} < s(y*, x) < - (r - e)

so that
C(ft*) = - sup       inf    s(y*, x) > r - e

11*11-1   ll-y'lKi

which, since e is arbitrary, gives C(ft*) > C(ft). This inequality obviously holds if
C(ft) = 0 so that it is always true. Changing the roles of ft and ft*, we obtain the
opposite inequality.

6.6. Remark. None of the results above is valid for prefans. A simple counterex-
ample is the following. Let / be a mapping from R 2 into R 3 which sends the unit
circle onto two orthogonal equators on the unit sphere. Then C(f) = V2 /2 but
obviously f(R2) ¥= R3. However, as we shall see, prefans are useful for local
surjection theorems for nonsmooth mappings.

Now we turn to the general case.

6.7. Theorem. Let & be a bounded fan from X into Y and K a closed cone. Then

Sl(ft, -K)UY<z &(BX n K).

Proof. Fix e > 0, and let | • | be an equivalent norm in Y* which is sufficiently
close to || • || and such that Sl(ft, -A") < sl(ft, -K, I • I) + e. Fix y G Y and set
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k = ||.y||. Assume thaty G &(BX n AT). Then, setting

f(x) = pH(y, ft(x)) = inf{\y - v\]v G ft(x)},
we see that/(x) > 0 for all x G Z^ = Bx n A".

Applying the variational principle of Ekeland [16], we can find w G BK such that
||w|| < 1 and

/(x) + ('* + e)||x - w|| > f(w),        VxeBK. (1)

Let, for n = 1, 2, ... ,

/>„ = {.y* G y*| \y*\ < 1,     inf     {y*,y - v) > f(w) - (l/n)\.

Then Dn is a convex and weak* closed set decreasing as n increases and |.y*| > 1
- (1/n) if y*&Dn.

Take arbitrarily an A G A and choose for any t > 0 a y* G y* with |>>*| = 1
such that inf„ea(M,+/A) {y*,y — v} = /(w + th). Since ft(w + iA) Hausdorff con-
verges to ft(vv) as t —> 0 (according to 1.12),.y* G Dn if / is sufficiently small.

We have for A G A"
f(w + th) - f(w) <       inf        <>',*,>'-©>-    inf     Ov*,.X-c>

ve&(w + th) oSÄ(iv)

= s(y?, w) - s(y?, w + th) < t ■ s(y*, -A)

< t   sup   s(y*, -A)

which gives along with (1)
sup   s(y*, -A) + (k + e)\\h\\ > 0,       V A G A"

or & + e > sl(ft, -AT, | • |) > Sl(ft, -AT) - e. Since e is arbitrary, this shows that
II^H = k > Sl(ft, -A"). In other words, if ||>>|| < Sl(ft, -AT), then y G ft(x) for
some x G Bx n K.

6.8. Corollary. For a bounded fan ft from X into Y and a closed cone K c X,
the inclusion C(ft, -K)UY c &(BX n A') is valid if either of the following three
conditions is satisfied:

(a) there is an equivalent locally uniformly convex norm in Y* ;
(b) ft is norm-compact-valued and there is an equivalent strictly convex norm in

Y*;
(c) K is convex and ft is single-valued.

Proof. Apply 5.19 and 5.15.

6.9. Corollary (Banach open mapping theorem). Let A: X-» Y be a linear
bounded operator and K c X a closed convex cone such that A(K) = Y. Then the
restriction of A to K is an open mapping.

Proof. We have C(ft, A") = C(ft, -A") > 0 (in view of 6.1). If now x G K,
y = Ax then for any e > 0,

A(x + eBK) = Ax + eA(BK) D Ax + eC(A, K)UY = C(A, K)U(x, e).
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6.10. Remark. It is easy to see that the proof in 6.7 implies a similar fact for
fans: ft(x) + Sl(ft, -K)UY c ft(x + BK).

6.11. Corollary (Robinson). Any closed convex process ft from X into Y with
dom ft = K and &(K) = Y is open on K.

Proof. Apply 2.3 and 6.9.
6.12. Remark. It is interesting to compare 6.2 and 6.9. First we observe that 6.2

is valid with C(ft, -A") instead of C(ft, AT) (it suffices to choose/(x) in such a way
that |/(x) - /(-x)| < e for all x, using the fact that ft(x) n ft(-x) ¥= 0) so that
there is no contradiction with 6.7. The converse replacement in 6.7 is questionable.
Note further that K need not be convex in 6.7, and 6.7 does not imply a corollary
like 6.3.

7. Fans and linear operators. All linear operators in this section are continuous.
7.1. Definition. A linear operator A is a linear selection of a fan ft if Ax G ft(x)

for all x. The fan ft has the Hahn-Banach extension property (resp. the k-extension
property) if any linear selection of the restriction of ft to a subspace of X (resp. to a
subspace of dimension k) can be extended to a selection of ft defined on all of X.

The 0-extension property is simply the existence of a linear selection, and the
1-extension property means that the fan is generated by a set of linear operators.
Observe that a fan having the k-extension property (k > 1) is necessarily odd.

It is possible to describe fans having the Hahn-Banach extension property.
Roughly speaking, they are fans whose values are bounded order intervals in
certain conditionally complete ordered vector spaces: Concerning other extension
properties, there are more questions than results. This section contains several
sufficiently simple facts. It turns out in particular that even in the finite-dimen-
sional spaces there are odd fans not generated by sets of linear operators.

7.2. Proposition. Let L c X be a linear subspace of codimension one, let e G L,
and let ft be an odd fan from X into Y. Let a linear operator A: L —» Y be a linear
selection of the restriction of ft on L. A necessary and sufficient condition for the
existence of a linear selection of ft coinciding with A on L is that

H (&(x + e) - Ax) ^ 0.
xeL

Proof. Assume that such a linear selection B does exist. Then, for any x G L,
ft(x + e) - Ax 3 B(x + e) - Ax = Be.

Conversely, let.y G fl xSL(&(x + e) - Ax). Define B by

B(x + te) = Ax + ty    for all x G L, t G R.

Then B is a linear operator from X into Y which coincides with A on L. We also
have, for x G L and / ^ 0,

B(x + te) = t(A(x/t) + y) c t(A(x/t) + ft((x//) + e) - A(x/t)) = ft(x + te).
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7.3. Corollary. Let ft be an odd bounded fan from X into Rk. Then the following
three statements are equivalent:

(a) ft has the Hahn-Banach extension property;
(b) ft has the k-extension property ;
(c) whenever A is a linear selection of the restriction of ft on an r-dimensional

subspace L of X (r > k),
k

H (ft(*, + e) - Ax,) ^ 0,       V x0, . . . , xk G L, V e G L.
<=o

Proof. Implications (a) => (b) => (c) are obvious. Let L c X be a subspace, and
let B: L -» Rk be a linear selection of the restriction of ft on L. If e G L, then
combining (c), the theorem of Helley and Proposition 7.2, we conclude that there is
an extension of B to the space generated by L u {e} which is a linear selection of
ft. Applying the standard transfinite induction arguments, we arrive at (a).

We proceed now with constructing the example of a finite-dimensional odd fan
without the 1-extension property.

7.4. Proposition. Let L and e be the same as in 7.2. Assume that we are given two
set-valued mappings from L into Y, an odd fan ft and another mapping G with
convex, closed and bounded values. A necessary and sufficient condition for the
existence of an odd fan ft from X into Y such that ft(x) = ft (x) and ft(x + e) =
G(x)for x G L is that

ft(A)c6(x + A)-e(x), (1)
ß(x + A) c G(x) + ft (A), (2)

G(au + (1 - a)x) c aQ(u) + (1 - a)G(x) (3)

for all x, u, h G L, 0<« < 1.

Proof. If such a fan exists, then

»(A) = ft(A) c ft(e + x + A) + ft(-e-x)
= &(e + x + A) - &(e + x) = G(x + A) - G(x) ,

G(x + A) = &(e + x + A) c ft(e + x) + ft(A) = G(x) + ft(A),
G(au + (1 - a)x) = &(a(e + «) + (!- a)(e + x))

C aft(e + «) + (!- a)ft(e + x)

= aG(u) + (1 - a)ß(x)

Assume now that (l)-(3) hold. Then we set, for u = u(t) = x + te, x G L,
t G R,

â(u)= (ft(*)>    if'=0,
\ tG(x/t),   if t ¥= 0.

We must show that

ft(A«) = Aft(w),        ft(M, + u2) c ft(t/!) + ft(«2)
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The first of these relations is obvious. To prove the second, we shall consider four
possible situations:

(a) if /, = t2 = 0, then it follows from the fact that ft is a fan;
(b) if   r, + t2 = 0,   i.e.   if   r, = -t2 = t,   then   taking  x = -x2/t   and  A =

(x, + x^/t, we obtain from (1)

ft(«, + u2) = ft(x, + x2) = /ft (A) c t(G(x + A) - G(x))

= re(x,/0 - /6(-x2/0 = ft(u,) + ft(«2) ;
(c) if tt + t2¥= 0 and i,r2 > 0, say, both are nonnegative, then taking a ■»

/,/(/, + /2), we have from (3) (or from (2) if one of /, is zero)

ft(«, + u2) = (/, + i2)G((x, + x2)/ (i, + t2))

=  ((tl + t2)Q(a(xJt,) + (1 - a)(x2/i2)),    if t2 * 0,
[/,e((x, + x2)//,),    ifi2 = 0,

(r, + /2) (aßix./i,) + (1 - a)G(x2/t2)),    if /2 ^ 0,

i,e(x,//1)+ ^ftix,//,),    if/2 = 0,

tlG(xl/tl) + t2G(x2/t2) ,    if t2 ¥= 0,

^(x,//,) + ft(x2),    if i2 = 0,

= ft(«,) + &(u2) ;

(d) if i,/2 < 0, say r, > 0 > i2, r, > |i2|, then taking t = \t2\, s = ty- t,k = tx/t
= 1 + s/t, we have w, = ku', where u' = (xx/k) + te and «2 = x2 — te. Using
subsequently (c), (b) and the homogeneity of ft, we have

ft(w, + u2) = ft((A: - \)u' + u' + u2)

C &((k - l)u') + ft(«' + u2)

C(k- l)ft(u') + ft(w') + ft(«2)

= ft(«,) + ft(u2) .

7.5. Proposition. Let Q, P_i, P0, Pt be nonempty bounded closed convex subsets
in R" such that Q c Pt - PQ, Q C P0 - P_„ 2Q c P, - P_„ P, C P0 + Ô'
P0 C P_] + Ö, P0 C P[ - ô> ^-i C P0 - ß. 2/Jo C P, + /*_,. 77ie/i the set-val-
ued mappings

ft(0 = tQ,
Psign, + {signt)(\t\- \)Q,   if\t\>\,

satisfy conditions (l)-(3).

Proof. We must show that for any t, s G R, a G [0, 1],

(/ - *)ß c G(t) - G(s),
G(t) c G(s) + (t- s)Q,

G(at + (1 - a)s) C aß(0 + (1 - a)C(j).
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In view of the symmetry, this can be done only for / > 0, r > |j|.
If |s| > 1, then

G(t) - G(s) - P, + (t - 1)0 - P^, - (sign *X|«| - 02
3(1- sign s)Q + (t - 1)0 - (sign s)(|i| - l)ß
D (1 - sign s + t - 1 - s + sign s)Q = (t - s)Q,

G(s) + (t- s)Q - Psignj + (sign s)(\s\ - \)Q + (t - s)Q

3 Psign, + (s -signs + t - s)Q

= PsiSDS + (t-signs)Q

- A*b + 0 - signi)ß+ (/- \)Q
D?l + (i- l)ß = G(t).

If t > 1, |s| < 1, then
G(t) - G(s) = P, + (t - l)ß -\s\Psigps + (\s\-\)P0

= MC.  -   ''sign,) + (1  - W>  -  P») + (' -   OC
D|i|(l - Signio + (1 -\s\)Q + (t- \)Q
D (|i| - s + \-\s\+ t- l)Q = (t- s)Q,

G(s) + (t - s)Q = \s\Psigas + (1 - \s\)P0 + (t- s)Q
-H^«p,,+|*j0 - signi)ô + (1 -|í|)(P0+ ß) + (t -1)0
D|jjJ», + (l -|j|)J»,+ (/- l)ß
= P, + (/ - l)ß = G(t).

If |f| < 1, then

G(t) - Q(s) = /P, + (1 - t)P0-\s\PsigDS - (1 -\s\)P0

D (/ -|*|)P, +14(1», - PsigBS) - (t -\s\)P0

= (í-H)(P1-P0)-r|í|(P1-PsignJ
3 (f -M)ß +|í|(1 - sign j)ß D (í - j)ß,

ß(j) + 0 - *)ß = \s\P^, + (i - M)/»,, + (' - *)ß
= M^, + (i - t)P* + (< -M)^ + (» -M)ß + (W - *)ß
dIjíI^ + Íí-IjDPj + O-O'o
= íP, + (1 - /)P0 = G(t).

This proves the first two inclusions. To prove the third one it suffices to show
that, for any_y* G Y*, the support function 8*(y*, 6(f)) is convex in /. We have

(t-l)8*(y*,Q) + 8*(y*,Pi),       t > 1,

s*( * e(t)) m   'i8*^*' p>) - 8*(y*> P°» + 8*(y*' po)>     0 < / < 1,
' ÍÍS*^*, P0) - S*(>>*, P_,)) + 8*(y*, P0),       -1< / < 0,

- (r - 1)S*0>*, -ß) + S*(.y*, /»_,),        t < -1.
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This function is continuous and piecewise linear in t and the slopes satisfy

S*(y*, -Q) < 8*(y*, P0) - S*(y*, P_x)
< 8*(y*, P,) - 8*(y*, P0) < 8*(y*, Q)

which is immediate from the inclusions assumed.

Wi±P.x)

-^~„i

Q + P0 = p0-Q

Q + P-!

Figure 1
7.6. Example. Consider four plane sets Q, P_,, P0, Px as in Figure 1. It is easily

seen from the figure that all of the inclusions of 7.5 are satisfied in this case. The
sets P,, / = -1, 0, 1, contain the origin. Therefore by 7.4 there is an odd (and
obviously bounded) fan ft(x) from R2 into R2 such that ft(e2) = Q, ft(/e2 + e}) =
P, (/ = -1, 0, 1), where e,, e2 is a basis in R2. It is easily seen from the picture that
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if y G ß and the first component of y differs from zero, then (P_, + y) n P0 n
(A _ y) = 0 anc* Corollary 7.3 shows that there is no linear selection A of & such
that Ae2 = y. Thus the fan is not generated by linear operators.

Observe that the fan does have the O-extension property because the zero
operator is a linear selection of ft. It is an interesting question, does there exist an
odd bounded fan in a finite-dimensional space which has no linear selections?

The final result of this section concerns the k-extension property for arbitrary k.

1.1. Theorem. Let X and Y be locally convex linear Hausdorff topological spaces
and ft an odd bounded fan from X into Y such that all sets ft(x) are compact and the
restriction of ft to every finite-dimensional subspace of X has the k-extension
property. Then ft has the k-extension property.

Proof. Let L0 be a subspace of X with dim L0 < k, and let A0: L0 —» Y be a
linear selection of the restriction of ft on L0. Let {L£}£e3 be the collection of all
finite-dimensional subspaces of X containing L0 which is completely ordered in a
certain way (so that 2 is just the collection of all ordinals whose cardinality does
not exceed card A"). To prove the theorem, it is sufficient to find a family {A^} of
linear selections of the restrictions of ft on L{ having the following properties:

(a) the restriction of every A^ on L0 coincides with A0;
(b) for any finite collection {£„ . . . , 4} there is a linear operator A: 2 L£ —» Y

which is a linear selection of the restriction of ft to the sum and satisfies
Ax = A^x whenever x G L£.

Indeed, in this case, the relation

Ax = AçX,    if x G L£,

uniquely defines an operator from X into Y such that Ax G ft(x) for all x and
Ax = AqX for x G L0.

Assume that, for a given ordinal 17, we have already defined operators A(:
££ -» y for £ < 17 which satisfy (a) and the following weak form of (b):

(b^) for any finite collection {£„ . . . , 4} there is a linear operator A : 2 L£ —» Y
which is a linear selection of the restriction of ft to the sum and satisfies
Ax = A( x whenever £, < ij, x G L£ .

Denote by ß(£,, . . . , 4) the collection of such operators, and let P(£,, . . . , 4)
be the collection of restrictions of elements of Q(~q, 4.4) on Aj-

Then every ß(4, • • • , 4) 's compact in the topology of compact convergence.
Indeed, inasmuch as ft is a bounded fan, every Q(£x, . . ., 4) *s equicontinuous as
a collection of linear selections of ft, and the assumption that the values of ft are
compact implies compactness of the set which is obviously closed in the topology
of pointwise convergence.

It follows that every P(£„ . . . , 4) is also compact in the topology of pointwise
convergence. On the other hand,

P(£„ . . . , 4, t,,, . . . , Vs) C P(£„ . • •, 4) n P(n„ ...,%)

for any £,>•••> 4' Vi> ■ ■ ■ > Vs> which is obvious.
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Thus there is a linear operator A : Lr¡—> Y which belongs to all P(£,, • • • , 4)-
This means that Av is a linear selection of the restriction of ft on L^ and for any
4, . . • , 4 there is A G ß(rj, £,, • ■ ■ » 4) sucn that the restriction of A to L^
coincides with Av. We have proved therefore that if (b£) holds for all £ < t/, then
(h'v) also holds. Observe, finally, that (h'0) is valid according to the assumptions of
the theorem. This completes the induction, thereby proving the theorem.

2. Differential calculus
In this chapter all spaces are Banach.

8. Directional derivatives, tangent and normal cones. We begin this chapter by
surveying some definitions and results (which are partly new) connected with
concepts of directional derivative and tangent and normal cone.

8.1. Definition. Let f(x) be a real-valued continuous function defined in a
neighbourhood of z G X. We set for any e > 0:

d-f(z;h) = ini{t~\f(z + th) - f(z))\0 < t\\h\\ < e, t > 0},
de+f(z;h) = sup{i-'(/(z + th) -f(z))\0 < t\\h\\ <e,t> 0),

d°f(z; A) = sup{/-'(/(x + th) - f(x))\ \\x - z\\ < e, t > 0, ||x + th - z\\ < e).
Clearly, all three functions, as functions of A, are positively homogeneous of

degree one (i.e. satisfy g(th) = tg(h)), d~ is u.s.c. in A and the other two are l.s.c. in
A. It is also obvious that d~f(z; A) < de+f(z; A) < d°(z; h) and that dependence on e
in all three cases is monotone (nondecreasing in the first and nonincreasing in the
other two). We set further

d~f(z;h) = lim inf d~f(z;u),
u—>h
£|0

d+f(z;h) = lim sup dt+f(z;u),
u-*h
e|0

£/°/(z;A) = limú'e0/(z;A).
e|0

We refer to [3], [45] for more details concerning the first two directional
derivatives and to [8]-[12] for everything concerning the last one.

Observe that if/is Lipschitz, then all functions above are Lipschitz in A (with the
same constant as /) and d°, in addition, is u.s.c. in both variables (it is always u.s.c.
in z). In this case the definitions of d ~ andd+ can be simplified as follows:

d ~f(z ; A) = lim d~f(z; A),       d +/(z; A) = lim de+f(z ; A).
ej.0 t\,0

8.2. Proposition. The function A -» d°f(z;h) is convex (hence so is d°f(z;h)).

Proof. Note that d°f(z;h) > -oo for all A. We consider, for simplicity, only the
case when this function is finite for all A. The extension to the general case is not
difficult.

Since d°f(z; ■) is homogeneous, it suffices to prove that

d°f(z ;e + h)<dt°f(z;e) + de°f(z ; A) ( 1 )
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for all e, A. We have by definition de°_J(z; A) < dt°f(z; A), V A G X, V 8 > 0. Let x,
A and / > 0 be such that ||x - z|| < e, ||x + fA - z|| < e and

d?f(z;h) < t~\f(x + th) - f(x)) + a.
Then there is 8 > 0 such that ||x - z\\ < e - 8, ||x + th - z\\ < e - 8 and hence
d°f(z;h) < de°_gf(z;h) + a and to prove (1), it suffices to show that, for any 8 > 0,
a > 0,

d°_ J(z ; e + A) < 4°/(z; e) + <°/(z; A) + a,       V e, h. (2)
So let us fix some e and A, and let x and r > 0 be such that ||x — z|| < e — 8,

||x + t(e + A) - z|| < e - 8 and

d?_J(z;e + h)< r\f(x + t(e + A)) - f(x)) + a/2.
Since / is continuous, for any t > 0, t < i, there are 0 < t' < t and x' belonging to
the line segment [x, x + t(e + A)] such that x' + i'(e + A) also belongs to this
segment and t"\f(x' + t'(e + A)) - f(x')) > t'\f(x + t(e + A)) - f(x)) - a/2.

Choose t so small that ||x' + t'h - z\\ < e. Then

dlJ(z;e + h)-a < i'"'(/(x' + t'(e + A)) - f(x'))
= t'-\f(x' + t'(e + h))-f(x'+ t'h))

+ t'-\f(x'+t'h)-f(x'))
<<°/(z;e) + 4°/(z;A).

8.3. Definition. Let z G S c X. Consider the following cones:

A;(S,z)={A|¿E-p(z,S;A) = 0},

T'e(5,z) = {A|í/£-p(z,S;A) <e||A||},

fe(S,z)=   PI        U      Te(S,x),
8>0    ||jc-z||<«

TX(S, z) =  H   t(S, z),
E>0

T(S,z) = {A|i/-p(z, S;h) = 0},

Tc(S,z) = {h\d°p(z,S;h) = 0}.
(Since all these cones are defined with the help of the distance function, there is no
loss of generality in assuming that S is closed which we shall always do.)

The cone T(S, z) is the tangent cone to S at z, as has been known for a long time
(see [3], [35], [45] and references there); TC(S, z) is the Clarke tangent cone ([8]-[12],
[22], [49]). As is well known, A G T(S, z) if and only if there are sequences rn|0 and
A„ —» A such that z 4- tnhn G S for all n (which is obvious) and A G TC(S, z) if and
only if, for any sequences tn\,0 and x„ —» z, there is a sequence A„ —» A such that
z + i„A„ G 5 for all n [22].

Obviously, TC(S, z) c T(5, z) c Te(S, z), TX(S, z) c fe(S, z) c 7;(S, z),
7XS1, z) c A£(5, z) and

*;(S,z)=   U   /-'[(S-z)nZi(0,e)]
<>o

is the cone generated by (S — z) n B(0, e).
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Observe in this connection that, since p(x, S) is a Lipschitz function, all cones
introduced above are closed and the Clarke tangent cone is convex.

8.4. Proposition. Tc(S, z) c Tx(S, z).

Proof. Consider the function g(h) = linij^ supy;i._z||<Ä d~p(x, S;h). Then

fe(S,z)={h\g(h)<e\\h\\},
Tx(S,z) = {h\g(h) = 0}.

On the other hand, g(h) < d°p(z, S; A) and the inclusion follows.

8.5. Proposition. T(S, z) = n e>0 K(S> z)- tf> in addition, dim X < oo, then

lim H(Ke(S, z) n Bx, T(S, z) n Bx) = 0.

Proof. If A G f~l A;(5, z), MO, then for any n = 1,2,..., there are t„i0 and
A„ G Çl[(S - z) n 5(0, 1/n)] such that ||A - A„|| < 1/n so that z + r„A„ G S
and í„A„ G 5(0, \/n); henee í„ < ||An|rVw ^°; ûence h G TX-S, z). Together
with the last inclusion in 8.3, this gives the required equality.

The second part of the proposition follows from the fact that a decreasing
sequence of compact sets in a metric space Hausdorff converges to the intersection.

8.6. Remark. It is reasonable to ask why it is necessary to have so many concepts
of tangent cones. The answer is that tangent cones usually enter conclusions of
various theorems in such a way that a certain property is claimed to be valid for all
elements of the cone. Thus the larger the cone involved, the stronger is the result.
This prompts us to seek, in each particular case, the largest possible cone for which
the desired result can be proved or which can be calculated in a given situation.

If S is sufficiently smooth about z, then all infinitesimal tangent cones (those
without the subscript e) coincide but, generally, they are different. Proposition 8.5
shows that, in a finite-dimensional space, the tangent cone T(S, z) gives the best
possible first order approximation for S at z. Things change if dim X = oo and one
can easily find simple examples when all the cones except Ke(S, z) (which always
differs from {0} if z is not an isolated point) are trivial, that is to say, contain only
the zero element. (For instance, let S be the graph of the mapping /: [0, 1] -»
Hilbert space which is linear on every segment [l/(n + 1), 1 /n], n = 1, 2, ... ,
equals zero at 0 and e„/n at 1/n, where {ek\k = 1, 2, . . . } is an orthonormal
basis. The mapping is obviously Lipschitz but no nontrivial tangent cone to its
graph exists at z = (0, 0).)

8.7. Definition. Let/be a real-valued Lipschitz function defined in a neighbour-
hood of z. We set

3C/W= {x*GA-*|<x*,A> <d°f(z;h),VheX).

This is the generalized gradient of Clarke. It is always a nonempty convex weak*
compact set.

Given a closed set S c X containing z, the cone

NC(S, z) =  U MAS, z)
X>0
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is the C-normal cone to S at z. It is also convex and the polar of NC(S, z) coincides
with TC(S, z).

We refer to [8]-[12] for more details.
8.8. Definition. Let /be a continuous function defined in a neighbourhood of z.

We set
3£7(z)= {x* G A"*|<x*, A> <¿7(z,A) + e||A||,VAGA-}

and

¡>M = n n    u   a.-/« •
«>0    e>0      ||je-z||<fi

The latter will be called the M-subdifferential oí fat z.
If S c X is closed and z G S, then the cone Nm(S, z) = U x>o tâmP(z> s) wül

be called the M-normal cone to S at z.
This cone is closely related to (and is perhaps even smaller than) the normal cone

introduced by Mordukhovich [42], [43], [33].

8.9. Proposition. If fis a Lipschitz function, then 9„/(z) c oJ(z) and therefore

Nm(S, z) c NC(S, z).

If dim X < oo, then conv d„J(z) = aj(z) and therefore

conv Nm(S, z) = NC(S, z).

Proof. The first part of the proposition follows from the fact that d~f(x;h) <
d°f(x; A) for all x, A and the second function is u.s.c. in x.

Now let dim X < oo. Then/is everywhere differentiable up to a set of Lebesgue
measure zero. Let 8f(z) denote the collection of all limits of sequences f'(xn) such
that x„ —> z and / is differentiable at every x„. As was shown by Clarke [8], the
convex hull of 8f(z) coincides with aj(z). On the other hand, every element of 8f(z)
belongs to 3„/(z) (because d~f(x;h) = </'(x), A> if /is differentiable at x).

8.10. Remark. Normal cones enter theorems usually in a dual way: as a rule it is
claimed that there is a point in a normal cone having a certain property. Thus the
smaller the normal cone, the stronger is the result.

From this point of view, M -normal cones seem to be the best possible in the
finite-dimensional case though they may be less convenient to work with than, say,
C-normal cones which are convex. But in an infinite-dimensional case we can have
Nm(S, z) = A"* even for a "well-connected" set.

We conclude this section with a rather surprising result concerning Af-subdif-
ferentials and M-normal cones (if one takes into account that both may be
nonconvex). Basically, this result should be attributed to Kruger and Mordukho-
vich [33] who established the same result for the cones introduced by Mordukho-
vich and the corresponding subdifferentials.

8.11. Theorem. Assume that the norm in X is Gâteaux differentiable. Let f be a
real-valued Lipschitz function defined in a neighbourhood of z. If f attains a local
minimum on S at z, then

0 G dj(z) + Nm(S, z).
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Proof. Let c > 0 be such that B(z, c) belongs to the domain of/and/(x) >/(z)
whenever x G S, ||x — z|| < c. Let L he a Lipschitz constant of/.

Consider the function gr(x, u) = f(x) + (r/2)||x — u\\2. It is easy to calculate
that

/(z) < inf{ gïx, u)\x G B(z, c), u G S) + kr,

where   kr = L/2r,   and   lim sup„^M p(x„, S) = lim sup„_>00 ||x„  - un\\  < kr
whenever x„, un is a minimizing sequence for gr (u G 5).

Let er = VA:r . According to the variational principle of Ekeland, there are
x' G X, u' G S such that ||x' — z|| < er and

/>r(x, u) = g fx, «) + er(||x - x'll +\\u - «'ID
attains a minimum on B(z, c) X S at (x\ u'). (We consider r sufficiently large to
ensure er < c.)

The function pr is obviously Lipschitz in u with Lipschitz constant L' near (x', «')
which is equivalent to r||x' — w'|| (as r -» oo). Then the function qr(x, u) = pr(x, u)
+ Lrp(u, S), where Lr = L' + (\/r), attains an unconditional minimum at (x', u')
(i.e. without the restriction u G S). It follows that

d-qr((x', u'); (A, v)) > 0,       V A G X, V v G X.
Let x* be the derivative of || • || at x' - u' if x' # w' or an arbitrary element of

the unit ball of A"* otherwise. Then the inequality above implies

d~f(x';h) + r\\x' - «'||<x,*, h-v) + er(\\h\\ + \\v\\) + Lrd~p(u', S;v) > 0
for all A, v.

Setting A = 0 in this inequality, we have

d~p(u', S;v) + er\\v\\ > (r/Lr)\\x' - «'||<xr*, C>,

or in other words, (r/Lr)\\x' — u'\\x* G d~p(u', S). Setting v = 0, we have

d-f(x';h) + er\\h\\ > -r\\x' - «'||<xr*, A>

so that r||x' - u'\\ ||xr*|| < L + V'L/2r and u* = -r\\x' - u'\\x? G d~f(x').
If r -» oo, then, obviously, x' -* z, «' -» z, er -» 0, (r/Lr)||x' — w'|| -» 1. Taking if

necessary a subsequence, we may assume that r\\x' — u'\\ converges to some A > 0.
If now x* is a weak* limit point of the sequence {x*}, then u* = -Ax* is a weak*
limit point of {u*} and x* G 3mp(z, S) so that -u* = Ax* G Nm(S, z) and u* G
dmf(z) which completes the proof.

9. Prederivatives and derivatives.
9.1. Definition. Let F be a mapping from a neighbourhood of z G X into Y and

ft a homogeneous set-valued mapping from X into y Consider the relations:

F(z + A) - F(z) c ft(A) + r(A)||A||Z?y, (1)

#(A)C    U    t~l(F(z + th)-F(z)) +r(h)\\h\\BY. (2)
0<i<l

We shall say that ft is:
an outerprederivative (or an outer Fréchetprederivative) of Fat z if (1) holds with

/•(A)^Oif ||A||->0;
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a weak outer prederivative (or an outer Gâteaux prederivative) if (1) holds with
r(h) —» 0 when A tends to zero along any finite-dimensional subspace of X;

an inner prederivative (or an inner Fréchet prederivative) of F at z if (2) holds with
K*)-»0if ||ä||-*0;

a waft /nne/- prederivative (or an inner Gâteaux prederivative) if (2) holds with
/•(A) -* 0 when A tends to zero along any finite-dimensional subspace of X.

A homogeneous mapping which is both an outer and an inner prederivative
(resp. a weak outer and a weak inner prederivative) will be called a derivative or a
Fréchet derivative (resp. a weak derivative or a Gâteaux derivative) of F at z.

A homogeneous mapping ft will be called a strict prederivative of F at z if

F(x + A) - F(x) G ft(A) + r(x, A)||A||£y (3)
where r(x, A) -> 0 if ||x - z|| -* 0, ||A|| -» 0.

9.2. Proposition. // ft is an owfer (or a weak outer) prederivative and ft is an
inner (or a weak inner) prederivative, then ft (A) c ft (A) for all A. Thus either
derivative, if it exists, is uniquely defined. In particular, any derivative is a weak
derivative.

Proof. Let y G ft (A). Then for any A > 0, there is 0 < f < 1 such that

Ay G t~\F(z + tXh) - F(z)) + Ar(AA)||A||By

c t~l&(t\h) + 2Xr(Xh)\\h\\BY
= Aft(A) + 2Ar(AA)||A||5y,

so that y G ft(A) + 2/-(AA)||A||J3y. This is true for any A > 0 and therefore y G
ft(A).

9.3. Remark. Clearly, usual Fréchet or strict Fréchet derivatives (see [7]) are,
respectively, derivatives and strict prederivatives in the sense just defined.

Let us give some more examples. Assume that we have a set 91 of linear operators
from X into Y such that for any A G A" there is A G 91 such that \\F(z + h) - F(z)
— Ah\\ < r(A)||A|| (or for any x and any A there is A G 9t such that ||F(x + A) —
F(x) — Ah\\ < r(x, A)||A||). Then the set-valued mapping ft(A) = UAS%Ah is an
outer prederivative (strict prederivative).

Derivate containers of Warga [56], [60] and screens and fans of Halkin [18], [19]
belong to this class. One can expect that derivatives defined by way of operators
have some additional good properties. Therefore the question when such prederiva-
tives exist seems to be important. We shall discuss it in the next section.

Various concepts of derivatives can be obtained using one or another tangent
cone to the graph of the mapping. Thus the set-valued mapping ft (A) = {y G
yKA,^) G A"£(Graph F, (z, F(z)))} is an outer prederivative of Fat z.

More important is the contingent derivative studied by Aubin [3]. It is defined in
a similar way to the tangent cone:

D -F(z)(h) = {>> G Y\(h,y) G F(Graph F, (z, F(z)))}.
9.4. Proposition. // the weak derivative of F at z exists, it coincides with D ~~F(z).

In particular, if dim Y < oo and F is Lipschitz, then D ~F(z) is the weak derivative
of F at z. If in addition dim X < oo then D ~F(z) is the derivative of F at z.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONSMOOTH ANALYSIS 35

Proof. Let ft(A) be a weak inner prederivative of F at z. Substituting eA/|| A|| for
A in (2) and setting A = e//||A||, we get

&(h) C      U       \-l(FX* + AA) - F(z)) + r(eA/||A||)||A||/?y.
0<X||A||<e

Since this is true for any e > 0, the inclusion ft(A) c D ~F(z)(h) follows from 8.3.
On the other hand, as follows from (1), D ~F(z)(h) c ft(A) whenever ft is an

outer prederivative. Thus if the derivative exists, it must coincide with D ~F(z)(h)
by virtue of 9.2.

If both X, Y are finite-dimensional and F is Lipschitz, then 8.5 shows that
D ~F(z) is an outer prederivative, hence the derivative of F at z. (Since F is
Lipschitz, the graph of the tangent cone to the graph of F cannot contain any
"vertical" vectors.) Finally, if only Y is finite-dimensional and F is Lipschitz, then
the restriction of D ~F(z) to every finite-dimensional subspace coincides with the
contingent derivative of the restriction of F to the corresponding linear manifold at
z.

9.5. Remark. If dim Y = oo, the contingent derivative can be trivial even for
Lipschitz mappings (we again refer to 8.6). If this happens, the only "derivatives"
we can work with are outer or strict prederivatives. The theorem below introduces
two classes of objects which will be the focus of our attention in the rest of the
paper.

9.6. Theorem. Let F be a continuous mapping from a neighbourhood of z G X into
Y. For any y* G Y*, set fy.(x) = <_y*, F(x)>. Then, for any e > 0, the function

(y*,h)->F?(z;y*,h) = de%.(z;h)

is the support function of an odd fan D°F(z) which is a strict prederivative of F at z,
and the function

(y*,h)^Fe+(z;y*,h) = de+fAz;h)

is the support function of a prefan De+F(z) which is an outer prederivative of F at z.

Proof. The function F°(z;y*, A) is everywhere more than -oo and it is sublinear
and weak* l.s.c. in y* (as the upper bound of a collection of linear continuous
functions). According to 8.2, it is also sublinear in A. Thus it is bisublinear and, by
1.4, the support function of a fan which we denote by D°F(z). As follows from 8.1,
O*, F(x + A) - F(x)> < Fe°(z;y*, A) if ||x - z|| < e, ||x + A - z|| < e; hence
D°F(z) is a strict prederivative of F at z. Finally, the equality

(y*, F(x + A) - F(x)> = (-y*, F(u - A) - F(«)>

for u = x + A shows that D°F(z) is an odd fan (see 1.7).
The second part can be proved similarly.
9.7. Definition. The prederivatives introduced above will be called the strict

e-prederivative and the outer e-prederivative of F at z. Both are always well defined
(i.e. the domain of each of them is all of A"). Observe that the strict e-prederivative
is bounded if and only if F is Lipschitz in the e-neighbourhood of z.
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Support functions of both prederivatives decrease as e|0 and converge respec-
tively to

F°(z;y*, A) = d%.(z;h)    and   F + (z;y*, A) = d+fy.(z;h)

which can fail to be weak* l.s.c. in_y*. But if they are, then the corresponding fan
and prefan will be denoted by D °F(z) and D +F(z). The first of them will be called
the upper derivative of F at z.

9.8. Proposition. Let ft be a strict (resp. an outer) prederivative of F at z. Then
for any 8 > 0, there is e > 0 such that

De°F(z)(h) c conv ft(A) + 5||A||fiy

(resp. Z)£+F(z)(A) c conv ft(A) + S||Apy) for all A, and (if D°F(z) and D+F(z)
exist)

D +F(z)(h) c D°F(z)(h) c ccmv" ft(A),        V A.

Proof. This follows immediately from 8.1, 9.1, 9.6.
9.9. Remark. The proposition above means that any strict prederivative is almost

a fan up to the convex closure of their values. Thus, among convex-valued strict
prederivatives only fans should be considered. This is an important conclusion
because the analytical virtues of fans enable us to extend all the propositions of the
smooth differential calculus involving strict derivatives to nonsmooth mappings
with fans as substitutes for strict derivatives.

However, it would be wrong to conclude that non-convex-valued strict prede-
rivatives are unnecessary. We refer to [60] for an example of a mapping F whose
derívate container (which is a nonconvex strict prederivative) satisfies conditions
guaranteeing that F is surjective whereas any D°F(z) fails to satisfy such a
condition.

9.10. Proposition. Let there exist a strict (resp. an outer)prederivative ft of F at z
with weakly compact values. Then D°F(z) (resp. D+F(z)) exists. If in addition the
values of ft are norm compact and F is Lipschitz, then D°F(z) converges to D°F(z) in
the topology of compact convergence.

Proof. If the values of ft are weakly compact, then s^y*, x) is continuous in.y*
in the Mackey topology r(Y*, Y). In view of 9.9, F°(z;y*, A) is also continuous in
this topology and hence weak* l.s.c. in>>*.

If ft is norm-compact-valued and F is Lipschitz, then D°F(z) G ^(X, Y) and 5.8
along with the first inclusion in 9.8 imply compact convergence of D®F(z) to
D°F(z).

9.11. Corollary. // A" and Y are finite-dimensional and F is Lipschitz, then
D°F(z) is a strict prederivative of F at z.

Proof. In this case compact and bounded convergences coincide and, as one can
easily see, the collection of bounded fans which are strict prederivatives is closed
under bounded convergence (not only in finite-dimensional spaces).
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9.12. Definition. If F is Lipschitz, then the mapping A -» F°(z;y*, A) is norm
continuous; hence the (bounded) fan

D*F(z)(y*) = {x* G A-*|F°(z;.y*, h) > <x*, A>, V A G X)
from y* into X* is well defined. It is clear that D*F(z) = (D°F(z))* if the latter
exists and, on the other hand,

D*F(z)(y*) = djy.(z),       Vy* G Y*.

We shall call D*F(z) the C-coderivative of F at z.
The last formula suggests one more definition. The set-valued mapping

D*F(z)(y*) = djy.(z)

(obviously homogeneous) will be called the M-coderivative of F at z. It follows
from 8.9 that D*F(z)(y*) c /J^FizX^*).

Observe that both definitions can be applied to non-Lipschitz mappings but
there is no guarantee that they will be well defined.

9.13. Remark. As follows from definitions, outer and strict prederivatives with-
stand scalar multiplication and summation which means, say, that the sum of
prederivatives is a prederivative of a sum. It is also easy to verify that the
composition of bounded outer or strict prederivatives is a prederivative (of the
corresponding type) of the composition of the mappings involved.

For upper derivatives, we obviously have (F + G)°(z;y*, A) < F°(z;y*, A) +
G°(z;y*, A) so that D°(F + G)(z)(h) c £>°F(z)(A) + D°G(z)(h) (if they exist) and
D*(F + G)(z)(y*) c D*F(z)(y*) + D*G(z)(y*). The situation with the composi-
tion operation is more complicated.

9.14. Proposition. Let F: X —» Y and G: Y —» W be Lipschitz about z G X and
v = F(z) respectively. If either F has a strict prederivative at z with norm compact
values or the adjoint to a fan which is a strict prederivative of G at v is norm-com-
pact-valued, then

D*(G » F)(z)(w*) c (/>c*F(z) » D*G(v))(w*),       V w* G W*.

Proof. We only need to show that

(G o F)\z;w*, A) < sup{G°(v;w*,y)\y G Z>°F(z)(A)}

in the first case (in view of 9.10, D°F(z) does exist) or

(G ° F)°(z; w*, A) < sup{F°(z;y*, h)\y* G D*G(v)(w*)}

(cf. 3.2, 3.3). We shall consider only the first case. The second can be treated
similarly.

Assume that F has a strict prederivative at z with norm compact values. For any
e > 0, 8 > 0, DgG(v) ° D°F(z) is a strict prederivative of G ° F at z; hence (see
9.8)

(G » F)°(z;w*, A) < sup{Gs°(t>;»v*,>0|.y G Dt°F(z)(h)}.
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According to 9.10, D°F(z) converges pointwise to D°F(z). Since the values of the
latter are norm compact (thanks to 9.8), we conclude that, for any A,

lim sup{Gs°(v;w*,y)\y G De°F(z)(h)} = sup{G>; w*,y)\y G ö°/(z)(A)}.

On the other hand, for any fixed w*, the functions G$(v;w*, •) are convex and
continuous and converge to G°(v;w*, •) as Sj,0. Since pointwise convergence of
continuous convex functions implies uniform convergence on every compact set,
the result follows.

10. Mean value theorem and the 1-extension property.

10.1  Proposition (Mean Value Theorem). Let F: A"-» y be defined and
Lipschitz in a neighbourhood of the line segment [z, z + A]. Then, for any y* G Y*,

(y*, F(z + h) - F(z)) < [lF + (z + th;y*, A) dt.
J0

In particular, if D +F(x) exists at every point of the line segment, then

F(z + A) - F(z) G flD+F(z + th)(h) dt.

(The integral in the last formula is understood as usual as the collection of
integrals of all of the measurable selections of the set-valued mapping t —>
D +F(z + th)(h).)

Proof. The first formula is an immediate corollary of the Radon-Nikodym
theorem because

(d/dt)(y*, F(z + th)) <F + (z + th;y*, A)
and the function on the right is obviously measurable in t. The second formula
follows directly from well-known formulas for subdifferentials of convex functions
[31]. (Observe that F+ is norm continuous iny* since F is Lipschitz.)

10.2. Corollary. Let F: X —» Y be Lipschitz in a neighbourhood of z G X. Then

FB°(z;y*, A) =     sup     F + (x;j>*,A) =     sup     F°(x;y*,h)
||x-z||<e ll*-*ll«!

and

Z)£°F(z)(A)=      V      D+F(x)(h)=     V      D°F(x)(h)
||x-z||<e \\x-z\\<t

if D +F(x) and D°F(x) exist for ail x, ||x - z|| < e.

Proof. As follows from 10.1, the quantity on the left in the first formula cannot
be greater than those on the right. On the other hand, F°(z;y*, A) > F*(x;y*, A) if
||X  -  Z||   <£.

10.3. Proposition. Let F be the same as in 10.1. Then, for any y* G Y*, there are
t G [0, 1] and x* G D*F(z + th)(y*) such that <>>*, F(z + A) - F(z)} = <x*, A>.

Proof. This results from the corresponding mean value theorem for Lipschitz
real-valued functions [36] (see also [20], [21]).
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We shall now turn to the problem that we mentioned before: in what situations
can the local behaviour of a Lipschitz mapping be described by sets of linear
operators?

10.4. Theorem. Let F be a Lipschitz mapping from a neighbourhood of z G X into
Y. If F has a strict prederivative at z with weakly compact values, then D°F(z) has
the 1 - extension property.

Proof. With no loss of generality we can assume that z = 0.
In view of Theorem 7.7, it is enough to show that the restriction of D °F(z) to any

finite-dimensional subspace of X has the 1-extension property. (Observe that
D°F(z) exists thanks to 9.10 and it is an odd bounded fan with weakly compact
values as follows from 9.6, 9.8.) This, in turn, will be proved if we show that, given
a finite-dimensional subspace U c X, for any y* G Y*, h G U, there is a linear
selection A of the restriction of D°F(z) to U such that

<>>*,>lA> = F0(z;.y*,A). (1)

Indeed, let S be the collection of all linear selections of the restriction of D°F(z)
to U, and let ft be a strict prederivative of F at z with weakly compact values.
Then S is convex and, in view of 9.8, A G S => Ah G D°F(z)(h) c ft(A), V A G U,
which yields weak precompactness of S in the topology of pointwise convergence
associated with the weak topology of Y [6, Chapter 3, §3]. But S is obviously closed
in this topology (and moreover complete because the values of ft are weakly
compact) so that, actually, S is compact; hence all sets ft (A) = {y G y|_y = Ah
for certain A G S} are closed.

We have ft (A) c D°F(z)(h) and, in view of (1),

8*(y*, ft (A)) = F°(z;y*, A) = 8*(y*, D°F(z)(h))

which implies the equality ft (A) = Z)°F(z)(A) because two closed convex sets
coincide if their support functions are equal.

Now let U be a finite dimensional subspace of X and W a complementary
subspace so that any x G X can be uniquely represented as a sum x = u + w,
u G U, w G W. Renorming X, if necessary, we can assume that U is a Euclidean
space in the induced norm. Let du denote the Lebesgue measure on _U.

Choose a mollifier / on U, that is to say, a continuously differentiable nonnega-
tive function which vanishes outside the unit ball and satisfies /vf(u) du = 1. For
any sufficiently small e > 0, let us define a mapping F£ from X into Y by

Ft(x) = e-l{ F(x -u)f(u/e)du
Ju

= e"1 f F(£ + w)f((u - 0/e) dt = Ft(u, w).
Ju

Clearly, F is well defined and continuously differentiable in u in a neighbourhood
of the origin (recall that z = 0). Let us denote by F£ the derivative of Fe in u. Then,
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given y* G y*, A G U, we have

(y*, F£'(x)A> = lim e-1 f t~l(y*, F(x - u + th) - F(x - u))f(u/e) du
no      Ju

< c"1 f F°(x - u;y*,h)f(u/e) du
•>u

< sup   F\x-u;y*,h). (2)
ueeBu

We also have F(x + A) - F(x) G ft(A) + /•(*, A)||A||fiy so that

(y*, F£'(x)A> <limr'f (se(y*, h) + r(x - u, th)\\y*\\ ||A||)/(«/e) du,

<s&(y*,h) + re(x)\\y*\\\\h\\,

where r£(x) = lim sup,,,,^,, sup||u||<£ r(x - k, A) -► 0 if \\x\\ -»0, e ->0.
It follows that, for any AGÍ/,

F£'(x)A G (2(A) + r,(*)||A||*y. (3)
Now fix v* G y*, e E. U, and let sequences x„ —> 0, í„|0 be such that

C '<»*. ̂ .(^ + Í,*) - n^)> ^ -P^*; v*, e). (4)
Take e„|0 and 0 < A„ < 1 in such a way that

(v*, F„(x„ + tne) - F(xn)) = tn{v*, Ane), (5)

where F„ = F^,An = F„'(x„ + A„/„e).
Then (3) implies that, for any A G U, Anh G ft(A) + r„||A||Ziy, where rn =

reSx„ + t„e)->0 as n—»oo. It follows that the sequence {An} is uniformly
bounded, hence equicontinuous, and (since ft (A) is weakly precompact for any hi)
for each AGÍ/ the sequence {Anh} is weakly precompact.

This implies that {An} is precompact in the topology of pointwise convergence
associated with the weak topology of Y. Let A be a limit point of the sequence.
Then

lim inf (y*, A„h) < (y*, Ah) < lim sup <>>*, A„h) (6)

and (2) implies

(y*, Ah) < lim sup    sup   F°(x„ + tne — u;y*, A)
«-°°       ||u||<e„

< F°(z;y*, A),       V.y* G Y*, V A G U

(because F° is u.s.c. in the first argument). This is the same as Ah G £)°F(z)(A) for
all A G U which means that A is a linear selection of D°F(z) on Í/.

On the other hand, as follows from (4)-(6),

(v*,Ae) = F°(z;y*,e).
This completes the proof.

10.5. Corollary. // for some e > 0 the e-prederivative D°F(z) has weakly
compact values, then D°F(z) has the I-extension property for any 8 < e.
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Proof. This can be obtained from the theorem using 10.2 and compactness
arguments similar to those in the proof of the theorem.

Observe that it would be wrong to assert that any strict prederivative majorized
by D°F(z) has the 1-extension property.

10.6. Corollary. If Y is a reflexive space, then strict e-prederivatives and upper
derivatives of Lipschitz mappings into Y have the l-extension property.

10.7. Proposition. The C-coderivative D*F(z) of a mapping F: X -» Y which is
Lipschitz in a neighbourhood of z has the 1-extension property.

Proof. Fix a finite collection {y*, . . . ,y*} of elements of Y* and consider the
mapping/: X -> R" defined by

f(x) = ((y*, F(x)>, . . ., {y*n, F(x)>)

which is obviously Lipschitz.
Then for any A = (A„ . . . , \) G R", f(z;X, A) = F°(z;2, V,*, A) which

means that D*f(z) is the restriction of D*F(z) to the subspace spanned by

or, • • • >#}•
According to Theorem 10.4, D°f(z) has the l-extension property; hence D*f(z)

also has the l-extension property. It remains to observe that the values of D*F(z)
are weak* compact and apply Theorem 7.7.

10.8. Definition. Let both X and Y be finite-dimensional. Then any locally
Lipschitz mapping from X into Y is almost everywhere differentiable. Let F:
X —> Y be Lipschitz in a neighbourhood of z. The set

3F(z) = conv lim F'(x)
x—*z

(the convex hull of all limits of sequences of derivatives F'(xn), where x„ -» z and F
is differentiable at every x„) is called the generalized Jacobian of F at z [9], [12].

Clearly, 9F(z) is a bounded closed convex set of linear operators from X into Y.

10.9. Proposition. Let X and Y be finite-dimensional and F be a Lipschitz
mapping from a neighbourhood of z G X into Y. Then the fan generated by oF(z)
coincides with D°F(z).

Proof. As follows from [8] and 8.9, for any.y* G Y*,

D*F(z)(y*) = conv   Hm f;.(x)
x->G

where fy.(x) = (y*, F(x)) and G c X is an arbitrary set whose complement has
measure zero.

Let G consist of all those points where F is differentiable. Then fy.(x) =
(F'(x))*(y*) for any x G G; hence D*F(z)(y*) = {A*y*\A G 3F(z)}, which is the
same as claimed.

It would probably be wrong to conclude that 3F(z) contains all linear selections
of D °F(z). This is a likely explanation for the difficulties encountered in extending
the chain rule using generalized Jacobians (cf. [11] and 9.14).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



42 A. D. IOFFE

11. Surjection theorems and applications. It is one of the central results of the
classical differential calculus that a mapping F: X -* Y, strictly differentiable at z,
maps neighbourhoods of z onto neighbourhoods of F(z), provided the derivative
F'(z) is surjective (i.e. the image of F'(z) is all of Y). This section contains various
extensions of this result to nonsmooth mappings and related results such as
versions of Ljusternik's theorem, implicit function theorem and inverse mapping
theorem. We refer to [9], [18], [19], [25], [38], [46], [56]-[60] for earlier results on the
subject.

11.1. Definition. Let F be a mapping from a neighbourhood of z G X into Y,
and let S c X contain z. The function

t -h> io(F, S, z)(t) = sup{r > 0|fi(F(z), r) C F(B(z, t) n S)}
will be called the modulus of surjection oiFonSatz. The quantity

y(F, S, z) - lim inf /_1w(F, S, z)(t)
i-»0

will be called the constant of surjection of F on S at z.

11.2. Lemma. Let F: X —» Y be a continuous mapping defined in a neighbourhood of
z, let y =£ F(z), and let for any n = 1, 2, . . .

Dn = {y* G y*| ||^*|| < 1, {y*,y - F(z)) > (1 - (l/n))||y - F(z)||}.

Letflx) = \\y - F(x)\\. Then for any e > 0,
d+f(z;h) <   lim      sup    Ft+(z;y*, A),        VA.

Proof. Fix A G X. Then F(z + tu) -* F(z) if /|0, u -»• A. Choose arbitrarily
y*(t, u) G y* such that ||.y*(i, m)|| = 1 and

(y*(t, u),   y-F(z + tu)) = \\y - F(z + tu)\\.

Then>>*(/, u) G Dn if t is sufficiently small and u is sufficiently close to A. We have
therefore

d+f(z; A) = lim sup f-»(|y - ^ + '")|| HI* " *t*)||)
40

< lim sup t~l(y*(t, u), F(z) - F(z + tu))
tío

< lim sup       sup      r~\-y*(t, u), F(z + tw) — F(z))
<4,0 0<t||w||<c

u->h ||w-A||<e

= lim sup Fe+(z;-y*(t,u),h)
40

u—»A

< hm      sup    Fe+(z;y*,h).
"~"M y'e-Dn

11.3. Remark. Observe that (since y ^ F(z)) every Dn is a weak* closed convex
subset of the unit ball of Y* such that ||.y*|| > 1 -(1/n) whenever .y* G Z>„.
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11.4. Lemma. Let F: X —» Y be continuous in a neighbourhood of z G S, let t > 0
be such that B(z, t) belongs to the domain of F, and let y £ F(B(z, t) n S). Set
k = \\y - F(z)\\, fix) = \\y - F(x)\\. Then for any 0<t <t there is w G S such
that || z — w|| < t and the function

g(x)=f(x) + (k/T)\\x-w\\
attains at w its minimum on B(z, t) n 5.

Proof. We have fix) > 0 for all x G B(z, t) n S and fiz) = k. It remains to
apply the variational principle of Ekeland [16].

11.5. Theorem. Let F be continuous near z. Then

t~xu(F, S, z)(t) >     inf      lim sl(De+F(x), T(S, x)).
xes

Proof. It follows from 11.4 that d+f(w;h) + (*/r)||A|| > 0, V A G T(S, w). In
view of Lemma 11.2, this implies that

lim      sup    Fe+(w;y*, h) + (*/t)||A|| > 0,       V A G T(S, w), (1)

where   D„ = {y*\ \\y*\\ < 1,   (y*,y - F(w)) > (1 - (l/n))||.y - F(w)||}.   Since
y ^ F(w), it follows from 11.3 that {/)„} G ty (see 5.9) and we have from (1)

-lim sl(De+F(w), T(S, w)) + (k/r) > 0
40

or

T-'lLy - F(>v)|| = k/r > lim sl(De+F(w), T(S, w))

>      inf      Um sl(£>+F(x), T(S, x)) = a.
\\X-Z\\<I      £|0 C V     ' V "

Since t < t is arbitrary, it follows that any y G Y such that ||_y — F(z)\\ < ta
belongs to F(B(z, t) n S) for certain t.

11.6. Remark. As follows from 5.15, sl(D£+F(x), 7'(5', x)) can be replaced by
C(De+F(x), T(S, x)) if F is Fréchet differentiable at every x and S is convex.

Let  ft  be a strict prederivative of F at z, i.e. F(x + h) - F(x) G ft(A) +
r(x,h)\\h\\BY. We set

r(X) = lim sup{r(x, A)| ||x - z|| < A, ||A|| < 8}.
c|0

11.7. Theorem. Assume that F is Lipschitz in a neighbourhood of z with constant
L. Then the ratio u(F, S, z)(t)/t is not less than any of the following quantities:

iA ■ f ,-      sl(Z?£+F(x), TS(S, x)) - L8
ax(t) =     inf sup  hm-,

ll*-*IK' !>o   'I« 1 + 5
xes

(here we set T0(S, x) = T(S, x)),

. f sl(ft, TS(S, x))-LS- r(\\x - z|| + t)
a2(t) =     inf sup  -—-

\\*-z\\<l s>o ! + °
«es
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a3(t) = sup 1 + 8

for any bounded fan ft which is a strict prederivative of F at z;

Sl(D?F(z), T(S, z)) - L8- [i(t)
s>o

where n(t) = sup{\d~p(z, S;h) - d-p(x, S;h)\ | ||x - z|| < /, ||A|| < 1}.

Proof. Let>>, k, w be as above. The function g(x) is then Lipschitz with constant
not exceeding L + (k/r) and (since g attains its minimum on B(z, t) n S at w),

q(x) = g(x) + (L + (k/r))p(x, S) > q(w) = g(w)

for all x G B(z, t). Since w G int B(z, t), it follows that
0<d~q(w;h) <d+g(w;h) + (L + (k/r))d~p(w, S;h),       V A G X     (2)

and, as in 11.4, we deduce from here that for any e > 0, 8 > 0

lim      sup    Ft+(w;y*,h) + (k/r)\\h\\+(L + (k/T))8\\h\\>0 (3)
n^°°  y*e-D„

for any A G TS(S, w). It follows that

k/r > sl(D+F(w), TS(S, w)) - (L + (k/r))8

or

sl(De+F(w), TS(S, w)) - L8
k/T>-Ws-

and the same arguments as in 11.4 give the inequality w(F, S, z)(t)/t > ax(t).
To prove that u(F, S, z)(t) > ta2(t), we note that, for any A > 0, F(x + A) -

F(x) G ft^(A) = ft(A) + r(A)||A||fiy if ||x - z|| < A; hence s\(Dt+F(x), K) >
sl(ft^, AT) > sl(ft, K) - r(X) for any cone A" (see 5.11).

Let us prove finally that w(F, S, z)(t) > ta3(t). For this purpose it suffices to
show that

4T.s,,)(,)/, > sup «««'))-«-*)
S>0 1  + °

and then apply this (for any fixed /) to a sequence of equivalent norms in Y*
converging to || • || and such that

sl(Z>,°F(z), TS(S, z), |-1„) -^ S1(Z>,°, F(z), TS(S, z)).
If e + t < t, then Fe+(w;y*, A) < F°(z;y*, A) and we have from (2), (3)

hm      sup    F?(z;y*, A) + (A/t)||A|| + (L + (*/t))||A|| - ,x(t)\\h\\ > 0

whenever A G TS(S, z). The rest of the proof is the same.
11.8. Remark. If there is an equivalent locally uniformly convex norm in Y* or if

there is an equivalent strictly convex norm and D°F(x) are norm-compact-valued,
then it is possible to replace slopes si and SI by corresponding Banach constants
(using 5.19). In general, 5.14 allows us to write other, rougher but more easily
computable, estimations for moduli of surjection involving Banach constants.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONSMOOTH ANALYSIS 45

11.9. Theorem. Let F be Lipschitz in a neighbourhood of z. Then

u(F, S, z)(t)/t >     inf      lim b(e, x),
||jt-z||<f   e->0

xes

where

b(e, x) = sl*((/)£°F(x))*, NC(S, x))

in the general case;

b(e, x) = sl*((/)£°F(x))*, Nm(S, x)),

if there is a Gâteaux differentiable equivalent norm in X;

b(e, x) = A(x) = C*(D*F(x), Nc(x)),
if there is an equivalent locally uniformly convex norm in Y*;

b(e, x) = b(x) = C*(DZF(x), Nm(S, x))
if there are both an equivalent Gâteaux differentiable norm in X and an equivalent
locally uniformly convex norm in Y*.

Proof. We start as in 11.7. It follows that

0 G dcg(w) + (L+ (*A))3cpK S). (4)
Lemma 11.2 and Corollary 10.2 imply that

d°f(w; A) <  lim      sup    F°(w;y*, A)
n^°°  y'e-D„

so that

3</(h0 C D   ^nv"     U    (De°F(w))*(y*)
" y'^-Dn

= H   W{{D?F(w))*, -/>„) (5)
n

(see 5.10); hence we have from (4)

0 = inf{||x* + u*\\ |x* G 3cg(w), u* G NC(S, w)}

= inf{||x* + m*|| |x* G dj(w) + (k/r)BY„ u* G NC(S, w)}

> inf{||x* + «*|| |x* G dj(w), u* G NC(S, w)} - (k/j)

which, along with (5), yields

k/r > sl*((D°F(w))*, NC(S, w)). (6)

If X has an equivalent Gâteaux differentiable norm, then we can assume that
|| • || is such a norm (because si* depends continuously on the norm in A"). Using
8.9, 8.11, we write instead of (4):

0 G dmg(w) + Nm(S, w) c 3cg(>v) + Nm(S, w)

from which we conclude as above that

k/r > sl*((D?F(w))*, Nm(S, w)). (8)
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Assume now that the norm in Y* is locally uniformly convex. Then we have, as
in 11.2, fix + th) - fix) < (y*(t, x), F(x + th) - F(x)>, where {-y*(t, x), y -
F(x + th)) = ||j> - F(x + /A)||. Since F(x + th) -+ F(w) if t -> 0 and x -» w and
y =£ F(w), it follows that y*(t, x) norm converges to the unique y* such that
(-y*,y — F(h>)> = ||>> — F(w)11. Therefore

d°f(w;h)<d%.(w;h), (9)
d-fiw;h)<d-fy.(w;h), (10)

where, as above, fix) = ||_y — F(x)|| and/v.(x) = <.y*, F(x)>.
It follows from (9) that dcf(w) c D*(w)(y*) which, together with (4), yields

0 = inf{||x* + m*|| |x* G D*F(w)(y*) + (k/r)By., u* G NC(S, w)}

> inf{||x* + u*|| |x* G D*(w)(y*), u* G NC(S, w)} - (k/r)

or

k/r > C*(D*F(w), NC(S, w)). (11)
If, in addition, X has an equivalent Gâteaux differentiable norm, then (10) and

the left inclusion in (7) imply in a similar way:

k/r > C*(D¿F(w), Nm(S, w)). (12)
Generally, if there is an equivalent locally uniformly convex norm in Y* (while

|| • || may be different), then we shall get (11), (12), applying them subsequently to a
sequence of such norms converging to || • ||.

The desired inequalities are obtained from (7), (8), (11), (12) precisely in the same
way as in the two theorems above.

11.10. Remark. If dim Y < oo, another surjection theorem follows from
Corollary 6.3: if a bounded fan ft is an outer prederivative of F at z (i.e.
F(z + A) - F(z) G ft(A) + r(h)\\h\\BY) and if S is a closed convex cone, then
w(F, S, z)(t) > t(C(&, S) - r(t)). This result is akin to a theorem of Halkin [19]
(for a more detailed comparison see [29]).

We also note that the situation with surjection theorems is very similar to what
occurs in the classical smooth calculus: if the range space is finite-dimensional, we
need only a derivative to establish the surjection property while, in the general case,
we must either scan a neighbourhood or use strict derivatives.

We now proceed to consider certain applications including the Ljusternik type
theorems, inverse mapping theorems and implicit function theorems.

11.11. Definition. Let, again, F be a mapping from a neighbourhood of
z G S C X into y. Given ay G Y, we denote ty(F, S) = {x G S\F(x) = y). The
quantity

A(F, S, z)(t) = inf{T, > 0|p(z, £,(F, S)) < r, whenever ||.y - F(z)|| < t)

will be called the modulus of regularity of F on S at z. Obviously A(F, S, z)(-) is the
minimal element in the collection of functions tj(-) satisfying p(z, ty(F, S)) <
v(\\y - m\\)-
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11.12. Proposition. A(F, S, z)(t) = inf{r > 0|w(F, S, z)(t) > t}. In particular, if
u(F, S, z)(t) > tc (c >0)forO <t < t0, then X(F, S, z)(t) < t/c for 0 < / < tjc.

Proof. This follows directly from definitions.
Combining this result with the preceding ones, we can obtain various nonsmooth

extensions of the theorem of Ljusternik which states that for a mapping F, strictly
differentiable at z and having a surjective derivative F'(z), the inequality
p(x, £/-w(F)) < k\\F(x) — F(z)|| holds for certain k > 0 and all x sufficiently close
toz.

We shall summarize some of such possible extensions in the following theorem.

11.13. Theorem. Let F: X -^> Y be defined on S n U where S is closed and U
open. Then the inequality

X(F, S, x)(t) < t/c

is valid for all x G S, t > 0 such that B(x, t + r) c U for certain r > 0 (depending
on x) under any of the following assumptions:

(A) F is continuous and

c=     inf      lim s\(D+F(u), T(S, u)) > 0;
ueSni/  e-»0

l) F i
(B.)

(B) F is Lipschitz and either of (B,)-(B4) is valid:

sl(De+F(u), TS(S, u))- L8
inf      sup  -——-> 0,

uesnu e>0 l + o
«>0

(Bj)
Sl(/),°F(x), TS(S, x))-LS- ji(t, x)

C =   SUp    -r——- > 0
«>o ' + o

(where L is the Lipschitz constant of F and ¡i(t, x) is defined as n(t) in 11.7 with z
replaced by x and x by u),

(B3)

c =     inf      lim sl*((Z)£°F(«)*, Nc(S, «)) > 0,
»ESni/   e^O vv '

(B4) there is an equivalent Gâteaux differentiable norm in X and

c =     inf     sl*(Oc*F(«), Nm(S, «)) > 0;
uesn u

(C) there is an equivalent locally uniformly convex norm in Y* and c is as in any of
the cases considered above but with si and SI replaced by C, si* replaced by C* and, in
(B4), with D* replaced by D*.

The assumption (C) is fulfilled in particular if dim Y < oo (cf. [24] in this
connection where the case Y = R was considered). For an alternative interpreta-
tion of results of such sort see [17].
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11.14. Theorem (Inverse Mapping Theorem). Let F be a Lipschitz mapping from
a neighbourhood of z G X into Y. Let a be the upper bound of those t > 0 which
satisfy

Sl(A°F(z)) > 0,        C*(D?F(z)) = C*(D°F(z), {0}) > 0
(and such that B(z, t) belongs to the domain of F). Then for any 0 < r < a the
restriction of F to U(z, r) is a Lipschitz homeomorphism onto an open neighbourhood
of F(z) with a Lipschitz constant of the inverse mapping not more than
(C*(D?F(z))~\

Proof. It follows from 11.7 that F(U(z, r)) is a neighbourhood of z. To prove
that it is an open set, take some u belonging to U(z, r), and let e > 0 be such that
r + e <a. Then De+F(u)(h) c Z)T°+£F(z)(A) for any A so that

sl(Z)£+F(u),|-|)>sl(/)T0+eF(z),|-|)

for any equivalent norm | • |.
Choose a norm | • | sufficiently close to || ■ || and satisfying sl(Z)T°+£F(z), | • |) = a

> 0. Then
sl(De+F(u), \-\)>a.

This is true for any u G U(z, r) and Theorem 11.7 shows that, for any such u, the
set F(U(z, r)) contains a neighbourhood of F(u).

Now if x, m G U(z, r),y = F(x), v = F(u), then
y - v = F(x) - F(u) G /)T°F(z)(x - u);

hence ||>- - v\\ > C*(DT°F(z))\\x - u\\ > 0 or, in other words,

ll^-'Cv) - F-\v)\\ < (C*(A°F(z)))-V - v\\.
11.15. Corollary. Let F be a continuous mapping from a neighbourhood of z into

Y. Assume that there is a strict prederivative ft of F at z such that for some t

Sl(ft) > KO,        C*(&) > r(t)
(see 11.6 for the definition of /"(•)). Then for any 0 < r < a where a is the upper
bound of such t, the restriction of F on U(z, r) is a homeomorphism onto an open
neighbourhood of F(z) and the inverse mapping is Lipschitz  with constant  not
exceeding (C*(ft) - r(r))~\

Proof. This follows from the proof of the theorem. We leave it to the reader to
adjust the proof as well as to derive alternative versions of the inverse mapping
theorem connected with other criteria for surjection.

11.16. Theorem (Implicit Function Theorem). Let F be a continuous mapping
from a neighbourhood of (x0, y0) G X X Y into W. Assume that there is a fan ft
from Y into W such that

F(x,y + A) - F(x,y) G ft(A) + r(x,y, h)\\h\\Bw,
where r(x,y, A) -> 0 if x -+ x0, y -, y0, A -+ 0. // Sl(ft) > 0 and C*(ft) > 0, then
there are neighbourhoods U of x0, V ofy0 and a continuous mapping f from U into Y
such that relations F(x, y) = F(x0, y0) and y = fix) are equivalent for x G U,
y G V. If, in addition, F is Lipschitz, then f is also Lipschitz.
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Proof. Let
r(t, s) = lim sup{r(x,y, A)| ||x - x0|| < /, \\y - .y0|| < s, \\h\\ <8}.

Then r(t, s) -> 0 if / -> 0, s -> 0. Take r > 0 and s > 0 so small that Sl(ft) - r(t, s)
> 0 and C*(ft) — r(t, s) > 0. We can assume also, taking if necessary a suitable
equivalent norm, that sl(ft) — r(t, s) > 0.

It is obvious that, for any fixed x G U(x0, t),
inf       lim sl(.DvÎF(x,.y)) > sl(ft) - r(t, s) = c > 0

\\y-y0\\<s   ô->0

(because DygF(x,y)(h) c ft(A) + r(t, s)||Apy, Dy^F(x,y) being the outer 5-prede-
rivative of F(x, •) at y). Therefore, according to 11.5, U(F(x, y0), es) c
F(x, U(y0, s)). Let 0 < e < t be such that ||F(x,>>0) — F(x0, _y0)|| < cs whenever
||jc — x0|| < e. Then F(x0, y0) c F(x, U(y0, s)) for any such x.

On the other hand, F(x, •) is one-to-one on U(y0, s) (this follows from 11.15
because Z^Fix.^XA) c ft(A) + r(t, s)\\h\\Bw for all A and hence C*(Dy°sF(x,y0))
> C*(ft) - r(t, s)).

Thus for any x G U = U(x0, e), there is precisely one y G V = U(yQ, s) such
that F(x,y) = F(x0,y0). Denote this y by fix). It remains to prove that / is
continuous and Lipschitz if F has these properties.

Let x, w G U. Then

0 = F(u,f(u)) - F(x,f(x))
= F(u,f(u)) - F(x,f(u)) + F(x,f(u)) - F(x,f(x))
EF(u,f(u)) - F(x,f(u)) + Dy°sF(x,y0)(f(u)-f(x))

or F(x,f(u)) - F(u,f(u)) G Dy°sF(x,y0)(f(u) - fix)); hence

||F(x,/(w)) - F(u,f(u))\\ > C*(Dy°sF(x,y0))\\fiu) - f(x)\\

>(C*(&)-r(t,s))\\f(u)-f(x)\\
which yields the desired conclusion.

Observe that we have been dealing in this proof with what can be called
"partial" outer and strict prederivatives.

11.17. Remark. There are other ways to derive implicit function theorems using
what has been obtained before in this paper. In fact, this concerns all the other
results of this section as well, including theorems on surjection which have been
considered here more thoroughly than other results.

For instance, upon examining the proof of 11.9, it is not difficult to note that in
the second part of 11.9 (Z)£°F(x))* can be replaced by a weaker coderivative
connected with d+fy. in the same way as D*F(x) relates to d~fy.. This would
enable us to consider outer prederivatives ft defined by sets 9t of operators with
which we can also associate dual objects

&*(y*) = {x*\x* = A*y* for certaine G 91}
and to prove a corresponding surjection theorem. Such a result would be closely
related to results of Warga involving derívate containers which, as we have already
mentioned, are strict prederivatives generated by (nonconvex, in general) sets of
linear operators defined via approximation by smooth mappings.
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It also seems possible to prove surjection theorems involving weak outer prede-
rivatives and so on.

12. Examples. In this section we shall calculate or estimate strict prederivatives,
upper derivatives or C-coderivatives of several specific mappings without going too
far into details. The last example gives an idea of how higher derivatives can be
defined in the framework of the approach developed here.

12.1. Let F be a compact metrizable space. Consider the following composition
operator F from Cm(T) into C"(T) (the spaces of continuous mappings from T
into Rm and R" respectively):

F(x(-))(t) = <p(t,x(t)),
where <p(t, x) is a continuous function on T X Rm with values in R".

Let z(-) e Cm(T) be given. We assume that there are 8 > 0 and k > 0 such that
||<p(f, x) - <p(t, x')|| < k\\x - x'll if ||x - z(0ll < 8, ||x' - z(r)|| < 8. Then F is
Lipschitz in a neighbourhood of z( • ) with constant k.

Let se(t, q*, A) = <p°(?, z(t);q*, A) (q* G R", A G Rm). Then s£ is continuous in
(q*, A) and lower semicontinuous in t. If we denote by ft£(r) the strict e-prederiva-
tive of <p(t, •) at z(t), that is to say, the fan whose support function is st(t, -, •),
then for any A() G Cm(t), the set-valued mapping / -► fte(r) is l.s.c. By the
selection theorem of Michael [40], for any t0 G T and any y0 G ft£(f0), there is a
continuous selection of this set-valued mapping which passes through (t0,y0)-
Denote by ft(A(-)) the collection of all continuous selections of ft£(r)(A(r)).

Then ft is a bounded fan from Cm(T) into C"(T). Boundedness and homogene-
ity of ft are obvious; it is also clear that the values of ft are closed and convex. Let
us verify that ft satisfies (1.1.4) or, which is the same, that the support function of
ft is convex in A( • ).

To prove this, we first note that any y* G (C(T))* can be represented in the
form

<y*,y(-)) = [(î(t),y(t))dti
T

where ¡i is a probability Radon measure on T and £(•) is a ju-summable mapping
from F into R", and ||.y*|| = /VllKOfl dP-

It is sufficient to prove convexity of s^y*, h(-)) only for those y* which
correspond to continuous £(•) because such>>* are norm dense in Y* = (C(T))*.
If £(•) is continuous, then the function / -» st(t, £(f), A(r)) is l.s.c. and we can find a
sequence of continuous selections of fte(r)(A(r)) such that

sup <£(/), qk(t)) = st(t, t(t), h(t))
k

for all /. Using standard unit partition techniques, we can, for any 8 > 0, transform
{qk(-)} into another sequence {yk(-)} (also formed by continuous selections) such
that

<{(/), ä(0> >     max     <{(0, *,(')> - 8 2 2-
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and prove that

s&(y*,h(-)) = [se(t,t(t),h(t))dp.

It is easy to conclude from here that

F°(z(-);y*,h(-)) < (<p\t,z(t);t(t),h(t))dp.

Simple examples show that the upper derivative of F does not necessarily exist.
For instance, let <p(t, x) = t sin(x/r) if / ¥= 0 and <p(0, x) = 0(F=[-l, 1], m = n
= 1). Then, if z(t) = 0,

v0,   if í = 0,

and the corresponding multifunction has no continuous selections.
To summarize all said, we can assert that, more generally, if t —» ft(f) is a

mapping from T into <5(Rm, R") such that
(i)Ssiiy(q*,h)<k\\q*\\\\h\\,
(ii) s^^q*, A) is l.s.c. in t, and
(iii) <p(t, x + A) - <p(t, x) G ft(í)(A) + r(t, x, A)||APj,.,

where r(t, x, A) —» 0 uniformly in t if x —» z(t) and A —» 0, then the set-valued
mapping A(-) -» ft(A(-)) defined by ft(A(-)) = {y(-) G C(T)\y(t) G â(t)(h(t)),
V f} is a bounded fan which is a strict prederivative of F at z(-) and

*sCv*, *(•)) = [ swMO, h(t)) dp.

The adjoint to ft is defined as follows: if y* — (£(•), /*)» then ft*(_y*) contains
those x* G (Cm(T))* which can be represented by pairs (n(-), p) such that tj(-) is a
measurable selection of the set-valued mapping t —> ft*(i)(£(0)-

12.2. Consider the same mapping as above but under a different set of assump-
tions. Specifically, we assume that T is equipped with a fixed positive Radon
measure A and

(a) for any x G Rm, the mapping <p(-, x) is A-summable;
(b) there exist e > 0 and a A-summable positive function k(t) such that

\\<p(t, x) - <p(r, x')|| < A:(i)||x - x'll
whenever ||x - z(/)|| < e, ||x' - z(/)|| < e.

Then F is a Lipschitz mapping from a neighbourhood of z(-) G Cm(T) into
LX(T,X,R").

In this case the calculation is even simpler. The final result is the following: if
/ -> ft(r) is a mapping from T into <$(Rm, R") such that

(i)||ft(0H < ¿(i) for ahí g T;
(ii) the set-valued mapping t —» ft(r)(A(/)) is A-measurable for any A(-) G Cm(T);
(iii) <p(t, x + A) - <p(i, x) G ft(/)(A) + r(t, x, A)||A||fiÄ„, where r(t, x, A) > 0 and

Um   f sup{r(r, x, A)| ||x - z(r)|| < e, \\h\\ < e) dX = 0,
e_»0  JT
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then  ft(A(-)) = {y(-) G LX(T, X, R")\y(t) G ft(r)(A(/)),  V :}  is a bounded fan
from Cm(T) into LX(T, X, R") which is a strict prederivative of F at z().

Furthermore, for any>>*(•) G LX(T, X, R"), we have

ss(y*(-), h(-)) = {s&0)(y*(t), Kt)) dX

and (cf. [11])

F°(z(-);y*(-), h(-)) < f<p°{t, z(t);y*(t);h(t)) dX,

so that any element of D°F(z())(A()) must be a measurable selection of the
multifunction / -* D°<p(t, z(t))(h(t)) and, for any >>*(•) G Lœ(T, A, R"), the corre-
sponding value of the C-coderivative D*F(z()) must belong to the collection of
functionals x* G (Cm(T))* which can be represented in the form <x*, A(-)> =
¡r(p(t), h(t)) dX where p() is A-summable and p(t) G D*tp(t, z(t))(y*(t)) almost
everywhere.

12.3. Let T = [0, 1], m = n and <p be the same as above. Consider the following
mapping from C(T) into itself:

FOt()xo-*(*) +£W*(*)) *>
-'o

i.e. the composition of the one considered in 12.2 and a linear mapping. It is not
difficult to write all formulas using 12.2.

If ft(/) satisfies conditions (i)-(iii) of 12.2, then

<W)) = {A'} e C»(T)\y(t) G h(t) + JT'«(t)(A(t)) dr) (1)
is a strict prederivative of F at z(-) and, for any^* — (£(), p) G (C(T))*,

*«(>*, a(-)) =/o'[<í(0, M')> * + »««(JT1«') *. *('))] *:
F°(z(-);>-*, A(-)) < ¡\\t,z(t);i{t),h{t))dp

and O^FÍzíOX^*) belongs to the collection of those x* G (C(T))* which can be
represented in the form:

<x*. A(-)> = f!<€(0, Kt)) dp + (\v(t), h(t)) dt,

where r/(i) is a measurable selection of the set-valued mapping / —>
#*(')(/,' «t) dp).

As follows from (1), F has a strict prederivative with norm compact values; in
particular D°F(z(-)) exists. This, in turn, shows that the mapping considered in
12.2 also has an upper derivative at z(-). Moreover, it can be shown that in the case
considered now, the upper derivative is also a strict prederivative, obviously, the
minimal one.

Another important property of F is that, whenever a strict prederivative ft of F
at z(-) is defined by (1), we have C(ft) > 0 and C*(ft) > 0 so that (since any
separable Banach space has an equivalent norm with a strictly convex dual [2]), F
is necessarily a Lipschitz homeomorphism about z(-).
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Let us estimate C(ft) and C*(ft). Let y* ~ (£(•), p) G (C(T))* he given. We
must verify that there is c > 0 independent of y* such that

pS<1(/0i<«^w^'i+/0'Mrí(T)4A(')W< -c^-
In view of condition (i) of 12.2, we can be sure that this quantity cannot be greater
than

„a . (Ll(m h{t)> d>i+fok{mt)i I ii^n *) 4
On the other hand, the latter quantity will not change if we extend the calculation
of the lower bound to all A(-) G Lx with HA^)!!«, < 1. Therefore the lower bound
we are trying to estimate cannot be greater than

inf(-/j||(0||x(0 dp +folk(t)x(t)(f)\í(r)\\ dp) dt)

where the infimum is being sought on the collection of characteristic functions x(0
of measurable subsets of [0, 1].

Changing variables in this integral, we can express the quantity as follows:

inf(- fl(\\t(t)\\x(t) -||€(0|| f'k(r)x(r) dr) dp). (2)
\  Jo v •'o '     /

Since k(■ ) is summable, we can find 8 > 0 such that /E k(t) dt <\ whenever
mes E < 8 (mes stands for the Lebesgue measure). Find E c [0, 1] with mes E < 8
and such that

•l...
\\\i(t)\\dp>8\\y*\\=8\ \\i(t)\dpJ p Jq

(which is, of course, possible) and let x(0 be the characteristic function of E. Then
we see that (2 ) is not greater than

-/(||€(0||- (\/2)\\i(t)\)dp < -(8/2)||^||.

It remains to set c = 8/2.
To show that C*(ft) is positive, we must prove the existence of c > 0 such that

inf {HOU b(-) G C(T),y(t) G h(t) + ̂ &(r)(h(r)) dr) > c\\h(-)\\.

If such a c does not exist, then there are sequences (Am(-)} c C(T) (||Am(-)|| = 1)
and {qm(-)} C LX(T, R") (qm(t) G &(t)(hm(t)) almost everywhere) such that^m(0
= hm(t) + /Ó qm(r) dr converges to zero uniformly.

Since ||<7m(/)|| < A(/) for all t, usual compactness arguments show that (at least a
subsequence of) (Am()} converges uniformly to some A(-), ||A(-)|| = 1, and
(im(')} converges in Lx to some q(-) such that q(t) G ft(í)(A(/)) almost every-
where.

It follows that ||A(0|| - /Ó A:(0l|A(0ll dt < 0 for all / which may be only if
h(t) = 0.
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12.4. Here we shall briefly discuss how the approach developed in this paper can
be applied to higher derivatives. We hope to consider it in greater detail elsewhere.
Let F be a mapping from a neighbourhood of z G X into Y. An n-fan (see 1.14) ft
from X" into Y will be called the nth outer prederivative of F at z if, for any
i = 1, . . ., n — 1, there is an /-linear bounded mapping A¡: A" —» Y such that

F(z + A) - F(z) G Axh + (l/2)^f2(A, A) + • • • + (1/ (n - 1)!K,_,(A, . . . , A)

+ (l/n!)ft(A, . . ., h) + r(h)\\hfBY,
where r(h) -* 0 if ||A|| < 0.

If F is (n - 1) times continuously differentiable at z and the (n — l)st derivative
of F at z is Lipschitz, then ft can be defined, say, as the strict e-prederivative of
F^-^atz.

A similar definition (for second derivatives) was also offered by Rockafellar who
drew my attention to the fact that it is possible to consider only symmetric 2-fans
as candidates for second order prederivatives.

Consider a particular case of a real-valued function / Let ft be a second outer
prederivative of/at z. Then, as it is easy to see,

fiz + A) < f(z) + </'(z), A> + (l/2)s&(l, h, A) + 0(||A||2),

fiz + A) >/(z) + </'(z), A> - (1/2K(1, -A, A) + 0(||A||2).
It follows that a necessary condition for / to attain a local minimum at z is
(f'(z) = 0 and) is(l, A, A) > 0 for all A, and a sufficient condition (if f'(z) = 0) is
that there exist k > 0 such that s<£\, -A, A) < -fc||A||2.

Thus it is natural to call a 2-fan ft from A" X A" into R positively semidefinite if
jg(A, A) > 0 for all A and positively definite if s^\, -A, A) < -&||A||2 for some
k > 0 and all A. Note that in the latter case s^l, A, A) > k\\h\\2 (because of the
convexity of s& in each argument) but this condition is weaker than positive
definiteness.
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